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A new diagram technique developed for spin operators is as close as possible to that for Bose 
operators and borrows its standard graphical notation. The kinematic relationship between S 
and the transverse componentsS* is used in calculating ( S  ) and the correlation functions of the 
longitudinal spin components, K :', , K "', etc. It thus becomes possible to carry out a more pro- 
found summation and to derive as a zeroth approximation an improved version of the self- 
consistent-field approximation which incorporates magnons and which leads to the correct tem- 
perature dependence of ( S  ) and of the magnon spectrum ok ( T )  at low temperatures. This new 
diagram technique is analogous to that of Keldysh for nonequilibrium processes. It is intended for 
describing the kinetics of magnons in states which are not necessarily near thermodynamic equi- 
librium. In particular, the expressions derived for (Sz ) and K rw are functionals of the dispersion 
law at T = 0, w, (0) and of the magnon population numbers n, , which constitute a solution of the 
kinetic equation. The contribution of the dispersion part of the magnon spectrum to the expres- 
sion for K gives K" a nonvanishing width along w,  i.e., gives rise to a damping of longitudinal 
spin correlations. The damping of nondispersive magnons is calculated. Their Green's function is 
shown to be Gaussian, rather than Lorentzian. The magnetic dipole interaction can be incorpo- 
rated in this diagram technique. This technique can easily be generalized to the case of multiple- 
sublattice magnetic materials. 

INTRODUCTION 

There are three basic methods for describing spin waves 
in magnetic materials. In the first method the spin opera- 
tors are represented in terms of Bose operators in some way 
or other. Unfortunately, all versions of this method-those 
using the Holstein-Primak~ff,'-~ Dy~on-Maleev,'-~ or 
Bar'yakhtar-Yablonskii4 representations-suffer from a 
fundamental restriction on the effectiveness of the method at 
low temperatures. The second method, which is claimed val- 
id for describing magnetic materials at all temperatures, in- 
volves constructing a chain of coupled equations for the spin 
Green's functions, and various techniques are used to close 
the chain.' This method, however, is not a systematic calcu- 
lation method which would allow one to control the nature 
of the assumptions and to regularly calculate corrections to 
the first aproximation. These purposes are served in the 
third of these three methods, which is the diagram method 
proposed by Vaks, Larkin, and P i k i ~ ~  They constructed for 
a Heisenberg ferromagnet a temperature diagram technique 
which makes it possible to construct successive approxima- 
tions in the dimensionless interaction volume R -3. The 
Wick theorem for the spin operators was proved in the same 
studies; this proof made it possible for Izyumov and Kassan- 
Ogly to construct a temperature diagram technique directly 
in terms of spin operatom5 Several interesting and impor- 
tant results have been derived by this diagram t e ~ h n i ~ u e , ~ . ~  
but it has not been adopted widely. The reasons are both the 
specific difficulties of these diagram techniques3.' and the 
unsuccessful graphical notation, which makes it difficult to 
perceive and establish analogies. At nearly all temperatures 
the magnons are well-defined collective excitations of the 
Bose type, damped only slightly, so that a diagram technique 

for magnons must be extremely close to the ordinary dia- 
gram technique. 

Our purpose in this paper is to reformulate the diagram 
technique for spin operators to make it resemble as closely as 
possible the ordinary diagram technique and to use the stan- 
dard notation of the latter. Entities of a new type appear in 
the spin diagram technique: end vertices, which are of a kine- 
matic nature and unrelated to the interaction. Because of 
these end vertices, we need to distinguish the spin Green's 
functions G, which are defined in the standard way,5 from 
the propagator g, which is standard in ordinary diagram 
techniques. This propagator is associated with a line on a 
diagram, and a dressing procedure making use of a Dyson 
equation is developed for it. The diagram technique which 
we have developed for the transverse spin operators S + and 
S - is analogous to the well-known technique for nonequilib- 
rium proce~ses .~~ '  It thus becomes possible to describe the 
magnon kinetics in the most natural way, including the ki- 
netics of magnons in states far from thermodynamic equilib- 
rium. The longitudinal spin correlation functions enter our 
diagram technique as external parameters of the medium in 
which the magnons are propagating. In contrast with the 
temperature diagram technique which is standard in the the- 
ory of m a g n e t i ~ m , ~ , ~  we cannot use perturbation theory to 
calculate the longitudinal correlation functions in a non- 
equilibrium diagram technique. To determine these correla- 
tion functions we should use kinematic relations which 
make it possible to find ( S  ) and any arbitrary correlation 
functions of the spins as functionals of the magnon disper- 
sion law w: at T = 0 and of the magnon population numbers 
n, , which are found from the kinetic equation and which are 
not necessarily equilibrium values. 

