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A theory is developed for the induced generation of surface acoustic waves by the action of a single 
beam of laser radiation on absorbing condensed materials. The surface acoustic wave instability 
mechanism is the following. When a surface acoustic wave is caused by fluctuations, the laser 
wave excites a surface electromagnetic wave, and the interference of this wave with the laser wave 
leads to a spatially periodic heating of the surface and, correspondingly, to a periodic variation in 
the pressure which reinforces the fluctuational start of the surface acoustic waves. In addition to 
ordinary (Rayleigh) surface acoustic waves, the dispersion equation that is derived also describes 
the excitation of a new class of surface acoustic waves. These are quasistatic induced surface 
acoustic waves having a frequency determined by the intensity of the laser pumping. The depen- 
dences of the characteristics of the excited surface acoustic waves on frequency, polarization, and 
angle of incidence of the laser wave are studied. The formation of reversible and irreversible 
surface ripples which is observed in the action of laser radiation on absorbing solids is interpreted 
on the basis of the theory that is developed. 

1. INTRODUCTION pressure wave, which augments the fluctuational start of the 

It has been shown experimentally1-9 that when intense 
laser radiation acts on strongly absorptive solid materials, 
(semiconductors, metals, and insulators), one- and two di- 
mensional structures (ripples) are formed on their surfaces. 
The experimental data indicate that these structures arise 
because of the excitation of a surface electromagnetic wave'' 
(SEW) and the interference of this wave with the incident 
~ a v e . ~ - ~  There can be a variety of specific mechanisms for 
ripple formation that are associated with a spatially periodic 
distribution of light intensity produced on the surface. The 
mechanism that has gained the widest currency is the vapor- 
ization me~hanism,~-~." . '~  which leads to the formation of 
only irreversible ripples. However the formation of reversi- 
ble ripples as well has been obser~ed ,~  these ripples appear- 
ing during the laser pulse and disappearing after the pulse 
stops. A theory must account for the formation of both irre- 
versible and reversible ripples. 

In this paper a theory is developed for the induced gen- 
eration of surface acoustic waves (SAW)13 by the action of 
laser radiation on absorptive solids. On the basis of this the- 
ory an interpretation is given of the formation of surface 
ripples, including both the irreversible and the reversible 
cases. The theory that is developed is also ofintrinsic interest 
for acousto-optics as a new mechanism of laser excitation of 
coherent surface acoustic waves. 

The surface acoustic wave instability mechanism con- 
sidered in this investigation is the following. Fluctuational 
excitation of a surface acoustic wave gives rise to a surface- 
relief modulation that is periodic in space and time, and as a 
result of this modulation the external light wave Ei excites a 
surface electromagnetic wave. The interference of the latter 
with the light wave transmitted into the medium, together 
with optical absorption, produces a surface temperature 
wave and, as a result of thermal expansion, a corresponding 

surface acoustic wave. When a critical (threshold) value 
(Ei I:, of pumping is exceeded, this positive feedback leads to 
an exponential (in time) growth in the surface acoustic wave 
amplitude. The frequencies w, (a = s,a) of the surface elec- 
tromagnetic waves, the frequency 0, of the surface acoustic 
wave and the frequency w of the pumping wave are connect- 
ed by the relations 

0 = w a f  Qq, @=aa-Qq. 

In addition, the equalities 

are satisfied, where k, is the pumping wave-vector compo- 
nent tangent to the plane surface, and k, and q are, respec- 
tively, the wave vectors of the surface electromagnetic wave 
and surface acoustic wave lying in the plane of the surface. 

Conditions (1) and (2) define a class of coherent surface 
acoustic waves that in principle can be excited via the mech- 
anism under consideration. Of these waves, those for which 
the generation threshold is minimal will grow the fastest. 
The values of 0, and q for these waves depend substantially 
on the frequency, polarization, and angle of incidence of the 
pumping wave. Standing as well as travelling surface acous- 
tic waves can be excited. 

