
Ground state and excitation spectrum of disordered Heisenberg magnets 
E. V. Kuz'min 

L. V .  Kirenskii Institute of Physics, Siberian Branch of the Academy of Sciences of the USSR 
(Submitted 16 June 1983) 
Zh. Eksp. Teor. Fiz. 86,981-984 (March 1984) 

A systematic method is proposed for evaluating the configuration-averaged Green functions (& ) 
of a disordered Heisenberg magnet with randomly distributed coqpeting exchange interactions. 
A prescription is given for constructing the zeroth approximation Go with the aid of the local-field 
distribution function P (E) ,  which reflects the type and energy structure of the ground state. The 
excitation spectrum of a disordered ferromagnet is antlyzed in the zeroth approximation. An 
effective translational medium, described by a matrix H,, and a scattering matrix are introduced, 
and fluctuations are also incorporated. The configuration-averaged partial scattering matrix de- 
scribing scattering by the exchange bonds is found (this matrix depends yn the concentrations of 
the frustrated and normal exchange bonds), and the mass operator for (G  ) is evaluated without 
allowance for fluctuation correlations. 

1. INTRODUCTION 

The properties of disordered systems, particularly 
those of disordered (amorphous) magnets, are actively being 
studied at the present time.'-5 The theoretical description of 
disordered systems encounters fundamental difficulties 
stemming primarily from the absence of translational invar- 
iance and from the problem of configurational averaging. 

In the theory of disordered magnets (quenched alloys), 
widespread use is made of "lattice" models which attribute 
the disorder in the distribution of the spins over sites of the 
crystal lattice to the presence of competing (in magnitude 
and sign) exchange interactions. The magnetic properties of 
such a system are dscribed by the Heisenberg Hamiltonian 

where f and m are lattice sites, If, are exchange parameters, 
and Sf is the spin operator at sitef: Although in the general 
case the exchange interaction can be long-ranged and oscil- 
latory (the RKKY mechanism), here we shall consider only 
cases in which If, is nonzero only for nearest neighbors. In 
this situation two different models can be used to describe 
the fluctuations in the magnitude and sign of If, : the ran- 
dom-site model (see, e.g., Ref. 6) and the random-bond mod- 
el. 

In this paper we investigate the properties of a system 
described by Hamiltonian (I.  1) for spin S = 1/2 in the ran- 
dom-bond model, in which the exchange parameter (bond) 
If, is distributed randomly throughout the lattice. In the 
simplest case the distribution function is of the form 

where v is the concentration of negative (antiferromagnetic) 
K bonds, v = NK/Nc, NK is the number of K bonds, 
N, = zN/2 is the total number of bonds, and z is the number 
of nearest neighbors. For simplicity we consider only alter- 
nant lattices. 

Even with these restrictions the properties of the model 
have a far from trivial description. 

First of all, there is the problem of the ground state. A 
goodly number of studies have been made of the magnetic 
phase diagram of the system for the Ising part of Hamilton- 
ian (1.1) with the two-spike distribution (1.2). Both analytical 
calculations (see, e.g., Refs. 7-10) and Monte Carlo calcula- 
t ion~" . '~  show that, depending on the relationship of the 
parameters v, A, andz (and also the lattice dimensionality d ), 
the ground state of the system (T = 0) can be a disordered 
ferromagnet [for v F M ( ) ]  a spin glass [for 
vFM (A )<v<vAFM (A )], or a disordered antiferromagnet [for 
v>vAFM (A )I, where vFM (A ) and vAFM (A )are the critical con- 
centrations. I t  should be stressed that in any of these phases 
the ground state is a complex spin configuration consisting 
of two spin subsystems: "up" and "down". This is indicated 
by experimental studies of the paramagnetic susceptibility of 
disordered ferromagnets,13 where it is found that the tem- 
perature dependence is like that of a ferrimagnet. 

