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We consider the kinetic equation for photons interacting with free electrons. We find stationary 
photon energy contributions taking into account photon sources which are localized in energy 
space as well as power-law photon sources. We show that in the region between the source and the 
sink a universal distribution is formed which depends on the integral characteristics of the source. 

It is well known that real physical systems of particles 
and quasi-particles are often in states which are far from 
equilibrium. The occurrence of disequilibrium is usually 
connected with the presence of sources and sinks which pro- 
duce a stationary state of the system. The most striking ex- 
amples of such possibilities are provided by the theory of 
weak and strong turbulence. The presence of sources and 
sinks may lead to the formation of a non-equilibrium situa- 
tion which is so strong that the approximation of local equi- 
librium turns out to be insufficient. For instance, in the the- 
ory of weak turbulence1 the presence of a source and a sink 
leads in the region between them to the appearance of uni- 
versal turbulence spectra which depend only on the integral 
characteristics of the source and the sink. 

The existence of particle energy distributions similar to 
turbulence spectra was pointed out for the first time in Refs. 
2 and 3. However, because in the situations considered the 
kinetic equations were integral equations, many problems of 
principal interest remained unexplained. For instance, first 
and foremost the universality of the power-law spectra 
which were obtained in those papers was not proved. It is 
thus of interest to study examples in which one can explicitly 
trace the effect of the source on the non-equilibrium distri- 
butions and prove their universality. In the present paper we 
achieve this program for the Kompaneets equation which 
describes the interaction of radiation with free electrons. 

In the present paper we find the stationary photon dis- 
tribution function in the whole energy range (under non- 
equilibrium conditions) using the WKB method in the small 
parameter T, /mec2 (T, is the electron temperature and me 
the electron mass). We succeed in rather clearly elucidating 
the effect of the structure of the source on the nature of the 
photon distribution function. We analyze the possible pow- 
er-law asymptotic behavior of the distribution function and 
the regions where it exists depending on the magnitude of the 
power of the source. The solution obtained in the WKB ap- 
proximation enables us to give the explicit form of the distri- 
bution function for a number of sources (delta-function and 
power-law sources). The analysis of these distributions 
shows that between the source and the sink is formed a uni- 
versal power-law asymptotic form of the distribution func- 
tion, which depends solely on the integral characteristics of 
the structure source (its power). At the same time in the 
range beyond the source (for energies larger than the charac- 
teristic energies of the source) a distribution is formed which 
depends in an essential way on its form. In particular, in the 

case of a power-law source a distribution is formed with a 
power-law exponent which is determined by the source. In 
the case of several concentrated sources we also indicate 
ranges where there exist universal and non-universal sec- 
tions of photon distributions. The presence of the above indi- 
cated non-self-similar, non-universal sections of the photon 
spectrum indicate that non-equilibrium particle distribu- 
tions may serve as powerful diagnostic agents for non-equi- 
librium sources. 

We consider the kinetic equation for the distribution 
function of photons interacting with free electrons which 
have an equilibrium energy distribution with temperature 

This equation is already in terms of the dimensionless varia- 
bles t = an, cr where r is the time, x = h / m ,  c2, T = T, / 
m,c2. We have taken into account in this equation the exis- 
tence of photon sources with intensity Q (x). 

From the time when Kompaneets's paper first ap- 
peared, many papers and  review^^-^ have been devoted to the 
study of the interaction of radiation with free electrons and 
also to radiation relaxation processes. The interest in those 
processes is connected with the fact that such an interaction 
plays an important role in many astrophysical problems in- 
volving compact powerful radiation sources. In most papers 
processes of relaxation to an equilibrium state were studied. 
However, the operation of the sources may lead to a change 
in the stationary distribution function. Undoubtedly a sta- 
tionary solution is possible only in a system where there is, 
apart from the source, also a sink of like intensity. We shall 
not give the concrete form of the sink, assuming that the sink 
is concentrated in the region x < x, and absorbs just as many 
particles as reach it from the source. Such a sink can be speci- 
fied either by fixing the number of particles in the distribu- 
tion or by using well defined boundary conditions at the sink, 
for instance, f (x,) = 0. 

We shall in what follows study stationary non-equilibri- 
um photon distributions which, as one sees easily from ( I ) ,  
are given by the equation 

d f 1 "  T - +/+P= T: Q (i) di, 
dx 

which is obtained after integrating over x from x to co and 
using the condition 
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i.e., the photon flux at infinity vanishes and the effect of the 
source at large x  is insignificant (for this it is necessary that 
the distribution function decrease at infinity faster than 
x - ~ ) .  