We are thus proposing a systematic method for describ- 
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ing kinetic effects in magnetic materials which starts from 
the spin Hamiltonian of the problem and which is not re- 
stricted to low temperatures. We derive several physical re- 
sults. In particular, for the first time in a theory with a large 
interaction range R we determine the structure of the trans- 
verse spin Green's functions and vertex functions at kR) 1, 
and we calculate the damping time for short-wave magnons. 
We analyze the time-dependent structure of a binary longi- 
tudinal correlation Green's function. By making use of kine- 
matic identities, we are able to carry out a summation which 
is more profound than in other versions of the diagram tech- 
nique. As a result, an improved "spin-wave self-consistent- 
field approximation," incorporating magnons, arises here in 
the zeroth approximation. At equilibrium we thus immedi- 
ately find the correct temperature dependence of the magne- 
tization M and of the frequency w, over the entire tempera- 
ture range outside the critical region. Our method can easily 
be generalized to the case of complex spin Hamiltonians. 

The diagram technique for the operators S+ and S 
can be used not only in the theory of magnetism but also in 
any quantum-mechanical problem for which the state space 
is finite-dimensional or the direct product of finite-dimen- 
sional spaces. In such a system the diagram technique for 
S' and S is canonical in the sense that the diagram tech- 
nique based on the operators a + ,  a in an ordinary Bose sys- 
tem is canonical. The most profound algebraic property, 
which makes it possible to construct a simple diagram tech- 
nique,is[S-[S-[S-, B]]] = OforB =S* , S andisanalo- 
gous to the property [a[a, B I] = 0 for B = a+ ,  a in the case of 
Bose operators. These identities make it possible to con- 
struct a simple version of the Wick theorem and to construct 
a simple diagram technique with few lines and vertices. The 
basic results of this study have been published as a preprint.' 

91. THE DIAGRAM TECHNIQUE 

I. The rules of the diagram technique. Analysis of the 
Wick theorem for spin operators (reported in the preprints) 
leads to rules for the diagram technique which can be repro- 
duced most clearly by means of the following representa- 
tions for the spin operators in terms of the Bose operators 
a:, a, and a random field p, : 

Here n is the index of the lattice node with spin S, . The field 
p, is determined by its irreducible correlation functions @,, 
a,, @,, etc., which depend on the Hamiltonian of the prob- 
lem. In the simplest case of noninteracting spins in an exter- 
nal magnetic field H, we would have 

Here bps Cy) is the difference between the Brillouin func- 
t i o n ' ~ ~  6, @) and the Planck function nCy): 

bps  ( y )  =-S- (2Si-I) [exp (2S+l )  y-I] -', y=p$I,/T. 

(1.3) 
In § 2 we will calculate the irreducible correlation func- 

tions @,, @,, @ ,,..., for a system of interacting spins. Work- 
ing with these quantities in the standard way, we can find 
expectation values of the products p, at various nodes: 

(cp,)=@,, (cp,cp.,)=@12+@z(n, n') ,  

( ( P I ( P z ( P ~ ) = @ ~ ~ + @ I  [@2(11 2)+@2(1,  3)+@2(2, 3 ) ]  

+@3(1 ,2 ,3) ,  . . . ( 1.4) 
With these expressions we can associate some clear graphi- 
cal notation analogous to that used in the procedure for aver- 
aging the potentials of random impurities: 

P t ?  I I 
n 

( v n > = I  (qlnqnr)= I I +,", 
J 1 j d i ,  

i; .' 
(1.5) 

t t ?  R T R T  R t  m 
( r p * r p 2 ~ 3 ) =  I I I + / \  I + / \  I + / \  I + / I \  