Second, there arises the problem of describing the exci- 
tation spectrum of the system above the various ground 
states. The coherent-potential method, which has been 

to describe the ferromagnetic state, ignores the ex- 
istence of the two spin subsystems (the disordered ferromag- 
net is approximated by a translationally invariant medium 
with a certain average spin at every lattice site). In actuality, 
the spin-wave spectrum of a disordered ferromagnet should 
contain ferrimagnet-like optical branches in addition to the 
acoustic branch. Analogous conclusions can be reached for 
the excitation spectra of the spin glass and antiferromagnet 
as well. It is thus necessary to develop a technique for calcu- 
lating the excitation spectra of Heisenberg magnets that re- 
flects in an essential way the presence of the two spin subsys- 
tems. 

Third, the solution of these problems can serve as a 
foundation on which to construct a thermodynamics of dis- 
ordered magnets. 

In the present paper we shall concentrate on solving the 
second problem, assuming that the problem of the ground 
state has, at least in principle, been solved. 
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2. GROUND STATE 

The construction of an exact wave function for the 
ground state of a disordered Heisenberg magnet with Hamil- 
tonian (1.1) and distribution function (1.2) is an extremely 
complicated problem, since there is a random distribution of 
"up" and "down" spins over the lattice sites. To find an 
approximate description of the ground state, let us separate 
Hamiltonian (1.1) into Ising Po and transverse Pl parts: 

We proceed from the assumption that X0 plays the princi- 
pal role in the formation of the ground state, while XP, gives 
only a small correction due to zero-point vibrations. This is 
in fact the case for ideal ferrimagnets and antiferromagnets. 

Let (a;] be the spin configuration corresponding to the 
minimum of Po, i.e., 

where E; is the local field at sitef: 

It is seen from (2.2) that a necessary condition for a minimum 
is that up;>O, which implies that the spin direction is 
uniquely determined by the sign of the local field1' 

ufO=sign efO. (2.4) 

The distribution (&/O) is thus uniquely related to the distribu- 
tion (a;] of the local fields. The assignment of a spin config- 
uration {a;] makes it possible to evaluate the correlation 
functions 

with the aid of which one can determine the character of the 
spatial distribution of the spins and, in particular, the pres- 
ence of long-range or short-range order4 (the angle brackets 
( . . .) denote a configurational average). 

For describing the type of ground state one can also use 
more coarse-grained characteristics. Let NA be the number 
of sites with spin "up" (these sites are denoted a ,  a ' ,  . . . , 
u i  = + 1) and NB be the number of sites with spin "down" 
(sites 0, P ' ,  . . . , a: = - 1); NA + NB = N. The system is 
characterized by a relative magnetization 

~ ( 0 )  =(uf0)= ( N A - N B ) l N ,  (2.51 

which are nonzero in the antiferromagnet state and identi- 
cally zero in the spin-glass phase. 

Let us introduce the distribution function P(E) of the 
local fields in the ground state of the system; a functional of 
p(Ih ), this distribution function describes the type (ferro- 
magnet, spin glass, antiferromagnet) and energy structure of 
the ground state. For the model under study, in which If, 
takes on only two values J >  0 and K < 0, there is a finite 
number of local-field types, which are characterized by dif- 
ferent distributions of the Jand  K bonds and of spin states in 
a cluster (by cluster we mean a spin surrounded by z nearest 
neighbors). The local field acting on such a spin is given by 
formula (2.3). Let us write the function P (E) in the form 

where E,O is the local field of the jth type and Wj is the 
probability of its occurrence in the ground state of the sys- 
tem. Using (2.4) and (2.7), we find 

where a, (0) = NA /Nand UB (0) = N, /N are the fractions of 
sites with spin "up" (subsystem A) and "down" (subsystem 
B) in the ground state. 

