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The dynamics of a Hamiltonian system consisting of two coupled identical oscillators excited by 
periodic pulses is investigated by the renormalization group method for the case in which the 
pulse intensities depend nonlinearly on the generalized coordinate. I t  is found that three param- 
eters are needed for the description of the system in the vicinity of the order-disorder transition 
point (i.e., that this point is a tricritical one). Two of the parameters characterize the coupling 
between the oscillators, and are interpreted as the constants for two types of interaction between 
the Hamiltonian systems. The splitting of the parameter space into regions of different regimes in 
the vicinity of the tricritical point has a universal character, and does not change when the scales 
along the three coordinate axes are changed by <actors of 8.721 1, - 4.4039, and 1.85 10 respec- 
tively. It is suggested that the only condition for the realization of this type of behavior is the 
existence of a sequence of period doublings for each of the coupled systems. 

A chain of coupled nonlinear oscillators is a traditional 
object ofinvestigation in the theory of vibrations and statisti- 
cal mechanics. Such a chain serves, for example, as the sim- 
plest one-dimensional model of solids, with oscillator atoms 
at the crystal-lattice sites. In the majority of published inves- 
tigations it is assumed that the individual oscillators are 
completely integrable Hamiltonian systems exhibiting just 
simple quasiperiodic motions.'-3 Upon the introduction of 
sufficiently strong coupling, the chain may become a nonin- 
tegrable system and stochastic vibrations then become possi- 
ble in 

Stochastic behavior is, however, exhibited by systems 
with a small number of degrees of freedom, e.g., nonlinear 
oscillators excited by an external periodic i n f l ~ e n c e . ~ - ~  It is 
therefore of interest to investigate a chain of coupled sys- 
tems, each of which can by itself exhibit stochastic vibra- 
tions. One of the systems for which such a chain serves as a 
model is a crystal under the action of a high-intensity optical 
or acoustic signal. 

We shall assume that the individual cells that are the 
building blocks of the chain are each a Hamiltonian system 
that undergoes, upon the variation of some parameter A, a 
transition from the state of regular behavior into a state of 
stochastic behavior via an infinite sequency of period-dou- 
bling bifurcations of the stable cycles. This type of order- 
disorder transition is widespread (it is, in particular, realized 
in the case of the above-indicated nonlinear oscillator when 
the intensity of the external influence is increased), and has 
been relatively well It is, for example, well 
known that the sequency ofbifurcation values for the param- 
eter A, converges to a limit (the critical point) according to 
the law of geometric progression: 

There exist directly at the critical point (unstable) cycles with 
all possible periods of 2N units of the initial period. In the 
formula (1) 6 ,  = 8.7210972 is a universal constant, while A, 
and K are constants that depend on the specific system. It is 
convenient to use in place ofA the parameter A = (A - A,)/ 

K, the bifurcation values of which are universal. 
A major role in the understanding of the mechanisms 

underlying the order-disorder transition via doubling bifur- 
cations has been played by the renormalization group (RG) 
m e t h ~ d , ~ * ' - ' ~  which is similar in its formal content to the 
well-known method used in the theory of phase transi- 
t i o n ~ . ' ~ , ' ~  At the critical point the mapping describing the 
changes that occur in the state of the system over the period 
2N is invariant (in the case of sufficiently large N )  under R G  
transformations, and depends neither on N, nor on the spe- 
cific form of the basic equations of the system. This is the 
basis of a number of remarkable scaling properties, among 
which is the formula (1). 

Thus, a chain of uncoupled systems is described by a set 
of mappings of universal form. Therefore, some scaling laws 
should also appear upon the introduction of coupling 
between the systems. To find these laws, it is sufficient to 
consider two coupled systems and analyze the RG-transfor- 
mation properties of the terms describing the coupling.'' 

