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We use macroscopic equations to find the frequency spectrum of magnetic resonance in a binary 
paramagnet in an external field. The exchange interaction between the components leads to a shift 
in the resonance frequencies as compared to their values in the pure components or it leads to the 
appearance of an extra resonance frequency in the case when the gyromagnetic ratios are the same 
for the two components. We obtain in the pair interaction approximation for binary quantum 
gases exact microscopic relations which connect the values of the resonance frequencies with the 
amplitude of the two-particle scattering. For the kinematic part of the kinetic equation we give a 
virial expansion which takes into account quanta1 collective corrections for the interaction of the 
gas molecules. We construct a solution of the resonance problem through the kinetic-equation 
method. We discuss in which class of objects the predicted effects can be observed experimentally. 

1. INTRODUCTION 

The interest in the study of a great variety of properties 
of quantum gases has recently grown considerably. By quan- 
tum gases we usually mean low-density systems in which 
quantum-mechanical effects in the statistics or in the inter- 
action between particles leads to appreciable quantitative or 
even qualitatively new effects. To the extent that most real 
gases condense before quantum effects start to play a consid- 
erable role, the traditional objects in this class have always 
been various isotopes of helium and hydrogen. At the pres- 
ent time large theoretical and experimental efforts have been 
concentrated on the study of gaseous spin-polarized 3Hef '** 
and atomic hydrogen H t.3,4 However, we shall show in what 
follows that some quantum effects are inherent not only in 
the systems just mentioned but have, in principle, macro- 
scopic manifestations also in a mixture of any paramagnetic 
gases, although the magnitude of the effect, as also shown by 
the quantum mechanical corrections, decreases as a power 
law with increasing temperature. We note also that the class 
of objects which may be considered to be quantum gases and 
where one may expect an appreciable magnitude of the pre- 
dicted effects turns out to be rather large. For instance, in a 
weakly ionized gas or a gas in which there are highly excited 
atoms, quantum virial corrections caused by the scattering 
of slow electrons by neutral molecules appreciably affect the 
thermodynamics of the system right up to a loss of stability, 
and lead to the existence of long-range correlations of a Fer- 
mi liquid type even in the Boltzmann temperature range.526 
Methods applied for the study of quantum gases turn out to 
be very useful also for describing a number of condensed 
systems such as semi-magnetic semicond~ctors,~ superfluid 
3He-4He solutions,' and others. In what follows we obtain 
relations valid for any quantum gas with a short range of 
interaction between the particles. In the concluding part of 
the paper we consider concrete examples which are of ex- 
perimental interest. 

It is well known that the magnetic resonance frequency 
of a Fermi liquid in an external magnetic field is independent 
of the quantities which characterize the interaction between 

the particles in the liquid and is, as in the case of a perfect gas, 
determined solely by the gyromagnetic ratio.8 One shows 
easily that this conclusion is valid also for an interacting 
Boltzmann gas. However, the situation is completely 
changed in the case of two-component (many-component) 
systems which consist of different particles or of molecules 
of the same substance but in different internal states. We 
shall show below that in that case the values of the resonance 
frequencies depend significantly both on the interaction 
between particles of different components and on the partial 
pressures of the two components of the system. If, however, 
the gyromagnetic ratios for the molecules of the two compo- 
nents are the same the exchange interaction of the subsys- 
tems leads to the appearance of a new resonance frequency 
which corresponds to an additional degree of freedom in a 
two-component magnetic material all particles of which 
have the same magnetic moment. The spectrum of the mag- 
netic resonance frequencies can be expressed by means of 
phenomenological equations in terms of the static suscepti- 
bilities of the components and the cross-term "magnetic" 
virial coefficient. Using the thermodynamic virial expansion 
in the spirit of Beth and Uhlenbeck's theory9*I0 one can ob- 
tain exact relations which connect the value of the resonance 
frequencies with the amplitude of the two-particle scattering 
for the case of pair interactions. 

The virial expansion of the kinematic part (not the colli- 
sion integral) of the kinetic equation in a gas is also of funda- 
mental interest. Indeed, to describe the properties of gases in 
the classical temperature range one uses normally the tradi- 
tional Boltzmann equation with a left-hand (kinematic) side 
corresponding to the free motion of the gas particles and all 
changes in the states of the particles are described by the 
right-hand side (the collision integral) of the kinetic equa- 
tion. However, taking into account the interaction of the 
molecules of the gas requires not only the collision integral 
but also additional specific terms which can be interpreted as 
virial corrections to the kinematic part of the Boltzmann 
equation describing the deviation of the particle distribution 
function from the Maxwell distribution in a perfect gas, 
caused by interactions. The necessity to take such correc- 
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tions into account is clear already from the following quali- 
tative considerations. Let us assume that we have used the 
virial expansion for the pressure and, differentiating it, 
found sound-velocity corrections caused by particle interac- 
tions in the gas. We now wish to determine the same correc- 
tion from the kinetic equation. Integrating this equation 
over momenta we get the equation of continuity. The flux 
equation is, as usually, obtained bv multiplying the kinetic 
equation by the momentum and then integrating it over 
phase space. The above-mentioned integrals of the right- 
hand side of the Boltzmann equation, i.e., of the collision 
integral in its normal definition, vanish. It is therefore neces- 
sary in order to determine the required corrections to the 
sound velocity, to take into account in the kinetic equation 
those virial corrections which contribute to the macroscopic 
relations which express the conservation laws for the num- 
ber of particles and for the total momentum, and which we 
arbitrarily will relate to the kinematic part of t,he Boltzmann 
equation. The introduction of such corrections and the pos- 
sibility produced by them of the propagation in a paramag- 
netic gas of high-frequency spin waves at sufficiently low 
temperatures when the de Broglie wavelength of the parti- 
cles appreciably exceeds the range of the interaction has been 
considered b e f ~ r e . ~ . ~  