1 1 4  d L A  d b A  J L A  d b \ 7 " *  
1 2 3  7 3 2  2  3 7  I Z a  

We should point out that in the case p = - S Eq. (1.1) 
is the same as the Dyson-Maleev representation,' which, as 
we know, describes the low-temperature properties of mag- 
netic materials for an arbitrary spin. With 
p = ( 2 s  + l)b +b - S (where b +, b are Fermi operators) we 
find the Bar'yakhtar-Krivoruchko-Yablonskii representa- 
tion, which was recently proposed9 for describing the equi- 
librium properties of magnetic materials by means of a tem- 
perature diagram technique. We wish to emphasize that 
representation (I. I )  is like the Dyson-Maleev and Bar'yakh- 
tar-Krivoruchko-Yablonskii representations in that it 
should not be understood as an operator identity. All of 
these representations simply specify the rules for calculating 
Green's functions by a diagram technique. 

It can be seen from (1.1) that the rules of our diagram 
technique for spin operators are the same as the rules of the 
diagram technique for a Bose field in the presence of a ran- 
dom impurity field p, . In contrast with the impurity prob- 
lem, on the other hand, the correlation functions of the field 
p are not given; as will be explained in 8 2, neither a pertur- 
bation theory which starts from the seed correlation func- 
tions (1.2) nor the Bar'yakhtar-Krivoruchko-Yablonskii 
representation can be used to calculate these correlation 
fucntions in a nonequilibrium diagram technique. Instead, 
we use known kinematic  relation^',^ to derive an expression 
for the correlation functions of the field p, ( t ) ,  (1.4), 
"dressed" by the interaction, in terms of the "dressed" 
Green's functions of a Bose system, a: and a,. 

2. Transverse Green's functions and free propagator. In a 
nonequilibrium diagram technique, the ordering of the pro- 
duct of operators is carried out along a special temporal con- 
tour c, which begins at t = - co , goes along the upper side of 
the time-axis cut out to the longest time, and then returns to 
- co along the lower side of the cut6,' We assign an index 1 

to operators on the upper side and an index 2 to those on the 
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lower side. As a result we find four binary Green's functions: k 
G ' I ,  G 1 2 ,  G 2 1 ,  and G 2 2 .  We accordingly introduce a 2 X 2 ' = F G : L - = J ~ + J ~ - J ~ ~ - J ~ ~ ,  
matrix of transverse Green's functions: (1.14) 

G-+ij(nt,  n't') =<T, (SS, - ' ( t )S , .+ j ( t l )  ) >, (1.6) l k 3  +-0 
k , A k z  =rm =12-J12, J l = J ( k i ) ,  J 1 2 = J ( k l - k 2 ) ,  

where T, is the ordering along the contour c, and the S- 
matrix is 

OD 

13 

~ = ~ . e r ~ { i  5 z i . , ( t )  d t )  . (1.7) - --fl-c 7 e 2  =-1. 
- m 7 4 

For noninteracting spins in an external field H we would 
have 

G - + " ( o k )  = - 2 ( S z > , g , " ( o k ) ,  (1.8) 

where (S ) = b, (w,/T), wo = ,uB H, and gy is the Bose free 
p r ~ p a g a t o r , ~  given by 

goij(o, k )  

Examining the transverse Green's function G- +, we 
single out in the perturbation-theory series a sequence of 
diagrams which are intersected along a common solid line: 

This sequence differs from the ordinary sequence in the the- 
ory of Bose and Fermi particles in the presence of an end 
mass operator Zen, at the end of the diagram for G- +. This 
end operator arises from the nonlinear dependence of S + 

and S on a+, a, and p .  It is natural to single out Zen, from 
the Green's function G- +, determining the propagtor g by 
means of the relation 

Here J (k) is the Fourier transform of the exchange integral 
J (n - n'), and e represents an end vertex: a terminal of kine- 
matic origin (it originates from the nonlinear dependence of 
the operators S + and S on a+, a, and p) ,  which is unrelated 
to the interaction Hamiltonian. 