Generally speaking, the correction, characterizing the 
coupling, to the Hamiltonian may depend in an arbitrary 
fashion on the coordinates and momenta of the coupled sys- 
tems. It however follows from our results that any coupling 
can be represented as a combination of two fundamental 
types of interaction governing the critical effects at the 
threshold for the onset of stochasticity. 

1. THE EQUATIONS OF MOTION AND POINT MAPPINGS 

Let us consider a system of two oscillators with the Ha- 
miltonian 

where q,, q2,p,, andp, are the coordinates and momenta, w is 
the eigenfrequency of the partial oscillator, E is the coupling 
constant, and the function P characterizes the coordinate 

582 Sov. Phys. JETP 59 (3), March 1984 0038-5646/84/030582-04$04.00 @ 1984 American Institute of Physics 582 



dependence of the intensity of the external influence. The 
period of the external influence is taken to be unity. Let us set 

and write the equations of motion in the new variables: 

We shall be interested only in the x, y, 6, and 7 values as- 
sumed immediately after each n-th pulse, and shall label 
them by the index n. Solving the system (2), we can find the 
following recursion formulas: 

where 
s=sin o ,  c=cos o, ?=sin (02+2~)" ,  C=COS (02+2~)Ih.  

Let us introduce the notation u, = cx, - sc, , 
U, = Cy, -ST,, and concretize the form of the influence 
function F i n  such a way that 

whereil is a parameter. Then the system (3) becomes signifi- 
cantly simpler: 

where a = F - Scw/s(02 + 2 ~ ) ' ~ ~  and 0 = 1 - Fm/ 
s(w2 + 2 ~ ) ' ~ ~ .  The mapping (4) can also be rewritten in the 
form 

from which it is evident that the system is invariant under 
time reversal. 

The parameters a and vanish at E = 0, and should 
therefore be regarded as coupling constants. We shall call 
the expression in the brackets in the equation fory a coupling 
function, and denote if by &p(x). In the example under consi- 
deration the coupling function is a +fix, but it may have a 

more complicated form in the case of a different interaction 
Hamiltonian or a different F(q)  function. 

2. THE RENORMALIZATION GROUP METHOD 

Let us apply to the analysis of the mapping (4) an ap- 
proach based on the approximate construction of the renor- 
malization-group equations." The main idea consists in the 
following. Carrying out the original mapping twice, we ex- 
press the quantitiesx, y, u, and v pertaining to the moment of 
time n + 2 in terms of their values at the moment n. Then, we 
try by making a change of variables, to reduce the mapping 
obtained to the form (4), with, generally speaking, different 
A, a ,  andfl. In the process, if we are able to do it, we shall find 
the RG equations: expressions connecting the new and old 
values of the parameters. These equations are a powerful 
tool for the study of the dynamics of the system over long 
periods of time. Indeed, the new mapping is similar in form 
to the original one; therefore, the same procedure can again 
be applied to it. Carrying out this procedure N times, we 
reduce the problem of finding the state of the system after 2N 
units of time to a single application of the mapping (4), the 
values of the parameters in which are determined with the 
aid of the RG equations. 

The actual derivation of the RG.equations is made easi- 
er by the use of the invariance property of the mapping under 
time reversal. Let us limit ourselves to the consideration of 
the class of solutions satisfying the condition 
x, = x - ,, y, = y _. . Then, as can be seen from ( 5 ) ,  

Let us substitute (6) into (7), and try to reduce the resulting 
expressions for x, and y, to the form (6). Let us consider only 
the region of small xo and yo, retaining in the expressions for 
x, and y, the terms of order in x, and yo not higher than two. 
Further, making the change of variables 

we finally have 

Xz='/2 (kt-Xo2-Yo2), Y,='/, (--2X0+a'+PfX~) Yo, 

where 
h1=3-2h2+h3/2, (9) 

a'=- (h+2ih) a-2P+a2+P2/2+saph/2+aB/h, (10) 

The relations (9)-(11) are sought RG equations. 