In the present paper we propose for the kinematic part 
of the kinetic equation a virial expansion which is valid for 
any temperatures. Based on the equations obtained, we 
evaluate the spectrum of the spatially uniform magnetiza- 
tion oscillations in a two-component paramagnetic gas in an 
external field. The spectra of the paramagnetic resonance 
frequencies found by the kinetic-equation method and those 
found by means of the macroscopic equations and thermo- 
dynamic relations are the same. 

2. MACROSCOPIC EQUATIONS 

To begin with we shall consider the case of not too 
strong magnetic fields,fiy,,,H(T, where y,,, are the gyro- 
magnetic ratios of the particles of the first and the second 
components, H is the field strength (because the static mag- 
netic permeability is small we shall not distinguish between 
H and B), and T the temperature. Such a situation is in prac- 
tice most often realized. In that case the magnetic moments 
per unit volume for the two components M ,  and M, are also 
small. In the exchange approximation the free energy den- 
sity F of a uniformly magnetized two-component magnetic 
substance is then given by the well known phenomenological 
expansion: 

The off-diagonal elementsx,, = x,, of the symmetric static 
susceptibility matrix IIx,, 1 1 ,  i,k = 1,2 describe the exchange 
interaction between the components of the system. Neglect- 
ing dissipation, the macroscopic dynamics of the magnetiza- 
tion is determined by the classical Landau-Lifshitz equa- 
tions: 

where the effective fields H I  and H, are found by varying the 
free energy (2.1): 

The magnetization distribution will be looked for in the form 
of small deviations of the vectors M ,  and M, from its equilib- 
rium direction along H: 

M, (t) =M,,+,l.l,om, ( t )  , i = f ,  2 ,  nl,lM2o, mime-'"', (2.4) 

where M, are the equilibrium values of the vectors M ,  and 
M, produced by the external magnetic field: 

hll0= ( x ~ ~ - ~ - x ~ ~ - ~ )  HlA, M20= (%i~-'-~iZ-l) HIA, 

Substituting (2.3) to (2.5) into the dynamic equations (2.2) we 
find 

We used here the following notation: 

Qi=ylMZol~12, 62z=yzM,ol~l2, o ~ , = r , H ,  i-1, 2. (2.7) 

Introduction of the circular components 
m ( - ) =  m ,  - im,, still further simplifies Eqs. (2.6): 

The compatibility condition for the system (2.8) leads to an 
obvious quadratic dispersion equation, the roots of which 
determine the spectrum of the uniform magnetic resonance 
frequencies: 

( o H ~ - Q ~ )  + (oH~-Q~)  
0 1 , 2  = -- 

2 

If y, = y,=y the expressions for the resonance frequencies 
take on an extremely simple form: 

We see from Eqs. (2.8) that in the first type of oscillations 
m, = m, i.e., this solution is the normal precession of the 
total magnetic moment of the system M = M I  + M,, 
M = MI, + M,, around the applied magnetic field with Lar- 
mor frequency yH. On the other hand, in the second type of 
oscillations m, = - (R,/Q,)m, = - (M20/M,o)m2, i.e., the 
total magnetization M is conserved and does not oscillate, 
although the magnetic moments of each of its components 
M I  and M, perform periodic motions with frequency w ,  as 
follows from (2.10). The relative motion of the vectors M ,  
and M, proceeds in such a way that 
M = M I  + M 2  = Mlo + M20 = const. 

548 Sov. Phys. JETP 59 (3), March 1984 E. P. Bashkin 548 



If y, # y2 and the corrections due to the exchange inter- 
action between the components is not too large, i.e., 
Inl - a, 1 < /aH - W H 2  1 ,  we can also write down simple 
formulae for the resonance frequencies 

which determine the difference of the precession frequencies 
of the vectors MI  and M, in a constant magnetic field from 
the corresponding Larmor frequencies y,H and y2H. 