The excitation of standing surface acoustic waves under 
conditions where Hooke's law has not yet broken down may 
be responsible for the formation of the reversible ripples; 
otherwise, irreversible ripples are formed. 

Besides the generation of ordinary (Rayleigh) surface 
acoustic waves, the mechanism that we are investigating 
leads to the formation of a new class of surface acoustic 
waves. These are quasistatic surface acoustic waves, with 
frequencies determined by the intensity of the laser pump- 
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ing. The excitation of these waves constitutes a nonequilibri- 
um phase transition of the soft mode (relaxation) type. The 
excitation of quasistatic surface acoustic waves also can be 
responsible for the formation of reversible and irreversible 
surface ripples. 

2. EXCITATION OF A SURFACE ELECTROMAGNETIC WAVE 
BY AN EXTERNAL LIGHT WAVE WITH SPACE-TIME 
MODULATlON OF THE SURFACE RELIEF 

Let us consider a medium that occupies the half-space 
z>6 (r,t 1: 

g ( r ,  t )  =gq ( t )  exp {-iqrf iSl,t)+c.c. , (3) 
where r = {x,yj is a vector lying in the plane z = 0 and 6, (t ) 
is a slow modulation of the surface relief in the presence of a 
surface acoustic wave. A plane electromagnetic wave 

E=Ei(a)e-iat+c.c.c., Ei ( a )  =Ei exp {ik,r+ ik,z) 
(4) 

is incident from the vacuum [z < 6 (r,t )] onto the interface. 
We shall seek to express the field outside the medium as a 
superposition of incident (i) and reflected (r) waves at the 
frequency w and two diffracted waves with Raman frequen- 
cies w, 

E= [Ei exp (ik,z) +E, exp (-ik,z) ] exp {iktr--iat} 

where w, , w, , k,, and k ,  are given by formulas (1) and (2). 
We write the field inside the medium as a sum of a trans- 

mitted (t ) wave and two diffracted waves with Raman fre- 
quencies w, : 

E=E, exp {ik,r-yz-iat) 

+ Eaf  erp{ik,r-yaz-hat}+ C.C. 
u=s,a 

(6) 

From Maxwell's equations and (5) and (6) we obtain for the 
damping constant 

y2=kt2-ko2~ ( a ) ,  Re 7 2 0 ;  

where E(W) is the dielectric constant. The amplitudes of the 
fields in (5) and (6) are determined from the conditions that 
the components of the vector E and of the magnetic field H 
tangent to the surface z = 6 (r,t ) are continuous and that 
divE = 0, the last condition being satisfied everywhere. In- 
troducing the unit vector ;,, pointing along the z a5is into the 
medium and the unit vectors 2, = k , / l k ,  1 = k,  and 2, 
= &Xi?,, we have the following expression for the corre- 

sponding components of the fields inside the medium: 

A A 

2kokZ ( I - E  ( o ) )  ka2(ktk,)  '-y,ra 
Eai' = EaEii 

ko, (k,+iy) E (ma) ra+ya 
Z ik , k , ( l -~  ( 0 ) )  [ko2kay  (ilia) -koa2kty,l -- [ i l i a ]  rEaEt3r 

kokoakt(kz8 ( a )  +iy) ( e  (o,) r a f  y,) 
(9) 

2kok,ka2 (1-E ( a )  ) 
E,,' = 

ko ,  (k,+iy) [ E  (a,) r,+y,l ( i lk , )  [ i l k , ]  z EaEtl 

2ik,k,k0I',(l-e ( o )  ) [itia], 
Ea3' = EaEii 

ko,(k,+iy) [ E  ( a a )  ra+ycrI 

where ts = 6, (t ), 6, = 6 ,*(t ). Analogous expressions hold 
for the fields outside the medium. 