In the ferromagnetic state the envelope of the distribu- 
tion function P (E) should obviously be asymmetric to provide 
for u(0) > 0. In the antiferromagnetic and spin-glass states, 
however, the envelope should become symmetric, so that 
a(0) = 0. To describe the antiferromagnetic state it is con- 
venient to introduce the distribution function of the local 
fields for each sublattice: 

where Wj" is the probability of occurrence of the local field 
of type j in the ith sublattice: P(E) = 1/2( P, + P,). In the 
antiferromagnetic state sublattice 1 is occupied predomin- 
antly by "up" spins, so the shape o f P , ( ~ )  is analogous to P (E) 

in the ferromagnetic state. Because the sublattices are mirror 
images of each other, the functions Pi (E) have the properties 

which is nonzero in the ferromagnetic state. For identifica- P, (e) =PI (-8) , J P, (e) sign (E)  d e = a  (0) for AFM, 

tion of the antiferromagntic state it is convenient to intro- (2.10) 

duce two sublattices (1 and 2), which correspond to the ideal P2(&)=Pi (e)-Ps~(e) .  J ~ s G ( e ) s i g n ( ~ ) d e = ~  for SO. 
antiferromagnet (v = 1). Denoting by f, f ', . . . the sites of 
sublattice 1 (spins "up" in the ideal antiferromagnet) and by 
m, m', . . . the sites of sublattice 2, we have by definition the 
relative sublattice magnetizations 

These distributions reflect the type and energy struc- 
ture (local or short-range order) of the ground-state of a dis- 
ordered Ising magnet. Although they can be expressed ana- 
lytically in certain limiting cases, they have nevertheless 
been evaluated by the Monte Carlo method." 

The distribution function of the local fields retains its 
meaning at finite temperatures, where the local field 
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depends on the thermodynamic averages a,. For the Ising 
Hamiltonian we have the formal solution of = tanh(cf/2T), 
which implies that the spin direction is determined as before 
by the sign of the local field. Henceforth, for the sake of 
generality, we shall use functions P(E) and PI(&) which are 
implicit functions of temperature, the local fields in them 
being defined by (2.11). 

3. EQUATIONS FOR THE GREEN FUNCTIONS. ZEROTH 
APPROXIMATION FOR THE CONFIGURATION-AVERAGED 
GREEN FUNCTION 

The Green function formalism is widely used in the the- 
ory of disordered systems, since the experimentally observ- 
able characteristics of the system can be found in terms of 
such functions. 

The equation for the Green function ( ( S T  1s; )), in 
the Tyablikov approximationI6 can be written 

In place of ((Sf+ IS; )), it is convenient to introduce the 
function 

Gi f t  ( E )  =af-'((Sl+J Sf.-)),, 

the equation for which, 

is written in terms of the locators gf (E  ). In matrix form we 
have 

where i is the unit matrix and i. is the diagonal matrix 
Efm = a r m  cf. 

The equation for G can be written in a different form: 

The matrix H has the property3." 

which permits us to represent it in the form 

where the summation is over all nearest-neighbor pairs 
p = (fm). The partial matrix A (fm), like all the other matri- 
ces, has dimensionality N XN,  but it contains only four non- 
zero matrix elements 
[L (fm) ] rrnr=6f, j (6rn,l-6mrm) Vlm+6f,m (6rn,rn-6rn,,) Vrnt. (3.8) 

This matrix can be represented symbolically as a 2 X 2 sub- 

matrix 

The equation for & in both its forms and relations (3.6)-(3.8) 
will be used extensively in what follows. 

The basic problem of the theory is to evaluate the con- 
figuration-averaged Green functions. To describe the ferro- 
magnetic state one must find (GfJ+ (E ))=(GR (E )), in 
terms of which we can express, in particular, the density of 
states 

In a two-sublattice antiferrornagnet we must introduce in- 
trasublattice (Gf/. and G,,. ) and intersublattice (Gfm and 
Gmf) Green functions and carry out the configurational 
averaging over the sublattices. In any case the averaging "re- 
stores" the translational invariance, so that the configura- 
tion-averaged Green functions can be expanded in Fourier 
series. For the ferromagnetic state 

where the vectors k belong to the first Brillouin zone. For the 
antiferromagnetic state we introduce the intrasublattice 
[GI ,( q,E ) and G,,( q,E )] and intersublattice [G,,( q,E ) and 
G,,( q,E )] Fourier transforms of the configuration-averaged 
(over the sublattices) Green functions, where the vectors q 
belong to the halved Brillouin zone. 