One can reduce the Riccati Eq. (2 )  through the substitu- 
tion f = Tuf/v - 1 to the linear equation 

The presence of the small parameter 2T in that equation 
allows us to use the WKB method. The corresponding solu- 
tion of Eq. (3)  has the form'' 

y (x) = q'" (x) dx, S 
I. 

and the distribution function is then equal to 

The constant c  in the distribution must somehow be deter- 
mined from the physical conditions and its value depends on 
the power of the source. We shall in what follows assume 
that there acts at the point x, a very powerful sink which 
absorbs all particles. We shall describe such a sink by the 
boundary condition f (x,  ) = 0 .  Notwithstanding the fact that 
one of the solutions (4) decreases exponentially, these solu- 
tions are of the same order of magnitude as the growing solu- 
tions at the point x, . This fact renders correct the procedure 
to determine c  from the boundary conditions given at the 
point x, (see Ref. 10). 

From (5)  and the condition f (x,  ) = 0 we get for x, ( T  

It is clear from (6 )  that when the power increases the con- 
stant c  changes from - 1 when P - 0  to + 1 as P-+w, be- 
coming zero when P  = T2x: .  If we introduce instead the 
constant c  the constantp = - Tlnc which plays the role of a 
chemical potential for the photon distribution, we can write 
the distribution function (5 )  for P < T 2 x f  in the form 

Tza 
p=2T Arcth p,, , 

and for large P >  T2x5 the distribution function takes the 
form 

1 
f(x)=--ql"(x)th 

Tx. 
2 p=2T Arth F.  

(8 )  

We note that the form of the distribution function changes 
qualitatively when the power of the source changes from 
P  < T  2xf to P >  T  ' x : .  Moreover, it is important that the 
chemical potential p is a universal function of the source, 
i.e., it is determined solely by its integral characteristic P. 

From Eqs. (7) and (8)  which we gave above it is difficult 
to discern directly the power-law asymptotic behavior of the 
distribution function and its universality. In what follows we 
consider a few concrete types of sources which enable us 
easily to analyze the structure of the stationary distribution 
functions. We start with a study of a photon source which is 
localized in energy space: 

Q (x) =P6 (x-xi) ; P=JhS/mSc70n,, (9) 

where J i s  the number of photons appearing per 1 cm3 in 1 s. 
It will become clear in what follows that notwithstanding its 
simplicity this model contains all basic information about 
possible universal asymptotic behavior in our problem. 

In this model 

Q (x) =I+/$IX~, (10) 

and the integral y(x) occurring in the WKB solution can be 
expressed in terms of hypergeometric functions: y  = y,(x,, 
P, x ) .  [See the Appendix for an expression for the functions 
Y s  (xs > p, x1.1 

Above we used a WKB solution which is valid when the 
condition 

is satisfied, i.e., when ( 4 p ) ' I 4 ) ~ .  Satisfying this inequality 
guarantees that the solution is valid in the whole range over 
which x  changes. When the power of the source decreases 
the WKB approximation breaks down near the point 
x  = P  ' I 4 .  The turning point lies in the complex x-plane and 
when P  decreases it approaches the real axis. When the rela- 
tive position of the source and the sink changes, i.e., when 
x, > x i ,  Eq. (3)  remains the same except that the sign in front 
of the term 4 P / x 4  changes. This leads to the fact that the 
turning point turns up on the real axis and in the range 
x  < (4P)'I4 the distribution function shows fast oscillations. 
The non-physical behavior of the distribution function indi- 
cates that there is no stationary solution for such a relative 
position of the source and the sink. For small powers of the 
source, P<T ' I 4 ,  one can see from (6 )  that the constant 
c  = c , / c ,  < 0 .  However, because for such powers there is a 
region where the WKB approximation breaks down, the so- 
lution given by (5 )  is valid only when x ( P  ' I 4 .  To find the 
solution in the region x ( P  ' I 4  we must determine the con- 
stant in the solution (5 )  bypassing the region of the break- 
down. When we accomplish this bypassing using a transfer 
matrix (see Ref. 10) we check easily that the ratio of the 
constants c , / c2  is unchanged. Therefore, in this case the sta- 
tionary photon distribution is also given by Eq. (7 )  or (8) ,  
depending on the value of P. When P  < T  'xf we can, by using 
the asymptotic behavior of the funciton y(x),  write the distri- 
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bution function in the form of two asymtotic expressions: 

As the power of the source P-0 the asymptotic form (12) 
cannot be formed and the distribution function is given by 
Eq. (1 3) in the whole of the region between the source and the 
sink. The distribution goes in that case for P = 0 over into 
the equilibrium distribution. 