To find the spectrum of magnons and their distribution 
function at a finite temperature, we perform a standard uni- 
tary transformation over Keldysh indices: 

In this representation we have 

Equations (1.17) thus have the form of the standard Dy- 
son equations in the Feynman diagram technique, and the 
magnon spectrum W ,  and the magnon damping y, are deter- 
mined by the real and imaginary parts, respectively, of the 
operator 2" (k w , )  or by the coefficient of 2nk in collision 
integral (1.19) below. In lowest order in the interaction we 
find from (1.14) and (1.15) 

o k = < S 2 )  ( J k - J O )  fh l  (Jk.-Jr-k,)nk~dk' ,  h = ~ ~ ( 2 n ) - ~ .  (1.18) 

Here ( S  ) is the expectation value of S , vo is the volume of 
6'-+ ( k o )  = g ( k o )  Z e n d  ( k o ) .  (1.11) the unit cell, and n,  is the magnon distribution function in a 

We then can write the customary expression for the propaga- 
tor g, which is a matrix propagator in terms of Keldysh in- 
dices: 

gi ' (ok)  = [go  ( o k )  -'-Z ( o k ) ]  ,-', (1.12) 

where go is the propagator (1. lo), and 2'' is the ordinary 
Keldysh mass operator. In the lowest order of our perturba- 
tion theory (the approximation of a self-consistent field), 
.Zen, and 2 in the Heisenberg model are 

state of the magnetic material which is not necessarily an 
equilibrium state. The function n, is determined from Eq. 
(1.18), which becomes a kinetic equation in the case of a weak 
interaction. To see this, we take the magnon interaction into 
account, Ed #O; if we turn on the interaction in an adiabatic 
way, such that 8-0, we can ignore Xed -8 in comparison 
with .Zd in Eq. (1.16). These equations then lose all memory 
of the original distribution function no: 

A In particular, for the four-magnon processes described by ? 
zEnd= 4- + Jl +LA-+ + the last diagram for .Z in (1.13) we find 

e e e 
(1.13) St(4) = d l d 2 d 3  I Aki,23 l 2  N~i,236 ( k  + 1 - 2 - 3) 

t A 5 
+ ~ + L L +  t 6  (or t oi - - ~ 2  - 0 3 ) ,  (1.20) 

N~1,23 = nkni (ns + 1) (na -I- 1 )  - (nk -C 1) (ni 4- 1 )  nnnr; 
where I Ak1,23 l 2  = nh2r;&-~;&+. (1.21) 
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At thermodynamic equilibrium we should have St = 0 and 
N,,, 23 = 0, and 

would be a Bose distribution function with a dispersion law 
w, . In this approximation the propagator g differs from go of 
(1.9) in the replacements w0+, and no-tnk. After calculat- 
ing the dependence of ( S  ) on T i n  5 2 we will see that Eq. 
(1.18) gives the correct temperature dependence w, ( T )  ex- 
cept in the critical region. In particular, at T<Tc we find 
w,(T) - ~ , ( O ) - T ~ / ~  from (1.18). 

5 2. CALCULATION OF THE MAGNETIZATION AND OF THE 
LONGITUDINAL CORRELATION FUNCTIONS IN A DIAGRAM 
TECHNIQUE FOR NONEQUlLlBRlUM PROCESSES 

When we attempt to calculate ( S  ) by perturbation the- 
ory, we find a diagram series in which some of the terms are 
regular while others are inversely proportional to the adia- 
batic parameter S. The sequence of lowest order in S -' is 
summed in such a manner that only the total propagators g 
and the dressed correlation functions 0, of the field q, re- 
main in it. As a result, we again find kinetic equations which 
determine n, and which leave the correlation functions @, 
arbitrary. The reason for this result is that our diagram tech- 
nique is based exclusively on the spin Hamiltonian and the 
spin commutation relations. It embodies information on the 
magnitude of the spin only in the initial conditions (the bare 
correlation functions 0 ), which, as we know, are forgotten 
in the nonequilibrium diagram technique. To determine the 
dressed correlation functions 0, we thus need to make use 
of kinematic relations which, on the one hand, are compara- 
ble with the equations of motion and, on the other, fix the 
value of the spin. For this purpose we introduce the projec- 
tion operators ?rm, which project onto states with definite 
values of the spin projection: 

We see that the problem of calculating (S )P reduces to one of 
calc4ating expectation values of .nm . Multiplying the rela- 
t i o n S 2 = S ( S +  1) by ?rm, wefind 

We now introduce the operatorzm = ?rm S +, which has sim- 
ple commutation relations with the active operator S -: 