The formalism set forth below (in matrix notation) is 
suitable for describing the properties of any state of the sys- 
tem. 

4. ZEROTH APPROXIMATION FOR THE CONFIGURATION- 
AVERAGED GREEN FUNCTION 

Let us average equation (3.3) with the aid of the decou- 
pling 

( ~ P G > = ( & + = > ( B > .  (4.1) 

The Green function found in this simplest version of con- 
figurational averaging will be denoted Go: 

a,= (4+<gP>)-'<;>, (4.2) 

and will be called the zerotk approximation. Let us consider 
separately the structure of Go in the homogeneous ferromag- 
netic and two-sublattice antiferromagnetic states of the sys- 
tem. 

a) Homogeneous state 

In the site representation the equation for 6, is of the 
form 

G.0(E)=6R,o(gf (E) )- ( g f  ( E )  vrf+h) ~ & , r + a ( ~ ) .  (4.31 

where h represents the vectors joining nearest neighbors. 
After a Fourier transformation we obtain 
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The configurational average appearing in this equation is 
easily evaluated since, owing to the isotropy of the system, 
the averaging includes all possible orientations of the cluster 
with central spin at sitef: 

Mo ( k ,  E)  =yk ( gf ( E )  v f , , + h  ) =y,(gr&r)='fkMo ( E )  (4.4) 
h 

where 
1 P (e) e  de 

yk = - z e ' " ,  M .  ( E )  = 
z E - E  (4.5) 

n 

We finally have the following expression for the Fourier 
transform of the zeroth-approximation Green function: 

Gko ( E )  = g  ( E )  I IS'fkMo ( E )  I - ' ,  

Let us establish the connection between the poles of the 
Green function (4.6) and the excitation spectrum of the sys- 
tem. The function G (E ) has two types of poles: the poles of 
g(E ) represent the spectrum of the local fields { E ,  J , while the 
poles corresponding to solutions of the equation 

1+ykMo ( E )  =0, (4.7) 

take into account the presence of collective excitations in the 
system. 

We shall show that Eq. (4.7) implies the existence of an 
acoustic branch of the spectrum. Expanding Mo(E ) in a series 
about E = 0, we obtain 

M,(E) =-I -aE-bE2- .  . . , 

In the ferromagnetic phase we have a > 0, i.e., MA(0) < O ,  
and for small E it is sufficient to keep only the linear term in 
expansion (4.8). Since y, =: 1 - ck for small k, we obtain 
from (4.7) and (4.8) the relation 

EFM(k)~(i-yk)/ayk--"(c/a) k2. (4.9) 

At the transition to the spin-glass phase the local-field distri- 
bution function becomes symmetric: P (E) -+P, ,  ( E )  

= P,,  ( - E ) ,  the magnetization goes to zero, and a = 0.  In 
this case the acoustic branch of the collective excitations has 
a linear dispersion law: 

~ s , ( k ) x [  (1-yk) lbyk] '12--  (cib)Ihk. (4.10) 

As we have already mentioned, distribution function 
(1.2) leads to a discrete spectrum of local fields, and here Eq. 
(4.7) is an algebraic equation of degree n, where n is the num- 
ber of local fields. One can solve Eq. (4.7) graphically after 
rewriting this equation in the form 

We introduce dimensionless constant-energy surfaces in the 

FIG. 1. The Brillouin zone for a square lattice and the constant-energy 
surface yl = const. 

first Brillouin zone for the "dispersion law" yk = const. 
These surfaces include the surface y, = 0, which is the 
boundary of the halved Brillouin zone (Fig. 1 ) .  The solutions 
of (4.1 1 )  for yk = 0 represent the spectrum of the local fields 
( E ,  ) . The solutions of (4.11) over the entire range of y, are 
shown schematically in Fig. 2, from which we see that n 
nonoverlapping energy bands ("smeared" local fields) arise. 
We denote these solutions by E,, , where Ejk , the dispersion 
law for spin waves in the jth band, is "genetically" related to 
the local field E,. The width of the jth band is equal to the 
difference in the energies determined from the equations 
Mo(E ) = 1 and M,(E ) = - 1 in the vicinity of E,. 