We shall in what follows be interested in resonance ef- 
fects in paramagnetic dilute mixtures such that all virial cor- 
rections describing the interaction of the particles will con- 
tain additional powers in the small density as compared to 
the analogous terms in a perfect gas. Taking only the pair 
interaction into account we can therefore use in the second 
virial coefficient approximation the values of MI, and M2, 
neglecting interactions, i.e., those in a perfect gas, rather 
than the exact expressions (2.5). For the frequency spectrum 
we finally have 

when y, = y2=y. Here xi0/ and xg are the static paramag- 
netic susceptibilities of the two components in the perfect 
gas approximation. 

3. THERMODYNAMIC VlRlAL EXPANSION 

We now try to perform a microscopic calculation of 
those phenomenological characteristics on which the shift in 
the magnetic resonance frequencies (2.12), (2.13) depend. 
The value of the susceptibilities Xiq) and XY; is calculated 
from the usual Curie-Weiss formula: 

where N ,  and S, are the number of molecules per unit vol- 
ume and the spin of a molecule of the k th component. To fix 
the ideas we shall in what follows consider such gases for 
which the particles possess only spin (electronic or nuclear) 
but no orbital angular momentum. To obtain the quantity 
x12 it is necessary to evaluate the cross-term virial coefficient 
which describes the exchange interaction between two spin- 
polarized components. The thermodynamic expansion in 
powers of the small density (or activity) corresponds to a 
functional expansion in a series in powers of the distribution 
function of a perfect gas (single-particle density matrix for 
spin-polarized gases). In accordance with this, the correc- 
tion to the free energy (per unit volume) caused by the pair 
interaction of particles from different components can be 
written in the form 

where n'fJk(p) is the polarization density matrix in the perfect 
gas of the particles of the k th component. For the sake of 

simplicity we shall study the region of not too high tempera- 
tures when, in the particle collision process, no changes oc- 
cur in their internal states, so that, for instance, no rotational 
degrees of freedom of the molecules are excited. In that case 
the interaction function @S,S,(pI,p2) from (3.2) can be ex- 
pressed in terms of the amplitude of the elastic two-particle 
scattering and, taking into account the internal states, re- 
duces simply to introducing the corresponding statistical 
weights as factors and they drop out of the final results. 

In the non-relativistic approximation the potential for 
the interaction of two particles does not depend explicitly on 
the spins and is thus not affected by the external magnetic 
field. The spin dependence of the function QS,% (p1,p2) is 
caused solely by exchange effects. Moreover, in the pair in- 
teraction approximation used QsZs2 (p,,p,) is not a functional 
~ f n f ? ~ ( ~ ) ,  i.e., is independent of the magnetic moments of the 
components and thus of the external magnetic field. The in- 
teraction function in (3.2) can thus be evaluated neglecting 
the external field. As far as the spin matrix nfik is concerned, 
in weak fields it can be expressed in terms of H using the 
obvious relations: 

where nf) is the Maxwellian distribution function: 

In Eq. (3.4) and m, are the chemical potential and the 
mass of the particles of the k th component. 

We consider the practically important case when the 
spin of the particles of one of the components is one-half: 
S2 = 4. In that case any function of the operator S2 reduces to 
a linear one and the interaction function can in the exchange 
approximation be written in the form 

cos,s,(pi, pz) =y (pi, pz) +E (p1, p2) S S * .  (3.5) 

Substituting (3.3) and (3.5) into (3.2) and using the formula 

Sps (SA) (SB) ='/,S (Sf 1) (2Sf 1 )  AB, (3.6) 

to sum over the spins we get 

Comparing (3.7) and (2.1) we find the off-diagonal element of 
the magnetic susceptibility matrix 

The rest of the problem consists in expressing the function 
f (pL,p2) in terms ofthe exact microscopic characteristic-the 
two-particle scattering amplitude. To do that we apply the 
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Beth and Uhlenbeck r n e t h ~ d ~ . ' ~  to our two-component sys- 
tem. 

The Gibbs distribution for the two-component system 
is given by the well known expression 

where the index n numbers the various states. Normalizing 
the distribution (3.9) to unity we get the thermodynamics 
potential in the form 

Expanding this expression in powers of the activity 
expbfi/T)(l  and restricting ourselves to the pair interac- 
tion we find 

n 

(3.11) 
where a, ,  + a,, is the thermodynamic potential of the sys- 
tem, neglecting the interaction between the components al- 
beit including the virial corrections connected with the inter- 
action and the identical nature of the particles in each 
separate component. The energy spectrum of two interact- 
ing particles from different components will, as usual be 
classified by separating the motion of the pair as a whole 
with total momentum P and considering the relative motion 
of the particles in the center of mass sytem with momentum 
9: 

We assume that in En,, , ,  of (3.12) there are no discrete energy 
levels, corresponding to bound states of a pair of molecules. 