Taking the average of Eq. (2.2) in lowest order in the interac- 
tion, and using (2.3), we find 

cnm)a[cnm-l)-<nm)], %=A nk ak. (2.4) 

Solving (2.4), and using the normalization condition in (2. I), 
we find 

<nm)=exp [y(S-m)lZ-'(y), y=ln [(I+R)/R], (2.5) 

Z(y) = [exp (2SS-I) y-l] [exp y-I]-'. 
Hence 

This expression has been derived previously by a method 
involving the splitting of correlation functions for the case of 
thermodynamic e q u i l i b r i ~ m . ' ~ ~ ~ ' ~  It follows from our deri- 
vation, however, that this expression holds in the first ap- 
proximation in the reciprocal of the interaction range even if 
we do not assume thermodynamic equilibrium. We wish to 
emphasize that this expression does not contain a tempera- 
ture, and it demonstrates the important circumstance that 
( S  ) and (as we will see below) all the higher-order correla- 
tion functions of S are functionals of the magnon popula- 
tion numbers n,, which are found from the solution of the 
kinetic equation and thus do not have to be positive. To dem- 
onstrate this point, we note that expression (1.22) for St'4' 
shows that if n, is a solution of the kinetic equation then 
it, = - 1 - n,  is also a solution of this equation, after ( S  ) 
is replaced by - ( S  ). This property is in agreement with 
the circumstance that in (2.6) the quantity ( 9 )  becomes 
- ( S )  upon the replacement '32- - 1 - '32. The kinetic 

equation and Eq. (2.6) thus make it possible to describe the 
behavior of ( 9  ) over the permissible range from - S to S. 
At equilibrium, Eq. (2.6) can be assigned the graphic phys- 
ical meaning of the equation of a self-consistent field if we 
note that it determines the expectation value of a noninter- 
acting spin in the effective magnetic field determined by 
(2.4): 

b ( H )  [ e ~ p  pHcrj-11-'=h J [ e i p  P ~ ~ k - l l - '  dk. 

(2.7) 

Working from expression (1.18) for w, , we easily see 
that this equation gives us the well-known Bloch law 
A ( S  ) a T3I2 in the limit T-0 and the Curie-Weiss law 
( S  ) a (T, - T) ' l2  in the limit T-T, . From (2.1) and (2.5) 
we find the standard expressions5 for etc.: 

< ( S z ) 2 > = b s 2 ( y ) + b , ' ( y ) r . .  . (2.8) 

To calculate the longitudinal correlation function of 
spins at different nodes and at different times, 

(i, j are the Keldysh indices), we need to determine the rela- 
tionship between Kij and the binary correlation function 
@". Using representation ( 1.1) for ( S  ) , and summing the 
lowest-order sequence of "chain" diagrams, which is 
known3s5 to be the lowest-order sequence in terms of R -3 ,  

where 

we find 
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We now consider the Green's function 

Using (2.3), and summing the sequence of chain diagrams in 
the lowest order in R -3, we find the system of equations 

Solving these recurrence relations, and using expressions 
(2.5) and (2.1 1), we find 

K,,"(q) =4exp [ y  ( S - m )  ] shZ ( y / 2 )  2-' ( y )  [m-b, ( y )  ] T,". 

Here y is given as function of % and Z in (2.5). Summing over 
m, we find a second equation relating K y and @ y: 

The system of linear equations (2. lo), (2.13) can be solved 
easily: 

Kqi)=c (9 )  [Q, ( l+c  (3) JkQ,) -'I 'I, 

Qqi'= [ I - C - I  (%)I  'K:j+ [I-c- ' (W)] Qqij. (2.14) 

Calculating the inverse matrix in terms of Keldysh indices, 
we find 

where 

We wish to emphasize that the expressions for Ka , K r ,  and 
Kd hold even if we do not assume thermodynamic equilibri- 
um. These quantities are functionals of the magnon popula- 
tion numbers n,, the magnon dispersion law w,, and the 
vertex functions of the theory (in this case, J ,  alone). We 
note that at equilibrium we would have 

K'j(nt,  n t )  = K,'l'd,'=b..b) s (2.17) 

in agreement with expression (2.8) for ( (S)2) .  In general, n, 
is the solution of a kinetic equation and not unambiguously 
related to w, . There is thus no point in pursuing the general 
analysis of the expressions for K y. At equilibrium, however, 
these quantities do have several simple properties. In the 
first place, K: and K are related by a fluctuation-dissipa- 
tion theorem: 

K,d=2 (2n,+l) Im K,', nu= [exp Pa-I]-'. (2.18) 

In the low-temperature limit we have c(%)-1 and @ 2 4 ,  
and the expressions for the correlation function K y in (2.15) 
simplify to the point that they become an expression which 
can be derived by means of a Dyson-Maleev representation 
without taking into account projection operators. 