The density of states in our zeroth approximation is 

where the statistical weight C (Ejk ) of each state depends on 
all the probabilities for the occurrence of the local fields, and 
the sum of these weights obeys 

for any k belonging to the Brillouin zone. To obtain the exci- 
tation spectrum of the system and the density of excited 
states the negative solutions E,, <O must be inverted (Elk 
+lEjk I), since they refer to spin subsystem B. It follows from 
(4.9) that the density of states in the three-dimensional case 
will be proportional to a at small values of E. 

FIG. 2. Graphical solution of equation (4.11). The energy values at which 
M,(E) = - 1 correspond to the center of the Brillouin zone ( k  = 0) and 
the values at which M,(E) = 1 correspond to the points k = Q = n-/a 
( + 1, + 1). The hatching indicates the regions in which solutions exist 
(the widths of the spin-wave bands). 
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In the spin-glass phase the spectrum becomes doubly 
degenerate, with a density of states in the three-dimensional 
case a E * for small E. 

b) Two-sublattice state 

We shall omit the trivial computations and simply give 
the expressions for the Fourier transforms of the Green 
functions for the two-sublattice state: 

G,t0(q, E)=gi (E)lDo(q,  E ) ,  Gzzo(q, E)=gz(E) lDo(q ,  E ) ,  
(4.13) 

G1zU(q, E )  =-yqMio(E)gl(E)/Do(q,  E ) ,  

GziYq, E )  =-y,Mz0(E)gi (E)lDo(q,  E ) ,  

where 

D O ( ~ , E ) = ~ - ~ , ~ M ~ ~ ( E ) M ~ ~ ( E ) ,  l<y,<O, (4.14) 

Let us briefly discuss the structure of the energy spec- 
trum determined by the poles Do( q,E) = 0 of the Green 
functions in the case of a discrete distribution of local fields 
in the antiferromagnetic and spin-glass states. In both cases 
the spectrum is doubly degenerate, since in the antiferro- 
magnet one has M: ( - E ) = My (E ) and in the spin glass 
M(: (E ) = M :  (E )EM ,, (E ). Near E = 0 we have the ex- 
pansion 

Mi0 (E)M," ( E )  =I+  ( ~ b , - a , ~ ) h ' ~ + .  . . , 

with 26,-a: > 0, and in the spin-glass phase a ,  = 0. From 
(4.14) and (4.16) we find for small E and q(y, =. 1 - cq2) 

i.e., an acoustic branch of the spectrum with a linear disper- 
sion law. The graphical and analytical solutions of the equa- 
tion Do( q,E) = 0 show that the excitation spectrum of the 
system consists of n nonoverlapping energy bands of spin- 
wave excitations (one acoustic and n - 1 optical) with dis- 
persion laws E, ( q), where n is the number of local fields of 
different moduli. The density of states of the jth band ap- 
pears in the total density of states of the system with a certain 
statistical weight C,, where ZCj = 1. 

5. EFFECTIVE TRANSLATIONALLY INVARIANT MEDIUM. 
DYSON'S EQUATION AND THE T MATRIX 

Let us compare the Green function e0 which we have 
obtained to a matrix H0 which describes the properties of an 
effective translationally invariant medium: 

(El-Ho) &=I. (5.1) 

From (5.1) and (4.2) we find 

(a) Homogeneous case 

It is easily shown that 

(5.3) 
where Sfm = 1 iff and m are nearest neighbors and zero 
otherwise. Equation (5.3) implies 

1 1 Mo(E) 
($0 )  i.)m= ( E  - g~ ) 6 f m - ~ o  ( E )  6 f m ,  l o  ( E )  = --. 

z  g ( E )  

After straightforward manjpulations, the diagonal matrix 
element assumes the form (Ho)R = zJo(E ), so that the matrix 
elements of& have the property (3.6). The functionzJo(E ) is 
an effective local field in the translational medium, simulta- 
neously incorporating both fluctuations of the spin environ- 
ment and fluctuations of the exchange parameters. If the 
fluctuations of the environment are formally neglected (after 
the value of each spin is replaced by its average value a), then 
J,(E )/a has the meaning of an effective exchange parameter 
and is analogous to the coherent p ~ t e n t i a l . ' - ~ , ' ~ . ' ~  