The total spinof the pair of particles considered can take 
on two values: S ,  + 4. The corresponding values of the scat- 
tering amplitude and the partial scattering phases will be 
denoted by f+, f-; Sj+', Sip'. We assume that the spins of 
absolutely all particles of the system, including both compo- 
nents, are polarized in the same way. Substituting (3.12) into 
(3.1 1) and proceeding similarly as in Refs. 9, 10 in evaluating 
the partition function we get 

or, expressing Sj+ ' in terms off + we have 

According to the theorem about small corrections, 
a,, = AF,,. Therefore, evaluating AF,, using Eq. (3.2) in 
which we must take it into account that the spin polarization 
of the particles is the same, substituting the distribution 
function (3.4) and changing to the variables P and q in accord 
with (3.12), and then comparing the result with (3.14) and 
(3.15), we find the connection between the functions $, 6, and 
f + :  

Perfectly similar calculations for two completely polarized 
components whose spin polarization vectors are, however, 
antiparallel give one more relation between the above func- 
tions: 

m2 
) 

m2 
( % P - ~ ,  , P + ~  - - I (2  P-q.  -$ P + ~  = A -  ( q ) .  1 

From (3.16), (3.17) we get at once 

S l + l  $=- Si 2  
A+ +- A_, g = - ( A - A ) ,  (3.18) 

2Si+1 2 s , + i  2S,+1 

which determines the required connection between the in- 
teraction function @ and the scattering amplitude. 

It is clear from (3.15) to (3.18) that as the function 6 
depends only on the momentum of the relative motion 
6 (p1,p2)=f (q) we can in Eq. (3.8)forx; 'easily integrate over 
the center-of-mass momentum variables: 

Thus, Eqs. (2.12), (2.13), (3. I), and (3.19) determine ultimate- 
ly the shift of the magnetic resonance frequency in an inter- 
acting two-component gas. When S, # 4 

When S, = 4, y, = y2=y 

X ( T )  N=Nl+N2 .  (3.21) u ~ = ~ H ,  o , = y ~ [ i  - T N ] 7  

At low temperatures T<fi 2 /m< (r, is the range of the inter- 
action) we have in the limit of slow collisions 

f* ('0, q )  =-a ,  (I - iqa, lh)  , q 1 a ,  I l h ~ l ,  1 a ,  1 -ro. (3.22) 

The quantity X ( T )  then depends very weakly on the tempera- 

and the shift of the resonance frequencies turns out in the 
main approximation to be inversely proportional to T: 
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where we have introduced the thermal de Broglie wave- 
length AT and the exchange scattering length a,: 

As in a Boltzmann gas we have always A T ( N ,  and 
N k/3 Ia,l 4 1, the frequency shift (3.24) turns out to be small to 
the extent that the virial corrections are small. 

We note that in Eqs. (3.21) and (3.24) for the frequency 
shift there are for the case y,  = y2=y no parameters charac- 
terizing the difference of the particles of the different compo- 
nents from one another such that when they tend to zero the 
effect also vanishes. Nonetheless when the two components 
are identical (a one-component gas) the above mentioned ex- 
pressions are inapplicable and there is no effect. The fact is 
that there is no group of parameters for which there exists a 
continuous transition between different and identical parti- 
cles. Particles are either always identical or different (even 
for arbitrarily small changes in the parameters) and this 
property can change only abruptly. In this sense the situa- 
tion is similar to the well known Gibbs paradox about the 
entropy of a mixture of two ideal gases. 

4. VlRlAL EXPANSION OF THE DISTRIBUTION FUNCTION 

When using the kinetic equation we need in what fol- 
lows the virial corrections to the single-particle polarization 
density matrix of a perfect gas. The entropy of an interacting 
gas can be expressed in terms of the occupation number of 
various quantum states through an essentially purely com- 
binatorial relation 

P 

T[lFnksk(p)  IIn[lTnhsh (p ) ] ) ,  k = l , 2 .  (4.1) 

The upper and lower signs in (4.1) refer to systems of fer- 
mions and bosons, respectively. The total energy E of the 
system is a functional of the occupation numbers for both 
components: E = E ( n  , n2s2 ) . The quantities nksk them- 
selves are normalized to the total number of particles (per 
unit volume): 

Maximizing the total entropy 3, + 3Z with the additional 
conditions that the total energy E and the numbers of parti- 
cles for each component N ,  and NZ are constant we find the 
equilibrium particle momentum distribution functions: 

nhs, = [exp (XEE~S~ + 11 

where A,, A,, , AN2 are the respective Langrangian multipli- 
ers in the conditional extremum problem and the peculiar 
excitation energy amk is determined by the first functional 
derivative of the energy: 

The meaning of the undetermined Langrangian multipliers 
is, as usual, determined by using the thermodynamic identi- 
ty for a given volume: 

so that A, = T-I ,  ANk = - p k / T .  
The contribution of the particle pair interaction to the 

total energy of the system can in the general case be written 
in the form of the following virial expansion: 

Comparing (3.2) and (4.6) and using the theorem about small 
corrections we find that 