Expressions (8)-(11) are valid for media with arbitrary 
values of E(W) = E'(w) + ~E"(w). If &'(a) < 0, with 
I E ' ( w )  I )&"(a) and lel(w) 1% 1, then for 0, (w we have 

where 

From (12) it can be seen that the amplitudes of the scat- 
tered waves (9)-(11) undergo resonant growth when their 
wave vectors k, coincide with the wave vectors of the free 
surface electromagnetic waves": 

In the derivation of (8)-(11) it was assumed that 
6, (t ) = const. This assumption is true if the characteristic 
time of variation of the slow amplitude of the surface acous- 
tic wave (g, (t )), which is equal to y; ', is much larger than 
the time T,,, = ( c r , ) - '  for establishing the steady-state 
amplitudes of the surface electromagnetic waves. 

3. EXCITATION OF SURFACE TEMPERATURE WAVE BY THE 
INTERFERENCE OF THE SURFACE ELECTROMAGNETIC 
WAVE AND THE EXTERNAL LIGHT WAVE 

In order to describe the heating of the surface of the 
medium it is necessary to add the term (4~)-'Ed D/dt to the 
right-hand side of the heat conduction equation, where E is 
defined by formula (6)  and the displacement vector D is writ- 
ten in the form 
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The heat conductivity equation for a solid has the form 

wherex = ?t/c,, x is the thermal diffusivity, c, is the specific 
heat per unit volume, and x is the heat conductivity. 

In the subsequent discussion we shall not be interested 
in the equilibrium heating and shall consider only the space- 
time modulation of the surface temperature associated with 
the product of E, and E i  on the right hand side of (17) (Ref. 
14). Using (16), we have in (17) 

a D , a eff ( a )  
E- = {2weff (o)  -ki/,Qq - 

d t d o  

x exp (iQqt-iqr) + C.C. 

Let us limit ourselves to considering the case where the ine- 
quality  la^" (a) / >a, &'(a) / holds. Assuming, in addition, 
that the conditions 0, (a,  k, -q-ko(yo are satisfied and 
using formulas (8), (9)-(1 I),  and (16) we obtain 

(4ncv) - ' ~ a ~ / a t = a , t ,  (t)  exp {-iqr-y~z+iQ:t)+c.c., 
(18) 

where in the case of s-polarized pumping wave (the vector Ei 
is perpendicular to the plane of incidence) 

2yow lEi I 2  cos2 0 r, sin2q. + I?, sin2 q. 
aq = 

~ C V  { Aks-iFp Ak,,+iI'p 3 (19) 

and in the case ofp-polarized pumping  wave(^^ lies in the 
plane of incidence) 

fa=cos2 qa-sin 0 cos (F, (20) 

Herey, + y*~y,=2k, I~ '1 ' '~ ,cosp ,  =(k,k,),Oisthean- 
gle between k, and the normal to the surface z = 0 i.e., it is 
the angle of incidence of the pumping wave, and A k ,  and r, 
are defined in (13) and (14). 

Since the medium abuts the vacuum there is no heat 
exchange at the interface. Thus, with an accuracy to terms 
proportional to { the initial and boundary conditions can 
be written in the form 

T (r, z, t=O) =To, 
a z 

T (r, z=w, t )  =To. (21) 

For times r > rSEW we shall set 

in ( 18), and introduce the complex frequency 

The temperature wave is established in a time 

so that the solution of the problem (17), (21), taking into 
account (18) and (22) may be represented by the formula 

where S = q2 + if2 /x, R& > 0, and the quantity a, is de- 
fined in (19) and (22). Expression (24) is valid for the condi- 
tions q, IS1 <yo. 

4. GENERATION OF COHERENT SURFACE ACOUSTIC 
WAVES AND STATIC RIPPLES BY LASER PUMPING 

The temperature wave (24) gives rise to a driving force 
in the equation for the deformation vector u of the medi- 
umI5: 

pu=pctzAu-t-p (c12-cf2) grad div u 

-Fqbu+ (~ /3+5)grad  div ;--KG grad T, (25) 

wherep is the density of the medium, c, and c, are the longi- 
tudinal and transverse velocities of sound, 7 and 5 are the 
first and second coefficients of viscosity, K is the bulk modu- 
lus, and a is the thermal expansion coefficient. 