(b) Two-sublattice case 

It can be shown" by an analogous method that in the 
antiferromagnetic state 

(Ho) ri,=zKio ( E )  6 f i , ,  (Ro) fm=-Kia ( E )  6;,, 
(5.5) 

( H o ) m m ~ = z K ~ 0 ( E ) 6 m m ~ ,  ( H ~ ) ~ ~ = - K ~ O ( E ) ~ ~ ~ ,  

where 

K," (E)=M,O(E) /~g l (E) .  K2"-E) =-KiO ( E )  . (5.6) 

As before, zKy(E) is the effective local field in which the 
spins of sublattice 1 are located. Since these spins interact 
only with their nearest neighbors in sublattice 2, which is 
occupied predominantly by "down" spins and has a relative 
magnetization a, = - lR I, one can write 

z K i O ( E ) = z ( - [ R I )  (-KtO(E)/lR[)~z(-IR[)Jo(E). 
If one neglects the spin fluctuations of the environment, the 
quantity Jo(E) has the meaning of an effective exchange 
between nearest neighbors and is analogous to the coherent 
potential. In an antiferromagnet the average and asymptotic 
values of Jo(E ) are negative: 

J J . ( E ) ~ E ~ o .  <o; 

at the transition to the spin-glass phase, however, these 
quantities vanish. 

Let us introduce the fluctuation matrix G= H - 
Then, with allowance for (5. I), Eq. (3.5) assumes the form of 
Dyson's equation: 

((2,-*-o) G=I, (5.7) 

whose solution can be expressed in terms of the T matrix: 
G=Go+GoF Go. 

The ?matrix, in turn, obeys the equation 

T = O + ~ G , P ,  (5.8) 
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and the problem of finding the complete configvration-aver- 
aged Green function (& ) reduces to findi?g (T).  

Let us first consider the structure of U in general form. 
It follows from (3.4) and (4.2) that 

where the first bracket corresponds to diagonal fluctuations 
and the secoqd to off-diagonal fluctuations. Since the matrix 
elements of H, in the cases under consideration satisfy con- 
dition (3.6), one can use the representation 

where the summation is over all nearest-neighbor pairs 
p = (fm). The concrete form of the partial fluctuation matri- 
ces li for the ferromagnetic and antiferromagnetic states will 
be given below. 

Following Velicky et al." (see also Refs. 3 and 1 I), we 
write (5.8) in the form 

For 2) @) one easily obtains the representation 

where 2 ( p )  is the partial scattering matrix for scattering by 
the nearest-neighbor pair p: 

The basic simplification of the problem of evaluating (?) 
consists of neglecting fluctuation correlations and multiple- 
scattering effects. In this approximation (the single-bond ap- 
proximation) we obtain18 

(f )=(I -Nd0)- ln7 ,  n7 = ~ [ f + ( f ( p ) ) G o ] - i ( t ( p ) ) ,  
D 

(5.13) 
A 

where M, as is readily shown, is the mass operator of the 
pseudo-Dyson's equation 

<G)=Bo+Go@ (8). (5.14) 

As can be seen frcm (5.13), evaluation oc the translationally 
invariant matrix M reduces to finding ( t  (p))  and then per- 
forming a summation. 

The configurational average (1 ( fm)) for a fixed nearest- 
neighbor pair (fm) will be found from the following consid- 
erations. 

First, a given pair has a probability vAA ofbeing an (aa') 
pair, a probability vBB ofbeing a ( pp ') pair, and a probability 
vAB of being a pair with antiparallel spins. The probabilities 
vAA , vBB, and vAB are essentially the concentrations of the 
corresponding pairs and are thus (in the general case) tem- 
perature dependent. 