As to the quantities r $$;, , they characterize the interac- 
tions of the particles of the k th component with one another 
and do not enter into the final answer. We shall therefore not 
give here the exact microscopic expressions for the T$sz,. 
Within our accuracy (second virial approximation) we may 
assume that the true occupation numbers occur in the energy 
(4.6) and not the distribution function of a perfect gas, i.e., 
nkSk (p) z nfAk (p). Then varying expression (4.6) in accordance 
with (4.4) we find the virial correction to the energy per parti- 
cle caused by the interaction with all other gas molecules: 

+ S P , ~  @.S,(P, pz)n!',(pz), m+k. (4.8) 
PI 

Substituting (4.8) into (4.3) we find finally the difference 
between the actual occupation numbers and their values in 
the perfect gas: 

Similar expressions for a single-component gas of spinless 
particles were obtained in Ref. 11 by other means, namely, 
through a direct evaluation of the average value of the opera- 
tor of the number of particles in a given quantum state. 
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5. KINETIC EQUATION METHOD 

For a consistent derivation of the quantum kinetic 
equation describing non-equilibrium particle momentum 
distributions we need an explicit expression for the Hamil- 
tonian ofthe system, which in the case of a binary gas has the 
following form: 

where T(kJ  is the single-particle energy spectrum for parti- 
cles ofeach kind, UIkk ) the matrix element ofthe pair interac- 
tion between molecules of the k th component, U(12) charac- 
terizes the interaction between particles from different 
components, and i?A and 2,, are the creation and annihila- 
tion operators for particles of the k th component in the state 
/ 1). The commutation relations between the creation and 
annihilation operators for particles of the same kind are de- 
termined by their statistics (fermions or bosons): 

l ?k~ l?k~+Z t l?k2+ l?k1=612 ,  cikl+dk2+*Cik2+cik:+=Ciklcik2+ci~2dki=0. 

(5.2) 
The second quantization operators for particles of different 
kinds, of course, commute with one another: 

[ l ? h l b , z + ]  = [l?kl(it2] = [ c k k l + & z + ]  =O, if k .  P3) 
The single-particle density matrices for particles of each of 
the components are given by the usual relations 

G k S k  ( I r  2) ' ( 6 k 1 ' 5 k 2 ) .  F4) 
The kinetic equations for the density matrices AkSk will be 
obtained in analogy with Ref. 12 by averaging the Liouville 
equation for the density operators i?& iik2 : 

Substituting (5.1) and (5.4) into (5.5) and using the commuta- 
tion relations (5.2), (5.3) we get 

h 

where the matrix YkSk is given by the following expression: 

- U c i 2 )  (5,3; 4, I)&% (5,2) I ) ,  i Z k .  (5.7) 

We used in (5.7) that U(I2) (1,2;3,4) = U(21) (1,2;3,4) and also 
introduced the two-particle density matrix $2, : 

$h (1,2; 3,4)  '(cikl+&2+cik31?~&>. (5.8) 

In the perfect-gas approximation Eq. (5.6) is the usual Boltz- 
mann equation in which the operator 

-iPkSk/ri = ( [Ciklf iik2, ?Jinl]) (5.9) 

corresponds to t i e  collision integral while the commutator 
of the matrices T (k )  and iikSk on the left-hand side of (5.6) 
describes the free motion of the particles between collisions. 
We need in what follows the expliciiform of the virial cor- 
rections just in the commutator [T(k) ,  iikS, 1, i.e., in the 
kinematic part of the kinetic equation. These corrections 
correspond to taking into account the liquid effects peculiar 
to a low density system and due to the effective self-consis- 
tent interaction of the gas molecules. 

We are dealing with corrections connected with the 
functional virial expansion of the equilibrium distribution 
function (4.9), i.e., with the renormalization of the kinematic 
part arising when we linearize the kinetic equation with re- 
spect to small deviations from the actual equilibrium distri- 
bution function (4.9) and not from n!&. The collision inte- 
gral also vanishes when we substitute into it just the actual 
equilibrium density matrix. Both the collision integral, in 
the following denoted by Yisk, and the kinematic virial cor- 
rections are determined by the inLeraction between the parti- 
cles and enter into the matrix Yksk. A consistent rigorous 
derivation of the kinematic corrections at low temperatures 
T4f i2 /m6 was given in Ref. 6. Here we restrict ourselves in 
fact to an expansion of the kinetic equation in a functional 
series in powers of small perturbations of the density matrix, 
taking into account the above mentioned renormalization. 
The functional form of the expansion is determined by ana- 
logy with the low-temperature limit where it has a rigorous 
basis. The expansion coefficients are evaluated by means of 
the virial expression (4.9). 