The single-time longitudinal Green's function K (k) can 
be expressed in terms of both the temperature Green's func- 
t i o n K 2  andK:: 

This result is in agreement with the results derived previous- 
ly, and in the limit T+T, it gives us the well-known Orn- 
stein-Zernike correlation f ~ n c t i o n . ~  

The single-time longitudinal Green's function at small 
k (at large distances) is determined by the dispersive part of 
the spectrum and is a small quantity of order R -3: 

K ( k )  =h nk8nk,-k dk '~v,Tz/8a2k,  (2.20) 

where a = dm, /dk in the limit k-0 for a cubic magnetic 
material. I t  follows from (2.20) that we would have 
K (r) cc r-2 in the limit r+w. In a corresponding way, we can 
use a diagram technique for the projection operators .irm to 
derive expressions for the longitudinal Green's functions of 
higher order. 

5 3. DAMPING OF MAGNONS AND OF THE LONGITUDINAL 
GREEN'S FUNCTION 

I. Damping of dispersion magnons. Expression (1.2 1) for 
the magnon damping is valid only at low temperatures. At  
T> 3Tc/S, we need to supplement the diagrams (1.14) in the 
lowest order in R -3 with a sequence of "chain" diagrams 
with "springs." We easily see from the results of 5 2 that this 
sequence reduces to the longitudinal Green's function 

Substituting in the explicit expressions for K 7 from (2.15) 
andg;, and integrating over w, we see that the collision inte- 
gral (1.20) is of the standard form for four-magnon pro- 
cesses, (1.2 I), with an effective square matrix element 

At equilibrium under the conditions T >  3 T, /S and P, 1, 
the nondkp~s i$e . re~ ion  makes the primary contribution to 
the expgission for the damping which follows. As a result, 
this expks&% can be simplified to the familiar form5 

2. Classzjication of diagrams for nondispersive magnons. 
In this subsection we show that the diagram for 2, which we 
are considering here is the most important diagram only at 
small momenta, a k R g l ( a 3  = v,), i.e., only in the dispersive 
part of the spectrum. For this purpose we will calculate y, at 
large k, for which the magnon dispersion 
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Aw, = max w, - a, is smaller than y,. In this region the 
Green's functions cannot be assumed bare; correspondingly, 
the function S (w, - wkl ) in (3.2) should be replaced by 

The damping is thus determined in a self-consistent way, and 
instead of (3.2) we find 

We see that with increasing k the damping y, ceases to 
depend on k and is given in order of magnitude by J$ -3'2. 

In the nondispersive region, where Aw, < y, the Green's 
function can be estimated to be y-'; this estimate has some 
far-reaching consequences, since we cannot restrict the dis- 
cussion to the diagrams of lowest order in 2,. The diagrams 
which are cut along one line and which lead to a Dyson 
equation for the propagator g, are no longer the principal 
diagrams, and we must include in our perturbation-theory 
series the sequence of diagrams from overlapping dressed 
chains, i.e., 

Here the symbol 

denotes expression (2.14) in which each of the loops Q, in the 
chain is dressed by a sequence (3.4): 

Diagram (3.4) for the propagatorg, and diagram (3.5) for the 
polarization operator 17, are the diagrams of lowest order in 
the parameter R -3 and are of the same order of magnitude. 
When we take into account the additional polarization oper- 
ator with two springs we arrive at the factor 

Integrating this factor over k, and noting that the propaga- 
tors g, - ,, and g, - ,. are in a nondispersive region, we find 
Z z J ; / Y R  3; under the condition y&$ -3'2 we have 
Z z  1. It can be shown that diagrams with three or more 
springs in the polarization operator and also diagrams which 
do not reduce to a summation of polarization operators are 
small, on the order of the parameter R -3. 