Second, it is necessary to introduce the concept of frus- 
trated exchange bonds. A bond J >  0 is frustrated if it links a 
pair of antiparallel spins (ap ), and, similarly, a bond K < 0 is 
frustrated if it links parallel spins (aa') or ( flp I ) .  Thus, each 
type of pair consists of both normal (0) and frustrated (F) 
bonds: 

VAA=VAA'  ( J )  +vaaF ( K )  , Z . ~ ~ = V B ~ O  ( J )  +vBBF ( K )  , 
(5.15) 

VAB=VABO(K) + v A B a ( J ) ,  V ~ ~ + V ~ ~ S V ~ , = ~ .  

Third, the 1 matrix depends in the general case on the 
thermodynamic averages a,-(T) and a, (T)  on neighboring 
sites. For dealing with the finite-temperature case, one can 
introduce the relative magnetizations of subsystems A and B: 

R A T  N 0 ( T )  -RB(T) =N.-' x o P  ( T )  , (5.16) 
a B 

sothata, z R A ( T ) , a p z  - R,(T),withR,(O) = RE(!) = 1. 
Let us now give explicit expressions for i2, 1, and ( t  ) and 

present the results of o y  evaluation of the translationally 
invariant mass operator M for the ferromagnetic and antifer- 
romagnetic states. 

a) Homogeneous case (FM) 

In symbolic form the partial fluctuation matrix is 

a ( f m )  =h^(fm) - h o ( f m )  

Erm=Zrmam-J0 ( E )  , 
(5.17) 

where the matrix elements are nonzero only for nearest 
neighbors (fm). A direct calculation by formula (5.12) yields 

d ( f m )  =I-  ( t tm+fmt)  (GO"-G;-~). (5.18) 

Because the system is (on the average) isotropic, the differ- 
ence between the Green functions can be represented in the 
form 

Guided by the aforementioned principles for evaluating (2 ), 
we find 

< f ( f m )  > 
= [ V A A ' ( J )  f ( f m )  I I , , nCJ+~~AB(K)  t ^ ( fm)  I r , ,=~le,-c~ -R: 

+ [vBBa ( J )  f ( f m )  I rfm=J+vBnF ( K )  t ^ ( f m )  I I , m = K ] o m ~ ~ , - - ~ B  

The mass operator (5.13) is 

1 1  
8 = ( f  ( f m )  ), i = -(t,+t,). (5.21) 

l + 2 t ( E ) A  ( E )  
( f m )  

2 

and its Fourier transform is 

Finally, the expression for the Fourier transform of the con- 
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figuration-averaged Green function in the approximation of 
independent scattering by each exchange bond is of the form 

Gk-' ( E )  = [ GkO ( E )  1-'-Mk ( E )  

z (El  
=g-I ( E )  +zyJo ( E )  -z(i-y.) l+Zi(E)  A ( E )  

(5.23) 

where g(E ), Jo(E ), A (E  ), and ?(E ) are given by (4.5), (4.6), 
(5.4), (5.19), and (5.21), while ?(E) at T = 0 is given by 

I-Jo K-Jo 
i! ( E )  = v A A O  + v*AF 

1-2(1-Jo) A 1-2 (K-lo) A 

(b) Two-sublattice case (AFM) 

Using the Green functions h0 and & for the two-sub- 
lattice state of the system, we find 

We recall that the fluctuation parameters 5- are nonzero only 
for nearest neighbors, f ~ 1 ,  m ~ 2 .  In analogy with the previous 
case 

d ( j m )  =1-gj,?AI ( E )  -g,,$)AZ ( E ) ,  
2  

(5.26) 
A ~ , ~ ( E ) = , ~ , ~ ' , ~ ( E )  [ l+r , 'M:i (~)  I [Do(q,E) I - ,  

n 

(the difference of the Green functions was evaluated using 
their explicit form (4.13) and performing a Fourier transfor- 
ation). 