At the free surface, neglecting ponderomotive forces, to 
the approximation linear in gq the boundary conditions at 
z = 0 are written in the form 

dux du, -+-= 0, -+-= du, du, 
dz dx dz dy 0, 

Let us take the x axis along the direction of the vector q. 
Then in (24), the value of T - To is independent ofy. There- 
fore u, = 0 and u, and u, are independent ofy. Consequent- 
ly, the second of the conditions (26) is satisfied automatical- 
ly. 

The solution of the problem (24), (25), and (26) has the 
form 

Here 

and tt, is obtained from x, by interchanging c,+,, 
7 - q '  = 4/37 + 5; while A and B are constants. 

Since the modulation of the surface relief (3) and (22) is 
produced by the surface acoustic wave, 

(r,t ) = u, ( r j  = 0,t )I, we have, from (3), (22), and (27), 
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Now substituting (27) into the boundary conditions (26), we 
obtain, together with (29), a system of three homogeneous 
linear algebraic equations in the constants A,  B, and go. The 
condition (det = 0) that this system of equations have a solu- 
tion leads to a dispersion equation in 0 .  Neglecting in this 
equation small terms proportional to 772(E(2, we write it in 
the form 

where 
X ~ ~ ~ = Q ~ - Q ~ / C ~ ~ ,  x ~ ~ ~ = ~ ~ - Q ~ / c ~ ~ .  (31) 

Substituting (23), (28), and (3 1) into (30) and setting the real 
and imaginary parts of this equation equal to zero, we obtain 
two equations for determining 0, and y, . In the absence of 
an external field (R = 0) and of dissipation (7 = 77' = 0) we 
obtain from (30) two solutions. 

1) A dynamic solution (surface acoustic waves). Taking 
into account the relation c:(q2 - xiI) = c:(q2 - xi,), which 
follows from (3 I), we reduce (30) to the following form: 

The solution of (32) is the usual formula for a Rayleigh sur- 
face acoustic wave15: 

where, as can be seen from (32) the coefficient 6 is a function 
of c,/cl. For various materials 0.874<P<0.955.'3,'5 

2) A static solution: 0, = 0 and y, = 0 for all q. 
Let us now investigate how both of these solutions 

change when R # 0 and when 7 # 0 and 7' # 0. 
a) We substitute (23), (28), and (3 1) into (30). Taking into 

account that 1 y, / g a g ,  we linearize (30) with respect to y, , 
17, and 7'. The real part of the linearized equation gives once 
again Eq. (32), whose solution is the relation (33). Since 0, is 
large (0, > / y, I), we have neglected the effect of the pumping 
field on 0, in the derivation of (32). The imaginary part of 
the linearized equation defines an expression for y, which, 
taking into account (32), (33), and (28), can be written in the 
form 

where 

and the damping constant of the surface acoustic wave due 
to the viscosity of the medium is 

= q l  
2~ - 

where the quantity a, is defined in (19) and (20). 
As can be seen from (34) and (36), the growth rate is 

expressed by the imaginary part of the product of two fac- 
tors, one of them resulting from the surface electromagnetic 
wave (proportional to a, ) and the other a temperature factor. 

Depending on the pumping wavelength and on the pa- 
rameters of the material, two limiting cases should be distin- 
guished. IfXyi, 10 I andxq@c,, then in (36) 

and the expression for the increment is written in the form 

However, if xy; ) (0 / and xq)pc,, then 

Let us now estimate the critical intensity for the excitation of 
surface acoustic waves. For normal incidence k, = 0 in (2) 
and we find that for resonance surface acoustic waves 
q = k ,  -k, (see Ref. 15). From (37) and (19) we have, with 

' 2  sin p, = sin2p, = 1 

max (He a,)  =2yoo  lE,IZlncv. 