3. THE STATIONARY POINT OF THE RG EQUATIONS. 

TWO TYPES OF COUPLING 

The system of equations (9)-(11) possesses the station- 
ary point 

Let il = A ,  + KA,A(l ,a ( l ,p ( l .  Then from (9)-(11) we 
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find in the linear approximation that 

The matrix M naturally breaks up into blocks, the block 2 
effecting the transformation of the coupling fun$tion repre- 
sented by the parameter vector ( E  ) . The matrix M has three 
eigenvalues, each of which has a modulus greater than unity, 
specifically, the eigenvaluess, = 9.08768, v, = 4.6692, and 
y, = 1.85033. The eigenvalues v, and v, pertain to the block 
C. Thus, our analysis indicates the existence of three unsta- 
ble directions in the parameter space near the stationary 
point (12). 

If, in working out the R G  procedure, we gave the cou- 
pling function in theAform p ( ~ )  = a + Px + . . . + yxm , 
then the matrix block C would have been an m X m matrix, 
and would have accordingly had m eigenvalues. The ques- 
tion how many of them have a modulus greater than unity is 
nontrivial. But the results of numerical calculations per- 
formed with different smooth coupling functions confirm 
the conclusion that there exist precisely three unstable direc- 
tions (see the Appendix). The numerical calculations yield 
for the parameter A, the critical value A, = 4.1361669 and 
the following eigenvalues: S, = 8.7210972 (Ref. 5), 
v, = - 4.4039, and v, = 1.8510, which are in good agree- 
ment with our approximate results. 

Let us write out the eigenvectors of the matrix M, 
choosing the normalization for reasons of convenience (see 
the Appendix): 

0 

= (i) . = (;J = ( I .  (.;;,; 2I.i ? (14) 

Here a,  = 2.20923; PI = - 0.16533; a, = - 0.64682; 
P, = 2.09147. 

Let us now represent the result of the transformation 
that the parameters A,a, a n d 6  undergo when the R G  trans- 
formation is applied N times in the form of a linear combina- 
tion of the eigenvectors of the matrix M: 

The expansion coefficients are determined from the known 
parameters A ,a,  andP of the original (bare) mapping. Setting 
N = 0, we find from (1 5) that 

Thus, after an N-tuple RG transformation, in the case 
when N is sufficiently large, any coupling function can be 
represented in the form of a combination of two components, 
which we shall interpret as two types of coupling (interac- 

tion). The R G  transformation corresponds to the multipica- 
tion of one of these components by v, and the multiplication 
of the second component by v,. Thus, the complete charac- 
terization of the bound systems in the large-N asymptotic 
region requires the specification of the two coefficients c, 
and c, determining the coupling and the quantity A, i.e., the 
specification of three parameters in all. The stationary point 
(12) should, in accordance with the terminology of the the- 
ory of phase transitions, be classified as a tricritical point. l 3  

4. UNIVERSALITY AND SCALING RELATIONSHIPS IN THE 
NEIGHBORHOOD OF THE TRlCRlTlCAL POINT 

The analysis performed allows us to make the following 
assertions. 

1) The structure of the (A, c,,c,)-parameter space in the 
vicinity of the tricritical point possesses the property of scal- 
ing invariance, i.e., goes over into itselfwhen the scales along 
the coordinate axes are changed by factors of S, ,v,, and v, 
respectively. In other words, there occur at the point with 
coordinates (A /a,, c,/v,, cZ/v2) regimes of the motion that 
are similar to those realized at the point (A, c,, c,), but with 
the time scale increased by a factor of two. The regimes are 
similar in respect of the character of the time dependence of 
the state (periodic, quasiperiodic or stochastic) and the char- 
acter of the stability of the motion. 