3. Summation of the main sequence of diagrams. It fol- 
lows from the topological structure of series (3.4) that this 
series describes a propagator g, for some particle in a ran- 
dom Gaussian field $ whose binary correlation function is 
determined self-consistently from (3.5). In the nondispersive 
region this propagator does not depend on k, and the prob- 
lem becomes effectively one-dimensional. A propagator of 

this type is conveniently sought in the t representation: 

O ] g(ti. t,, I)) =6 (ti-t,). (3.6) 
-iat,+$ ( t i )  

Here (t ) with i = 1,2 are the Keldysh components of the 
random field $(t ). This equation can be solved easily: 

where the phase PJ (t, t,) and the free propagator go(t,t,) are 
given by 

Here % = [exp(pwo) - I]-'. The propagator g(t,-t,), which 
is the sum (3.4), can be written as a Gaussian functional inte- 
gral: 

gJlJ2 (tl-t2) =z-I J J p ~ ( t ) g l i ~ ; ( t ~ .  tl. O R ( $ ) .  
t j  

Here the operator R j;2'(rl - r2) is the inverse of the correla- 
tion function Rjlj2(7, - 7,) of the random Gaussian field 
1C;. (t ). Expanding g($) in a series in $, and taking an average, 
we easily see that we find our original series, (3.4), for gi j  (t ). 
On the other hand, the functional integral in (3.9) can be 
evaluated easily; the result is 

1 
giJ(tl-t,) =exp [- J Rij(r t - iz)  dr, dr,] gotJ(t,-I,). (3.10) 

The correlation function RiJ  must be determined from 
nonlinear integral equation (3.5). The solution of this equa- 
tion simplifies dramatically because the interaction-dressed 
loop Q 7 reduces to the bare loop Q y. It  can be seen from 
(3.5) that Q 7 is found by averaging the bare loop Q bJover the 
random field $. This averaging can be written with the help 
of a functional integral: 

a' (t i t l )  =Z-I 5 d @  ( t )  g1j(tlt2$) g'j (t.tr+) R (1). (3.1 1) 
ti' 

In the case i = j, the product gii (12)gii (21) is obviously inde- 
pendent of $, so that we have Q = Q. A characteristic sum 
arises in the exponential function in the integral over $ for 
Q l 2  and Q ": 

(6, = & 1 for i = 1,2). This characteristic sum is zero, so 
that the quantity Q'j(t,-t,) is not renormalized. This asser- 
tion follows from a general relation for an arbitrary Green's 
function in a diagram technique for nonequilibrium pro- 
cesses: 
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This relation follows from the unitarity of the S-matrix in a 
classical external field A, (x, ) with the Hamiltonian 

Writing the unitarity condition S-IS = 1, and carrying out 
a functional differentiation of this identity with respect to 
the classical variables A ,(x,), ...,A, (x, ), we find (3.12). It can 
also be shown that not only the binary loop but also any 
closed loop of magnon lines with n vertices (and also any 
product of loops of any order) will remain bare. We might 
note that this general property also holds when the fluctu- 
ations of the field $are not Gaussian. The only requirements 
are that the magnon field be nondispersive and that the dia- 
grams with springs be dominant; this property can be de- 
scribed by a non-Gaussian random field $(t ). 

The fact that the loops in the nondispersive part of the 
spectrum are not dressed can be assigned a clear physical 
meaning: In the absence of dispersion, a magnon damping 
arises from random phase shifts in the field $(t ). For a parti- 
cle which describes a closed loop, however, this phase shift is 
zero. Consequently, no damping of any sort need to be taken 
into account in the nondispersive region for magnons within 
a closed loop. We must emphasize that this assertion is quite 
general, applying to the damping of non-dispersive magnons 
of arbitrary nature: four- and three-magnon damping, 
damping due to an interaction with phonons, etc. 