Then from (7) and the condition y, = 0 we obtain an expres- 
sion for the critical intensity 

2 n ~ 2 ~ 1 2 p c v  ( l - ~ ' c , i / c ~ ~  )'h 
I E ~ I ~ ;  = y q  Kuo 1-p" 

In the case of copper we have a = 7.10-5 deg-', 
K = 1.4.1012 dyn/cm2, c, = 4.10' erg/cm3-deg, P = 0.93, 
c, = 2.3.105 cm/sec, c:/c: = 0.237, and p = 9 g/cm3 (Ref. 
16). For a pumping wavelength A = 1 pm, (o = 2.1015 
sec-I), for 77 = 3.6.10-2 dyn-sec/cm2, we have from (35) 
y, = 6.8.106 sec-I. Then from (38) we obtain for the thresh- 
old intensity for the excitation of surface acoustic waves 

' I E , '  'h 1.9.107 w/cm? (I,) th = - = 
2n 

b) Let us now consider the quasistatic case (0 ~ 0 ) .  We 
substitute (23), (28), and (31) into (30) and shall assume 

Then, from (30) we obtain 
2  K a R e a ,  2  K a I m a ,  

y q = - - [  + ~ ~ q ' ] ,  Q q  = -- 
3 yop (c12-c,2) 3 " ( o p ( ~ , ~ - ~ t 2 )  ' 

(39)  
For normal incidence, Ima, = 0 and 0, = 0. In (39), as can 
be seen from (19) or (20), Reu, < 0 and I Reu, 1 is maximal for 
A k,  = A k ,  = - r, . Here the relaxation mode of y, is soft: 

In addition, 
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The critical intensity (at which y, = 0) for copper for 
il = 10.6pm is I,, = 2-10' W/cm2. If Ii >I, ,  , then a static 
sinusoidal network builds up on the surface with a time in- 
crement yq and having a period which, as follows from (2), 
where k, = 0, is equal to the pumping wavelength il = 27~/ 
ko and the vector q parallel to E i .  

5. CHARACTERISTICS OF SURFACE ACOUSTIC WAVES AND 
THEIR DEPENDENCE ON THE PUMPING PARAMETERS 

We shall limit this investigation to the case (37), which 
is realized in solid materials. From (37), with (19) and (20), it 
can be seen that the increment is maximal for those surface 
acoustic waves for which the resonance conditiondk, = T, 
is satisfied, i.e., according to (13) 

Thus, in (2) the value of / k, I is fixed and the direction of the 
vector k, remains arbitrary. This means that the possible 
vectors k, terminate on a circle of radius ko (see Fig. 1). Then 
from (2) the modulus and wave vector of the coupled surface 
acoustic wave are determined as functions of the orientation 
of the vector k, of the surface electromagnetic wave: 

q=ko (l+sinZ 0-2 sin 0 cos cos 6,=k0 (cos cpa-sin 0)/q, 

A * 

where cos pa = (k, k, ). 
(41) 

All possible cases of mutual orientation of the vectors q 
and k, are divided into two classes. 

a) Double resonance of the surface electromagnetic 
waves: the vectors q and k, are such that the resonance con- 
ditions (40) are satisfied simultaneously for k, and k, . In this 
case both terms with a = s and a = a give the same contribu- 
tions in (19), (20), and (37). For s-polarization pumping and 
sufficiently small angles of incidence 8 double resonance is 
realized for any orientation of q with respect to k, (here 
/k, / - /k, / -9) .  For sufficiently large 8 it is realized only for 
those orientations shown in Fig. 2. In this case cosq, = co- 
up, = sine. In the case ofp polarization, double resonance 
occurs only for quite small angles 8 (with the orientation 
shown in Fig. 2 it does not occur, since here coup, = sine 
and fa = 0, so that y, (0). 

b) The single-resonance case: The resonance conditions 
are satisfied only for one of the vectors, k, or k, (see Fig. 1). 
In this case the main contribution to (19), (20), and (37) will 
be given by only one of the terms, that with a = s or a = a. 
For s polarization the single-resonance case occurs for 8 # 0 

FIG. 1. Single-resonance case of orientation of the vector q relative to the 
vector k, . Radius of the circle is k,. Here I k ,  # 1 k ,  1. 