We note that the solution (12) is formally the same as the 
photon distribution found in Ref. 11, but in contrast to Ref. 
1 1 it is clear that this solution is valid only when P 'I2 < Tx, . 
For large powers of the source one must use the other branch 
of the solution (8). One notes easily that this solution has a 
simple power-law asymptotic form (see also Refs. 11, 12): 

T P'" 
f ( x ) = - - t -  X . < X < < P ' ~ ,  

x  x 2 '  

When the intensity of the source increases the region occu- 
pied by the asymptotic of P 1'2/x2 broadens and when the 
inequality (4P)'I4$xi is satisfied it occupies nearly the whole 
interval between the source and the sink and the second 
asymptotic form vanishes. 

In the region x)xi, by virtue of the strict localization of 
the source, the stationary distribution function is given by 
Eq. (2) with Q = 0. In other words, in the region of large 
energies the distribution function turns out to be a quasiequi- 
librium one: 

The chemical potential p is determined from the condition 
that the distribution function by continuous at the source 
and equal to 

p=T l n ( l + l / f  ( x i ) )  -x i ,  

where f (xi) is determined by the distribution function found 
above [e.g., Eq. (14)]. 

It will become clear from what follows that the results 
obtained for a strictly localized source and precisely the 
power-law asymptotic behavior of the distribution function 
between the source and the sink turn out to be practically 
unchanged also for non-localized sources under rather weak 
conditions. 

Generally speaking, the Kompaneets equation is valid 
only for sufficiently smeared out distribution functions (and 
hence also smeared out sources) with a width Aw$dw, 
where AmD - w T ]l2.l3 The preceding case with a delta-func- 
tion source can thus be considered only as a model case. A 
source which does not go beyond the limits of applicability of 
the Kompaneets equation must necessarily have a reasona- 
ble width. However, the justification of the delta-function 
model is the following: the use instead of the S-function of 
some approximation with a finite width does not lead to any 

change in the asymptotic behavior of the distribution func- 
tion (14) at distances from the point of maximum intensity 
larger than the width of the source. Below we show even 
more-the asymptotic behavior (14) obtained in the delta- 
function model is valid also in the case of non-localized pow- 
er-law sources which occur in many astrophysical prob- 
lems. l4 We give a source of the form 

For such a source the potential function has the form 

From this it is clear that the second term within the square 
brackets is always small compared to the first one when 
x <xi .  Neglecting these terms we find easily the following 
expression for the phase integral: 

r ( x )  (x -x i )  y, ( x , ,  P, 2 )  +0  (2 , -X)  y, (x , ,  P ,  xi) [ 

[See the Appendix for an expression for the functions y, (x).] 
It is clear from (17) and (18) that y(x) and q(x) in the 

regionx<xi are the same as for a concentrated source. In the 
region between the source and the sink the distribution func- 
tion has a universal form, i.e., it is insensitive to the actual 
form of the source (it is merely necessary that the intensity 
drops towards the sink) and depends on its integral intensity. 

The universality of the spectrum between the source 
and the sink suggests that the distribution N = x2f(x) - P 'I2  

can be found from purely Kolmogorov-like considerations. 
Indeed, far from the source and the sink one can write down 
an equation of continuity for the number of particles: 

a~ aP -+-- 
at d k  

-0. 

Hence it follows that N cc TP /k, where T is a characteristic 
interaction time given according to the Kompaneets equa- 
tion by T- l -N/k. As a result we get a distribution N cc P l'' 
which is thus Kolmogorov-like with a constant flux of pho- 
tons along the spectrum. 

We now examine what is the shape of the distribution 
function for x >xi .  If the source is at such high energies that 
4P/x4( 1, we can use the asymptotic forms of the functions 
q1 I2(x) and y(x): 

q'" ( x )  = 1+2Q/BxP+', 

y ( x )  -2P'"/x,  

and from Eq. (5) we find that 

where the chemical potential p = - Tlnlcl is determined 
from the condition that the function be continuous in the 
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point x = xi and is equal to 

The power-law asymptotic behavior of the distribution func- 
tion obtained here is, in contrast to (14), not universal and 
determined by the source. The existence in the region x > x i  
of a non-universal asymptotic form enables us to use effec- 
tively the non-equilibrium distributions for diagnostics and 
non-equilibrium sources (enabling us to determine their 
shape, power and localization region). For the purpose of 
diagnostics of non-equilibrium states it is of interest to eluci- 
date the features of the distribution function also in the more 
general case. For iristance, it is of interest to consider the case 
of several power-law sources as such a situation is relatively 
often met with in actual problems. 