In the present paper we shall be interested merely in the 
spin degr2es of freedom in a binary paramagnetic gas. In the 
matrices TIk) and iiksk only those terms are therefore impor- 
tant for us which depend on the spin operators. For the ener- 
gy of a single particle we have 

We linearize the kinetic Eq. (5.6). As in the preceding part of 
this paper we shall assume the external magnetic field to be 
weak so that in the linearcipproximation in H for the evalua- 
tion of the commutator [ T ,,itksk ] we can neglect the contri- 
bution of the magnetic field to the polarization density ma- 
trix fiksk. Taking what has been said into account we can 
always write the small non-equilibrium corrections to AkSk in 
the form 

where pk (p) a exp( - iwt ). Comparing (5.11) and (4.9) we 
check easily that 

where the vector pk differs from its value &)in a perfect gas 
only by small virial corrections: 
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As before, to fix the ideas, we put S, = 4. Using (5.1 l), (5.12), 
(3.5) we can write Eq. (5.6) in the form 

iti dpk  
- Sk - = - [S .H,  S,pk]  + [s,H, s k  (sm+l) (2Sm+l) 
yk at 3 T 

Pa 

k=1,2, mZk.  (5.14) 

Acting on both sides of Eq. (5.14) with the spin operator Sk 
and after that averaging over the spins using the formula13 

where E,, is the antisymmetric unit tensor we find, after 
evaluating the commutators in (5.14) the required dynamic 
equations: 

1 - - SPB,  (SZPZ'S~), 
z t i  

where we have introduced the notation w, = ykH, 
9l= H / H .  As in the exchange approximation the total spin 
of each of the components is ccnserved in the collision pro- 
cess all integrals containing S, Y ;,' and describing a change 
in the total spin in the collisions vanish when we integrate 
Eqs. (5.16) over momentum space. Integrating in (5.16) and 
changing to circular variables pj;t ' = pkx + ipk, , k = 1,2 we 
get finally 

The terms in (5.1) containing nf '  are small virial corrections 
determining the shift in the magnetic resonance frequencies 
which one can easily evaluate by sol$ing Eqs. (5.17) using 
perturbation theory. 

The unperturbed solution is the precession of the two 
vectors M I  and M, with frequencies o,, and w,, around 
the direction of the external magnetic field. The absolute 
magnitude of both vectors then remains unchanged. It there- 
fore follows from the condition 

1 
Mko sin p = M h o m k  = ( SP. ~ k S k ~ ~ k s h  I , (5.18) 

P 

where e, is the angle of deviation of the vectors M I  and M, 
from the direction of H that 

For convenience we assume that initially both vectors M, 
and M, were deflected by the same angle. 

Substituting (5.19) into the set of Eqs. (5.17) we get for 
the resonance frequency shift 

which is exactly the same as the phenomenological Eqs. 
(2.12) when we substitute Eqs. (3.1) and (3.8) for x',q! and 
X12 

We note that taking the kinematic liquid corrections 
into account in the kinetic equation for determining the 
spectrum of uniform oscillations of the magnetization is pos- 
sible in principle for any temperature, whereas the consider- 
ation of similar terms for the evaluation of the dispersion law 
of high-frequency spin waves (spatially non-uniform fluctu- 
ations of the magnetic moment) in Boltzmann systems is ad- 
missible only at sufficienty low temperatures T<fi2/m d, 
i.e., in the ultra-quanta1 r e g i ~ n . ~ . ~  In all formulae one must 
then in the exact scattering amplitude retain only the main, 
s-wave term, while consideration of the other partial scatter- 
ing amplitudes with higher angular momenta goes beyond 
the accuracy used. Such a limitation on the temperature 
range of applicability of the results obtained for non-uniform 
oscillations was connected with the necessity of comparing 
derivative terms in the kinematic part of the Boltzmann 
equation with the collision integral. However, in the case of 
spatially uniform magnetic moment distributions there are 
no such terms in the kinetic equation and the above men- 
tioned limitation does not arise. 

6. INTERACTION OF PARTICLES WITH UNITY SPIN: 
St = S z =  1. 

From systematic considerations and also bearing in 
mind possible practical applications we evaluate the interac- 
tion function @, ,,,, ( pl,p2) and the quantity X, ' which de- 
termines the magnetic resonance frequency shift for a binary 
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gas in which the particles of each kind have unity spin: 
S, = S2 = 1. In that case the total spin S of two colliding 
particles can take on the values S = 2, 1,0, i.e., altogether 
2S1 + 1 = 3 values. The corresponding values of the scatter- 
ing amplitude will be denoted by f,, f,, fa. To the extent that 
only the powers from 1 to 2 s  of the spin operator S are inde- 
pendent, while all higher powers can be expressed in terms of 
them,I4 the scalar interaction function for S, = S2 = 1 can 
be written in the exchange approximation in the form 

@s,sz (P, P') =Bo(p, P') +Bi (p, p') SiSz+Bz ( i ) ,  P') (SiSz) '. 
(6.1) 

Using the formula for the eigenvalues of the operator for the 
scalar product of unit spins: 

1 
1 , S=2 

s1s2=-{S(s+l)-4) = 
2 (6.2) 

-2, S=O 

reasoning as in the derivation of Eqs. (3.16), (3.17) we get 
from (6.1) 