FIG. 2. Orientation of the vector q relative to the vector k, in the double 
resonance case. Radius of the circle is k,. Here Ik, I = Ik, and COT,. 

= cosp, . 

and cosq, #sine. For p polarization it occurs when 8 # 0. 
Let us consider first the case of an s-polarized pumping 

wave. We consider the resonance conditions (40) to be satis- 
fied only for k, . In this single-resonance case (8 # 0 and cos 
p, #sin8 ) according to (19) and (37) the increment yq can be 
written in the form 

where 
PZk,2 'a *, ~ l E ~ "  0, a=q -. b.=--- 

4pzcLZp x, ,  ~ C Y  2~ 

In the case of double resonance, when 8 # O  and coup,. 
= sin8 (Fig. 2), we have from (19) and (37) 

For small angles of incidence 8 ~ 0  and for any coup, we 
have from (19) and (37) 

Curves of y, /b, as a function of c o y ,  according to formulas 
(42) to (44) are shown in Fig. 3. 

An analysis of formulas (42)-(44) permits us to draw the 
following conclusions: 

1) For s-polarization pumping incident at an angle 8 
generation (yq > 0) of a continuum of surface acoustic waves 
is possible; their wave vectors are determined by formulas 
(41) and their frequencies by (33). The necessary condition 

FIG. 3. Growth rate yq,  (42) and (43) as a function of cosq, in the case of 
non-normal incidence (9 # O )  of s polarized pumping wave. For normal 
incidence (9 = 0) the dependence of yq on cosp, is determined by formula 
(44). 
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for the excitation of these surface acoustic waves is the ine- 
quality b, > a/2. 

2) If 0 # O  and 
I 
I 
I 

(see Fig. 3) then there is an absolute maximum of the incre- I 
ment yq for a given 8 when the vector q is oriented such that - 1 

cosp, = cosp, = sine. In this case surface acoustic waves 
will be generated with a wave vector q which, from (41), is 
determined by the formulas 

q L k t  ( T .  e. qllEi) ; q-ko cos 0. (45) FIG. 4. Growth rate y, (47) as a function of cosp, in the case of non- 
normal incidence (8 #O)  ofp  polarized pumping wave. For normal inci- 

3) If dence (0 = 0) the dependence of yq on cosp, is determined by formula 
(48). x,  = i(l  + 2a/bp)sin 8, x, = sin 8, y ,  = $1 + 4az/bpZ)sin2 8 - a/ 

bP . 

(see Fig. 3 )  then yq has an absolute maximum for 
cosp, = (a/b, )sin8 and the waves generated most intensely 
will be two surface acoustic waves the directions of whose q 
vectors are determined by the angles S and 2?r - S (the angle 
S is defined in Fig. I), with 

4) For 0 = 0 a continuum of surface acoustic waves is 
generated, with increments given by (44). The most intense 
of these are surface acoustic waves with parameters near to 
those of surface acoustic waves with cow, = 0. For these 
waves, q z  k, and qllE,. 

We shall now consider the case of a p  polarized pump- 
ing wave. From (20) and (37) it can be seen that for fa > 0 the 
increment is maximal for a surface acoustic wave having 
Aka = Tp, and for fa < 0 it is maximal for the surface acous- 
tic wave having Aka = - T, . It follows from these reso- 
nance conditions that for these surface acoustic waves, as in 
(40) also, k, z k,. In this discussion we shall assume that this 
resonance condition is satisfied only for a = s. 