Let us now give an expression for (i (fm)). A nearest- 
neighbor pair has a probability vij (I) of being found in state 
(ij,I), which is characterized by the spin direction i = A ,  B at 
site i in sublattice 1, the spin direction j = A ,  B at site j in 
sublattice 2, and the exchange interaction I = J ,  K (state A 
corresponds to spin "up" and B to spin "down"). The proba- 
bilities vij (I) are the concentrations of the corresponding 
pairs. By summing Fver all possible states of a pair, we obtain 
an expression for ( t  ) in the form (5.20), where 

g;') =zoj-K10 ( E )  , 

The mass operator (5.13) in the present case is of the 
form 

We introduce the intrasublattice and intersublattice Fourier 
transforms of the mass operator: 

and analogous expressions for the remaining components. A 
direct calculation making use of the matrix structure of ( t  ) 
yields 

M,,(q,Ej=-= Z t i ( E )  - I, ( E )  , Ml2 (q ,  E )  =-yqIl ( E )  , 
d  ( E )  (5.29) 
z t2(E)  = L ( E ) ,  M,, (q ,  E )  =-yqi2 ( E )  . Mzz(q,E)=-- 
d  (El  

Solution of the pseudo-Dyson's equation (5.14) yields the 
result l7 

where 
D(q ,  E) = [ l - ~ i  ( E )  I [ I - a z ( E )  I 

-ypZIMiO ( E )  +a1 ( E )  I [M,O(E) +as(E)  I .  (5.31) 

Thus the renormalization of the zeroth-approximation 
spectrum of the system on account of independent scattering 
processes at each exchange bond is described by the func- 
tions 

a t ( E )  =g t (E) , f l (E )  =g i (E) z t i (E ) id (E) ,  (5.32) 

each of which has a real and imaginary part, which lead to a 
modification of the bare spectrum and to attenuation. The 
results can be interpreted as follows. The sum My + ai can 
be written in the form 

This means that in the approximation of independent scat- 
terers the effective exchange interaction is modified by the 
"addition of a function proportional to the averaged partial 
scattering matri:. 

In finding ( t  ) we made use of the concentrations of the 
normal and frustrated bonds; these concentrations can be 
found by analyzing all the possible types of local fields and 
comparing the exchange bonds which arise in each case with 
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the corresponding probabilities from the distribution func- 
tion P (c)." 

6. CONCLUSION 

In the present paper we have proposed a systematic 
means of describing the spectral characteristics of homogen- 
eously disordered Heisenberg lattice magnets with spin 
S = 1/2. The distribution of positive and negative exchange 
bonds between nearest neighbors can be made random in 
various ways (including the random site model) and is speci- 
fied by some distribution functionp(Ifm ). Depending on the 
characteristics of this function the ground state of the system 
in the general case can be a ferromagnet, spin glass, or anti- 
ferromagnet. 

The proposed theory is based primarily on the introduc- 
tion of the local-field distribution function P (c), which, being 
a functional of p(Ifm ), describes the type and energy struc- 
ture of the ground state (i.e., the short-range order). We have 
givenAa prescription for constructing the zeroth approxima- 
tion Go for the configuration-averaged Green function (G ); 
this prescription calls for the use of the distribution P ( E )  for 
evaluating the aJerages. From the function &o one can find a 
unique matrix Ho describing an effective translationally in- 
variant medium. The matrix elements of Ho are expressed in 
terms of an effective exchange parameter which depends on 
the spectral variable and is analogous to the coherent poten- 
tial. 

Then, with the nontrivial zeroth approximation at our 
disposal, we introduc? fluctuations, Dyson's equatio?, and 
the scattering matrix T. The problem of evaluating (G ) re- 
duces to finding (T  ), which in the general case is a ympli- 
cated function of the partial scattering matrices ( t  (fm)) 
which describe scattering by single exchange bonds. This 
theory is thus a version_of the average-scattering-matrix 
method. For calculating ( t  (fm)) we outline a method which 
is essentially based on the concept of frustrated and normal 
exchange bonds between nearest neighbors. The method de- 
veloped in this paper for describing the energy spectrum of 
disordered magnets can apparently be used to describe the 
properties of other disordered systems as well. 

The author is grateful to G. A. Petrakovskii, V. I. Zin- 
enko, and V. I. Ponomarev for fruitful discussions. 
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