4. Structure of the Green's function and damping of non- 
dispersive magnons. It follows from (3.5) for bJ and (2.16) 
for the Green's function K t  that the random-field correla- 
tion function RiJ (t ) does not depend on the time or on the 
Keldysh indices. At equilibrium we would have 

Substituting (3.13) into (3. lo), we find 

gi'(t) =g,"(t) exp (-PtZ/2), 

from which we find in turn, after a switch to thew represen- 
tation, 

This expression for gr (w) agrees with that derived previously 
by one of the present authors" by the Wild diagram tech- 
nique in a study of hydrodynamic turbulence. We wish to 
emphasize that Im gr is a Gaussian function, not a Lorent- 
zian function, as it would be if we considered only the one 
diagram 

in the series for 2,. However, expression (3.13) for the half- 
width of this distribution, P  'I2, agrees within a number with 

the simple estimate (3.3) for y  based on the first diagram: 
P z y 2 .  

5. Structure of unequal-time longitudinal spin correla- 
tion functions K', Ka , and Kd . It follows from the results of 
this section that the expressions for 
K '(kw),Ka (kw) and Kd (kw) are given correctly in lowest or- 
der in R -3'2 by expressions (2.16). Noting that Ka = (Kr)*, 
while at equilibrium Kd is related to Kr by the fluctuation- 
dissipation theorem (2.18), we will analyze the frequency de- 
pendence of the retarded longitudinal spin correlation func- 
tion Kr(kw) in (2.16) in this subsection. We begin with the 
low-temperature case, T <  3Tc/S, in which nondispersive 
magnons with an energy w, = 3Tc /Sare not excited. In this 
case the integral (2.16) for Qr is dominated by the long-wave 
part of the magnon spectrum, where we have 

ok=akz, a-oo(akR) ', oo=~SZ>Jo=SIo .  

As a result, at w, < T  we find 

i 
Q' (ok)  = - Ta3 [ O  (ok+o)-O (a*-@) + --~n 

8a2k 7c 

The reason for the logarithmic singularity in this expression 
is that the pole form of the response is not spread out suffi- 
ciently upon the integration because of the pronounced lo- 
calization of the soft-magnon distribution function at small 
k. It can be seen from (2.15) and (3.15) that the characteristic 
width along w of the longitudianl spin correlation functions 
K(wk) is determined by the magnon frequency w, . 

The situation is different at high temperatures, specifi- 
cally, at T >  3Tc /S. Assuming that the exchange integral has 
a power-law behavior at akR > 1, 

Jr=GJo (akR)'-", 6-1, 

we find 

f (x) =s, x < l ;  f (x)  =x-~'., 521. (3.16) 

Here F ,  = kV, = S(n - l)akw,$ ' - " , where V, is the 
group velocity at the boundary of the Brillouin zones. 

The function ReQr(wk) can be reconstructed from 
(3.16) with the help of the dispersion relations 

%(%+I) 
Re Qr (ok)  = --- 90" 

T [ I  - (3+n) (3+2n) Pkz 

Re Qr (ok)  = 
3nll(W+1) 

T (3+n) 
ctg-, n>3, oBfk 

2n 

Using (3.19) and (3.17), we find an expression for Kr (ok) at 
w < F , :  

Here r, = 2(3 + n)?.,/37~. We wish to emphasize that the 
results derived above are related in a fundamental way to the 
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nonvanishing dispersion of magnons with akR > 1. On the 
other hand, the proof that the contributions of the dressed 
propagators and of the vertex in the chains cancel out exact- 
ly was obtained in the absence of dispersion. We thus cannot 
rule out the possibility that a slight dispersion may disrupt 
this cancellation, to an extent which depends on the strength 
of the dispersion. In this case our results on the frequency 
dependence of the longitudinal correlation functions will be 
valid in order of magnitude. 

Expression (3.18) simplifies near the point of the phase 
transition: 

S(:li) [i++ 2 r  + K' (ok) = ---- 3 ( a k R ) 2 ] - ' ,  (3.19) s (S+ 1 )  

wherer = (T, - T)/T,, and T ,  =J,(ak )T ' /~R ' -"  . Inthe 
w plane here there is a pole which describes spin diffusion. 
This expression corresponds to the well-known expression 
for Kr(wk) in terms of G (k) [see, for example, Eq. (3.23) in 
Chapter 7 in Ref. 121, which was derived in the approxima- 
tion of a self-consistent field. The hypothesis r,  - k 2, how- 
ever, is not justified. 

It is a pleasure to thank S. V. Maleev for a discussion of 
the structure of longitudinal spin correlation functions. 
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