In the single-resonance case (8 #O) we have for the in- 
crement y,, from (20) and (37), 

Y P  a 
- =fcosZ 9,- sin 0 cos q.1 - w(1-I-sinz 0-2 sin 0 cos q,), 
b, b P  

where the quantity a is defined in (42). 
Curves of yq (47) as a function of cow, in the case of 

sufficiently large pumping intensities (b, > 2a) are shown in 
Fig. 4. The magnitude and direction of q for the correspond- 
ing surface acoustic waves are given by formulas (41). 

In the double resonance case (0 # 0, cosp, = - cosp, , 
and k, = k,) the increment y, has the form 

An analysis of formulas (47) and (48) along with Fig. 4 
permits us to draw the following conclusions: 

1) For intensities bp > a ( l  - sine), a surface acoustic 

wave is generated which corresponds to cosp, = 1, with the 
q vector antiparallel to kt : 

With increasing intensity (6, > a ( l  + sine ), in addition to the 
last-mentioned wave, another is excited having the q vector 
parallel to kt : 

2) For large intensities (6, >a) the growth increment of 
the surface acoustic wave corresponding to (50) is larger than 
that of the wave corresponding to (49). 

We have investigated the process of self-excitation of a 
travelling surface acoustic wave with wave vector q given in 
the form (3). An analogous investigation shows that for a 
surface acoustic wave with wave vector - q the growth in- 
crement is y _, = y, . This means that two oppositely-di- 
rected surface acoustic waves are excited at once and their 
superposition can form a standing surface acoustic wave. 

6. CONCLUSION 

The process of laser excitation of coupled surface acous- 
tic waves and surface electromagnetic waves that we have 
investigated here is analogous to the induced scattering of 
light caused by absorption in the bulk." However, in con- 
trast to the latter situation, the case y, )y, can occur at the 
surface so therefore the scattered wave (surface electromag- 
netic wave) is adiabatically tuned to the surface acoustic 
wave and the latter is also amplified (in the bulk absorption 
case, conversely, y, ( y ,  and the acoustic phonon is tuned to 
the scattered electromagnetic wave). 

It is important to note that the excitation of surface 
acoustic waves by this mechanism is possible not only in 
media having E' < - 1, but also in a medium with an arbi- 
trary value of E' .  In the general case the role of the surface 
electromagnetic wave is taken by the fields diffracted by sur- 
face roughness [described by the general formulas (9)-(1 I)]. 
Investigation of these cases is beyond the scope of this paper. 
Let us only note that the calculations show that in this case 
only surface acoustic waves with wave vectors qlE] can be 
generated. 
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Observation of the generation of surface acoustic wave 
by the mechanism that we have studied here may be facilitat- 
ed by the use of a scheme of active ~pectroscopy,'~ i.e., the 
use of two laser beams, where the difference of the projec- 
tions of their wave vectors gives the wave vector q of the 
surface acoustic wave. 

At the present time a number of experiments have been 
performed in which the formation of reversible and irrevers- 
ible networks have been reliably recorded on the surfaces of 
solids: nickel,' ~ o p p e r , ~  a lurn in~m, '~  and silicon, germani- 
um, and gallium a r ~ e n i d e , ~ ~ ~ . ~ . '  sodium chloride, and fused 

The experimentally determined periods and orien- 
tations of the surface networks as functions of frequency and 
angle of incidence and polarization of the pumping wave, as 
well as the characteristic intensities at which the formation 
of the networks is observed correspond to the regularities in 
the behavior of the excitation of surface acoustic waves 
found in this investigation. 

We note that the vaporization mechanism leads to ex- 
actly the same dependences on the pumping parameters for 
the characteristics of the dominant surface networks as in 
the case of the excitation of surface acoustic waves. 

The authors express their gratitude to S. A. Akhmanov 
and H. I. Koroteev for their discussions and critical com- 
ments. 
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