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An investigation is reported of the scattering of electromagnetic radiation by a small particle 
when the radiation frequency is close to one of the eigenfrequencies of the particle in the incident 
field. It is shown that, when the imaginary part of the relative permittivity of the scattering 
particle is not too high, the main effect restricting the amplitude of the scattered wave is nondissi- 
pative damping due to the nonuniform electric-field distribution within the particle (departure 
from quasistationarity of the scattering process). The partial scattering amplitudes corresponding 
to resonant excitation of electric dipole, or any other electric multipole, moments are then of the 
same order of magnitude. 

1. It is well-known that the problem of scattering of ( - z 2 / 4 )  

electromagnetic radiation by spherical particles has an exact 
m-O m! r ( v + ~ + I )  7 

solution, obtained in the classic paper by Mie.' For a small 
particle, the partial scattering amplitudes corresponding to H, (1) ( z ) = - -  i {J-V ( z )  - e - ' n v J v ( ~ )  ). 
the excitation of the 2'-pole electric moment 'B, are then sin nv 
found to be proportional to q2'+ ' , whereas for the 2' -pole 
magnetic moment " B, -q2'+ ' where q = ak' < 1, a is the 
radius of the particle, k '  = n' , w/c is the wavenumber of the 
scattered wave, and n' > 0 is the refractive index of the medi- 
um in which the particle is localized. From this it is conclud- 
ed that, for small particles, the main contribution to the scat- 
tering process is provided by the excitation of the electric 
dipole moment: leB , I ) / ' s m  Bl I for 122 (Ref. 2). 

It will be shown below that this is not always the case. In 
fact, when q is small enough, the only universal inequality is 
leB , I ) I" B, 1 .  As for the amplitudes ' B, , these quantities 
contain "resonance denominators" of the form A2 + (I $ 1)/ 
I where A is the complex refractive index of the particle rela- 
tive to the ambient medium: nzn"/nl .  It follows that the 
corresponding scattering amplitude diverges when the fre- 
quency of the incident radiation is equal to one of the reso- 
nance frequencies w = w,, where w, satisfies the condition 
A2(o,) = - (I + I)/[. Since the poles of the scattering ampli- 
tude determine the oscillation-mode spectrum, it is clear 
that the reason for the divergence is the resonant excitation 
of field oscillation modes by the scattered wave. When dissi- 
pative losses are low enough, the inhomogeneity of the elec- 
tric-field distribution within the particle (departure from the 
quasistationarity of the scattering process) begins to play a 
significant role, so that the simple scattering-theory formu- 
las that are normally used to describe the phenomenon3 lose 
their validity. 

2. We now turn to the exact solution to the problem. 
According to this solution2 

where 

where J, + ,,, (z) and H i t  ,,, (z) are, respectively, the Bessel 
and Hankel functions. Next, we use the well-known repre- 
sentations of these functions4 

The essential point is that the coefficients of the series given 
by (2) are real numbers. Hence, for small q, it is sufficient to 
retain only the first term in this series, since the inclusion of 
the higher-order terms merely gives rise to a small change in 
the resonance frequency w, . 

As for (3), we see that, despite the fact that the order of 
magnitude of the term in the expansion for J, + ,,, (z) in pow- 
ers of z is lower than the order of the discarded terms in the 
expansion for J- ,- ,,, (z), it is essential to take it into ac- 
count because the complex factor exp [ - ~IT(I + 1/2)] is 
present in (3). In view of the foregoing, equation (1) can be 
readily reduced to the form 

3. We known that the second term in braces, which dis- 
tinguishes (4) from the usual formula for ' B, (Ref. 2), can be 
interpreted as nondissipative damping that restricts the am- 
plitude of the scattered wave for purely real A2. In particular, 
for the 1 th frequency (A2(wl ) = - (I + 1)/1), we have from (4) 
[cf. ( 1 )I 

'Bi=i'+'(21+l)/l (14- l) . ( 5 )  

When the rise in the scattered amplitude in the neigh- 
borhood of resonance is due to the excitation of the corre- 
sponding normal modes, i.e., to the transformation of the 
incident electromagnetic wave into volume plasmons, the 
physical meaning of nondissipative damping is, clearly, con- 
nected with the reverse transformation, namely, the trans- 
formation of the plasmon into the scattered electromagnetic 
wave. The amplitude of the electromagnetic field excited in 
the scattering particle then settles down to the self-consis- 
tent value for which the number of plasmons excited by the 
incident electromagnetic wave per unit time is equal to the 
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number of plasmons transformed into the scattered wave per 
unit time. 

We note that expression (5) does not contain any small 
quantities. This means that the scattered amplitude for rea- 
sonance of any order (i.e., for any l ) is of the same order of 
magnitude and is independent of the geometrical size of the 
scattering particle. This conclusion is also valid for other 
quantities characterizing the scattering process. For exam- 
ple, the partial extinction cross section a, (o)(al = a, + a,, , 
where a,,, are the partial cross sections for scattering and 
absorption, respectively), which is related to the scattering 
amplitude by the optical theorem2 

is given by the following expression at the point of resonance 
[this follows from (5) and (6)]: 

01 (ol) zeal ( 0 1 )  =2x (21+l) I (ki ')  ', 

where k:  = kl(w,) and 'a, is the "electrical" part of the 
partial extinction cross section, which is related to the quan- 
tity ' B, . Therefore, 21 + 1 is the degeneracy of the 1 th reso- 
nance (the number of independent modes corresponding to 
the excitation of the 21-pole electric moment). It follows 
from the expression obtained above that, in resonance scat- 
tering, each resonance mode provides the same contribution 
to the extinction cross section: 

eel' ( a l )  =2n/ ( k l l )  '. 
The complete partial cross section for resonance extinction 
is then given by 

0,  ( o i )  ='IJl(OI)= ~ e 0 1 1 ( 0 1 ) = ( 2 1 + l ) e 0 1 i ( 0 1 ) .  