2) As it often happens when the R G  method is used, the 
results obtained turn out to be applicable to a broad class of 
systems; for these results are determined not by the specific 
bare system, but by the properties of the R G  procedure it- 
 elf.^.'-'^ Evidently, our results are also applicable to a broad 
class of coupled Hamiltonian systems; we suggest that the 
only condition for this is the occurrence of an order-disorder 
transition via period doubling for each individual coupled 
system. Thus, the structure of the (A, c,, c,)-parameter space 
in the vicinity of the tricritical point should be universal. If 
to two chains of coupled systems corresponds one and the 
same point in this space, then the two chains will exhibit 
similar motions when the proper initial conditions are cho- 
sen for them. This allows us to propose the following proce- 
dure for analyzing coupled systems. 

Let there exist a chain described by complicated differ- 
ential equations. We should, after performing a limited 
amount of numerical computations, be able to find the pa- 
rameters A, c,, and c, for it. Then, the subsequent investiga- 
tion of the possible regimes of motion can be carried out, 
using a fairly simple mapping of the type (5). 

APPENDIX 

Let us consider the problem of the dynamics of a weak 
perturbation that is in phase with the vibration regime of 
oscillators with A = A,. As will become clear, this allows us 
to: 1) verify the existence of exactly three unstable directions 
in the vicinity of the stationary point of the R G  equations 
that is being studied, 2) determine more accurately the val- 
ues of the constants v, and v,, and 3) give a general procedure 
for computing the coupling constants c, and c,. 

Let x, = x -. ,y, = y -, , and yo< 1; as x, we specify 
the element of the 2Nth cycle of the isolated system. Let us 
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expand the quantity y,, in a series in powers of the coupling 
constant. Assuming the coupling to be sufficiently weak, we 
limit ourselves to two terms of the expansion:y,,(~)=y,, 
(0) + E ~ , x , ~ .  The values of 

can be found a) approximately by the RG method and b) 
through exact numerical calculations. 

a) Let us write down the N-tuply renormalized equation 
(6): 

X , N = = ~ / ~  (A,-Xo2), Y$=i/, [-2X0+e (aN+PKXo) I Yo.  

Setting X,, = Xo, we find from the first equation that 
Xo = - 1 + (1 + /2 , ) ' 12 .  Differentiating the second equa- 
tion with respect to E, and using (14)-(16), we have 

b) Let us turn to the original mapping (5). Let us differ- 
entiate the equation fory with respect to E and write out the 
recursion formulas for the three variables x,, (, = b,/ 
yo]€ = 0 ,  and x, = yo-'[dy, /dc], = o ,  which formulas have 
the form 

~ ~ + i = h ~ - ~ ~ ~ - ~ ~ - i ,  %n+1=-2~nEn-%n-i, Xn+i  

=-2xnXn-xn-i+cp(x,) %,, 

where p(x) is the coupling function. By taking as xo the ele- 
ment of the 2Nth cycle, and assuming that 5, = 1, xo = 0, 
5, = 5- ,, X, = X -  x,  = X- ,, we can compute x,,. 

If the conclusion that the stationary point (12) has a 
tricritical character is correct, then the formula (A. 1) should 
give the results of the numerical computations performed 
with formally different coupling functions. We have com- 
puted x , ,  with N ranging from 1 to 6 for the coupling func- 
tions p(x) = 1, x, . . ., x5. In all the cases we obtained agree- 
ment with the formula (A. I), the best agreement being found 
in the case in which we used the constants v, = - 4.4039 
and v, = 1.85 10. Thus, the possibility of representing the 
functions p(x) considered (and, hence, their linear combina- 
tions) in the form of superpositions of two types of coupling 
even in the case when N 2  2 is confirmed. 

Having the set of quantities x,,, the constants v, and v,, 
and the formula (A. I),  we can easily compute coefficients c, 
and c, for any coupling function. In particular, we obtain 
good agreement with the formula (16) in the p(x) = 1 and 
p (x) = x cases. This method of computing the coupling con- 
stants can be generalized and used in those cases when the 
explicit form of the point transformation is unknow, and we 
have to proceed from differential equations. 
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