Bl (p, p') -Bl (q) =(Az--Ai)I2, (6.3) 
Bz (p, p') =B2(q) =A2/6-Ai/2+A,/3, 

where the functions A,, I = 0, 1, 2 are expressed in terms of 
the scattering amplitudesfi with different multiplicities us- 
ing Eqs. (3.15) in which we must everywhere replace the in- 
dex " + " by the index "I ". Using now Eq. (3.2) in which we 
must substitute the interaction function (6.1) and the polar- 
ization density matrix (3.3) to evaluate the virial correction 
AF12 to the free energy, and then using Eqs. (3.6), (5.15) to 
find the trace over the spin variables, we find finally 

where S, = S, = 1. Integrating over the center-of-mass var- 
iables we find from (6.4) 

In the case when the colliding particles are identical 
(single-component gas) f2 =fa+, i.e, also A, = A,&, . 
Then B, - B2/4 = +(A, -A,), i.e., can be expressed in 
terms of the difference A, -A, which is very natural for 
identical particles. We emphasize that at low temperatures 
identical particles with odd total spin do not interact with 
one another in the s-wave approximation f, z 0, A, =: 0. 

7. STRONG MAGNETIC FIELDS 

When one lowers the temperature sufficiently there 
may arise a situation when the external magnetic field can no 
longer be considered to be weak in the sense that the crite- 
rion fiy,H(T, k = 1,2 is satisfied. It is therefore of interest 
to ascertain how the expressions obtained for the magnetic 
resonance frequencies change in the case of arbitrary mag- 
netic field strengths. We consider the case of arbitrary fields 
using the example of a binary mixture of gases in which all 
particles have spin one-half: S, = S, = 4. 

In that case the polarization density matrix for each of 
the components is linear in the spin operator and can be 
written as follows: 

where n!+ and n',- are the occupation numbers for particles 
with spins oriented, respectively, parallel and antiparallel to 
the direction of the external magnetic field. The quantities 
n!* are normalized to the total number of particles (per unit 
volume) of a given spin orientation: 

n;" (p) = N:", N:+' +N:-' EN,. (7.2) 
P 

One verifies easily that in the Boltzmann temperature range 
where the gas molecules obey classical statistics Eq. (7.1) is 
equivalent to the expression 

nLo,',=n:" ( 1 + 2 a h s k ~ ) ,  ~,N,=N:+' -N:- ' ,  (7.3) 

wherea, is the degree of polarization of the k th component, 
introduced in such a way that 

Mh=yhahNkW/2, (7.4) 

and nf" is the Maxwell distribution function (3.4) of the un- 
polarized perfect gas. 

As usual, we start with evaluating the contribution of 
the interaction to the free energy of the system. Substituting 
(7.3) into the virial expansion (3.2) we are led exactly to Eq. 
(3.7) for S, = S, = 1. The free energy of the binary gas there- 
fore contains as before only the scalar product of the magne- 
tizations M,  . M, and is described by an expression similar 
to Eq. (2.1) for small M, and M,: 

where f,, anf f2, are independent of the direction of the vec- 
tors M, and M2 while x,' is given by Eq. (3.8) for 
S, = S, = 1. Substituting (7.5) into the dynamic Eqs. (2.2), 
(2.3) we check that we get for the resonance frequency spec- 
trum the earlier Eq. (2.10) in which, however, the quantities 
Mko are by no means connected to the external magnetic 
field through the relations Mko = appropriate in the 
weak field case, but are expressed in terms o fH  through Eqs. 
(7.4). Finally we get 

At cryogenic temperatures T<@/rnd the expression for the 
new resonance frequency (7.6) takes on the simple and physi- 
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tally obvious form 

which agrees with the results of Ref. 6. 

8. CONCLUSION 

There is a rather large class of gases whose molecules 
possess paramagnetism even in their ground state. Among 
the inorganic substances are the well known 0, (ground state 
term 32 ), NO (ground state term ), and the triatomic gases 
NO, and C10, with total spin S = 4. As a result of recent 
experimental achievements we can also regard spin-polar- 
ized atomic hydrogen H t as a long-lived practically stable 
paramagnetic g a ~ . ~ . ~  There exists also a whole group of gase- 
ous nuclear paramagnetics such as 3He, HD, o-H, (orthohy- 
drogen, and p-D, (paradeuterium). The formulae obtained 
earlier are, in principle, applicable to all these gases we men- 
tioned. However, since quantum-mechanical corrections to 
the free energy of the gas decrease as the temperature rises, 
all effects will be most appreciable in those gases which con- 
dense at the possibly lowest temperatures and then have an 
appreciable saturated vapor pressure. Moreover, the rota- 
tional quantum A,,, for the molecules of some of the above 
mentioned gases turns out to be appreciably smaller than the 
boiling temperature (even at the lowest pressures), so that the 
rotational degrees of freedom of the molecules will be 
strongly excited which leads to a strong coupling between 
the electron magnetic moment and the rotational moment of 
the molecule. This, in turn, greatly complicates the picture 
of paramagnetic resonance and makes it difficult to identify 
the phenomena considered in the present paper. For in- 
stance, A,,, (0,) = 2.1 K and A,,, (NO) = 2.4 K. 