Let the source have the form 

The solution of the kinetic equation can then as before be 
found from the general Eq. (5). However, we shall not write 
down the solution as it is unwieldy and merely restrict our- 
selves to its analysis. It is clear that as earlier when x < x l  a 
universal distribution of the shape (14) will be formed with a 
power of the source 

Qixi (ai+Pi) + P =  Q 2 ~ 2  ( a z + B z )  

- 1  + I  ( u z + l )  (Pz- l )  . 
In the region x)x, a distribution of the shape (20) is formed 
with a non-universal power-law contribution Q,/P2x4 
As far as the section between x ,  and x, is concerned there can 
be several possibilities. There will in that interval be in the 
expression for q(x) competition between the non-universal 
part from the source at the point x = x ,  and the universal 
part from the source concentrated in the point x,: 

x,-=xx<x2. 
Depending on the ratio of the two last terms there will be 
formed either a universal asymptotic form determined by 
the source Q2 or a non-universal part from the source Q,. 

The above-considered power-law photon sources are, as 
we have already noted, widespread. For instance, it is 
knownI4 that for quasars and the nuclei of Seyfert galaxies 
90% of all energy emitted by them lies in the band 
wi - 10'3s-1 (xi =: lo-') and the sources have spectra of the 
form (16) with a = 3.5; p = 2.5. Using the data given in Ref. 
14 we estimate for these sources the parameter P/x;- lo4. 
Under such conditions the asymptotic behavior (14) of the 
photon distribution function must appear and the formation 
of it can lead to an appreciable heating of the electrons in the 
plasma surrounding the source, as the energy of the photon 
gas goes to the heating of the electron subsystem which ac- 
cording to Ref. 15 always has a Maxwellian distribution. 

The stationary electron temperature can be expressed in 
terms of the photon distribution function as follows (see, e.g., 
Ref. 9): 

For the asymptotic form of the distribution function 
N = x2f(x) =: P li2(xs < x  <x i  ), whence we get the following 
temperature: 

T,t-P'1a/2xi+xi/6~P'1t12xi ( P B X : ) .  

Conclusion 

We give a summary of the study just performed. Let the 
source be localized near the energy xi  and the sink near the 
energy x, . In that case: 

1. The form of the distribution function depends signifi- 
cantly on the relation between x, and xi .  If x, > x i  a station- 
ary photon distribution is possible only under the condition 
4P/xf < 1. If xi > x, a stationary distribution is possible for 
any finite value ofP. In what follows we shall assumexi > x, , 
x, < T. 

2. If the power of the source satisfies the condition 
4P) T 4  in the whole region between the source and the sink 
the distribution function has the form (8) with the simple 
power-law asymptotic forms (14): 

f ( x )  =P"/x2+TIx, x , < x < P ' ~ ,  

f ( x )  =P/x4 ,  P"+<x<.~. 

3. If the power is so small that 4P < T 4  the distribution 
(5) is valid in the regions x g p ' I 4  and x , ~ " ~ ,  and if 
X: < P / T 2  < T 2  the distribution has the form (8) with 
asymptotic behavior (14). 

If, however, P / T  < x: the distribution has the form (7) 
with the asymptotic forms 

2P"' 1 - P 
f ( x )  9 [exp [ ( x-r + -) z ,  - I ]  + -, x ' x>P~",  

T x ,  
y=2T Arcth p,, . 

4. The results given above remain practically un- 
changed in the case of unlocalized sources. All formulae sim- 
ply have an asymptotic meaning when xgx ,  . This shows the 
universality of the distribution between the source and the 
sink. 

5. In the energy range x > x i  two cases may occur: 
a)  if the source is a 6-function source the distribution in 

the range x > x i  is a quasi-equilibrium one [see (15)l; 
b) If the source in non-localized the non-universal dis- 

tribution (20) is formed in the region x > x i .  By virtue of this 
the non-equilibrium photon distributions can be used for the 
diagnostics of sources enabling us to determine their ar- 
rangement, power, and shape. 

One can generalize the results obtained to sources of a 
more general form (for instance, to the case of several power- 
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law sources). We note that considering the evolution in time 
of deviations from the obtained stationary distributions and 
linearizing the kinetic equation one may prove the stability 
of the solutions obtained. 

Appendix 

For the WKB analysis of Eq. (3) it is necessary to evalu- 
ate the phase integral y(x) and know its asymptotic behavior. 
All integrals y(x) encountered in the paper have the form 

Such integrals can be expressed in the general case in terms 
of hypergeometric functions. We give here an expression for 
the function y(x): 
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