Thus, for a distinct observation of the predicted effects 
it is convenient to use various paramagnetic isotopes of hy- 
drogen the molecules of which are characterized by large 
rotational quanta which appreciably exceed the boiling tem- 
perature: A,,, (H,) = 85.4 K; A,,, (D,) = 43 K; 
A,,, (HD) = 64 K. However, since the mentioned hydrogen 
isotopes, and also 3He, are nuclear paramagnetics and the 
range of the nuclear forces is appreciably shorter than the 
size of the molecules, in collisions of different molecules the 
nuclear wave functions overlap extremely little and the cor- 
responding exchange interaction turns out to be vanishingly 
small. A completely different situation occurs if identical 
atoms are involved in the composition of the colliding mole- 
cules. In that case exchange of whole atoms rather than nu- 
clei is possible in the reaction zone of the order of molecular 
dimensions. The exchange scattering amplitude will then be 
given by the size of the molecules as to order of magnitude, 
i.e., will be on an atomic rather than nuclear scale. Such a 
situation may, for instance, be realized in two-component 
mixtures of o-H, and HD (identical H atoms) or ofp-D, and 
D, (identical D atoms). For these substances at T- 10 K the 
saturated vapor pressure corresponds to a density N, - 10" 
to 1019 cm-3 so that estimates using Eq. (3.24) for la,l - 1 
.& lead to the following shift of the paramagnetic resonance 
lines: /Am, I/m, - lop5 to 

Another interesting object in which possibly similar ef- 
fects may manifest themselves is spin-polarized atomic hy- 
drogen H t  as after stabilization in a magnetic field due to 
hyperfine interaction the gas is a mixture of atoms in differ- 
ent spin states ( a )  = It 1) - E / J  t ) ,  Ib) = It ?), where t 
and t indicate the electron and nuclear spin z-components, 
and E is a mixture parameter, i.e., H t  can be considered to be 
a peculiar binary gas. In this case two kinds of magnetic 
dipole transitions are allowed: la) -+ id ) and Ib ) -+ Ic), 
wherelc) = 11 t )  + & I ?  1), Id) = 11  th the resonance line 
corresponding to the transition lb ) -+ Ic) has been experi- 
mentally observed.I5 As different particles in a binary gas 
one can consider the same atoms in the ground state and in 
excited states which is realized in gaseous devices. 

Quantitatively the effect of the resonance frequency 
shift is particularly large in the case when one of the compo- 
nents of a binary system is simply a gas of electrons the mass 
of which m, is three orders of magnitude smaller than the 
atomic mass. In that situation the ultra-quanta1 case is prac- 
tically always realized, T<fi2/mri, and for a quantitative 
description one can use Eqs. (3.22) to (3.24) and (7.7) in the 
limit of low-energy scattering. For instance, in the case of 
weakly ionized gaseous Cs (one component is electrons and 
the other neutral atoms) at T- lo3 K, N, -N,- 1016 to 10" 
cmP3, la,j - 10 .&I6 we get for the additional resonance fre- 
quency w,: /a, - yH I/yH- to In semimagnetic 
semiconductors where the effect is caused by the scattering 
of electrons or holes by paramagnetic point defects (impuri- 
ties) for typical values of the densities of the carriers 
N, - 1016 to 10'' cmP3 and of the defects N, - 10'' to 10" 
cmV3 for T- lo2 K, la,l- 1 A, m* - 10W2 to lo-' me (m* 
is the effective carrier mass) the quantitative size of the effect 
IAw, I/wHk turns out to be of the order of loV3 to lo-'. 

I express my gratitude to A. F. Andreev for an attentive 
and useful discussion 

APPENDIX 

To obtain all virial expansions we used quantum-me- 
chanical rather than classical formulae. We formulate the 
criteria which allow us to establish how low the temperature 
must be in order that it is necessary for us to use just the 
quantum-mechanical approach. We perform all calculations 
using as an example a gas with particles which repel one 
another in accord with the law U = a/rn . When we consider 
the interaction between the gas particles classically we can 
evaluate the second virial coefficient using the formulalo 

The quantum-mechanical correction to the classical value 
(Al )  is given by the expression10 

The ratio B,,,,, /B,,,,, thus turns out to be of the order of 
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(A,/r,)2 where A T  is the thermal de Broglie wavelength 
from (3.25) and r, some characteristic distance at which the 
potential energy of a particle is comparable to the average 
kinetic energy of its thermal motion: 

U (ri) =T. (A31 

It is clear that in a dilute gas r, 4 N  - ' I 3 .  In general, in a real 
gas r; 5 T /P , (T)  where PC (T)  describes the liquid-gas phase 
equilibrium curve in the diagram of state. At sufficiently low 
temperatures such that A, - r, ( N  - ' I 3  it becomes neces- 
sary to use a quantum-mechanical discussion to describe ef- 
fects connected with the interaction between the gas mole- 
cules. 
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