It is interesting to note that, as follows from the optical 
theorem, for purely real A2(w) (o#w,),  the use of the stan- 
dard approximation2 q g  1 for ' B, without the inclusion of 
nondissipative damping (4) leads to a, =O for all I, whereas 
the substitution of (4) in (6)  gives the correct result for the 
scattering cross section of a small pa r t i~ l e .~  

The results presented above have a simple physical ex- 
planation: the requirement that the scattering amplitude at 
the point of resonance be large but finite is consistent with q 
being the only small parameter of the problem, but only in 
the case where ' B ,  is independent of q. 

4. The range of validity of the results obtained above is 
obviously restricted by the condition 

which becomes increasingly stringent as 1 increases. 
5. As a specific example, let us consider the scattering of 

light by a small metallic particle localized in a dielectric 
host. The function A2(w) is then of the form (see, for example, 
Ref. 5) 

where w, is the plasma frequency of the metal and Y is the 
effective electron collision frequency. For a small particle, 
the latter frequency is determined by collisions between con- 

duction electrons and the boundary, and its order of magni- 
tude is Y - vF /a  where vF is the velocity of Fermi electrons. 

When the foregoing is taken into account, expression (7) 
can be rewritten in the form of a condition for a. Combining 
this with the condition IAlq(1, and assuming that in the 
region of the resonance 

-Re ~ ( o l ) = ( ~ - k ~ / ~ ) l h - l ~ ~ ~  ; (a l ) ,  

we finally obtain 

6. Let us now consider some numerical estimates. Addi- 
tively colored (i.e., containing an excess of the metal compo- 
nent) alkali-halide crystals are convenient objects for investi- 
gating the scattering of light by small particles. At high 
temperatures, the excess metal in such crystals exists in the 
form of isolated point defects (F-centres). As the tempera- 
ture is reduced, the "F-center gas" condenses into macro- 
scopic metallic particles (colloids). The essential point is 
that, at a late stage in the condensation process (the coales- 
cence stage), the size distribution of the colloids has a specif- 
ic universal form for which the characteristic size of the col- 
loids increases as t ' I3 where t is the coalescence time6 (see 
also Ref. 7 where this process is examined in connection with 
problems of laser radiation damage to alkali-halide crystals). 

Estimates shown that, for potasium particles localized 
in KC1 crystals, the resonance frequency lies in the red and 
near infrared. As an example, Figs, 1-3 show that total ex- 
tinction cross sections (a = 20,) of such particles as func- 
tions of the frequency of incident radiation for a few values of 
a. The following values were used in the calculations: 
w, = 5.77 X 10" s- I, vF = 10' cm/s, and n1 cz 1.5 through- 
out the frequency range under consideration. These calcula- 
tions have shown that, in all these cases, the corrections to a 

FIG. 1. Extinction cross section of small particles of potassium localized 
in a KC1 crystal as a function of the frequency of incident radiation, with- 
out taking into account nondissipative damping (Q<l, Ref. 2), for three 
values of the particle size 1 - a = 5.2 x cm; 2 - a = 6.2 X cm 
3 - a =  7 . 2 ~ 1 0 - ~ c r n .  
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FIG. 2. Same as Fig. 1, but with allowance for nondissipative damping FIG, 3, Same as Fig, Exact solution, 
[see (4) and (611. 

be related to the geometrical size of the particles through the 
that are connected with " B, do not exceed a fraction of a per frequency of collisions between free electrons and the 
cent, so that the function a(w) is wholly determined by the 

boundary, and are quite high for small particles. On the oth- 
Bl Lsee (6)1' The data shown in the figures 'Orre- er hand, when dissipation is due to microscopic effects (ra- 

spond to different approximations used in the calculations. 
diationless transitions etc.), it may be expected that octupole 

Thus? Fig' the Ra~leigh a ~ ~ r 0 x i m a t i 0 n 9 3  and other higher-order resonances will also sig- 
i.e., calculations in which the standard approximation2 q( 1 

nificantly to a(@). 
was used for ' B, with nondissipative damping (4), and Figs. 

The author is endebted to S. M. Gol'berg for numerical 
and to based On f4)  and the exact calculations, and to S. I. Anisimov and L. P. Pitaevskii for 

solution, i.e. equation (I),  respectively. It is clear that the 
discussions for the results and useful suggestions. 

curves shown in Figs. 2 and 3 are very close to each other, 
and are qualitatively different from the Rayleigh scattering 
curves (cf. Fig. I), despite the fact that the scattered particles 
were small. The reasons for the discrepancy between the res- 
onance values w, calculated from the (4) and (6) and the true 
values is explained in Section 2 above. If necessary, the preci- 
sion of (4) can readily be increased by including a larger num- 
ber of terms in the expansion of the Bessel functions in pow- 
ers of z [see (2) and (3)]. 

We note that, for all the above values of a, the exctinc- 
tion cross section with the quadrupole resonance [second 
peak on the function u(w)] is found to be comparable with the 
corresponding value ofw for the dipole resonance [first peak 
on @(a)], or is even greater (see Fig. 3). Higher-order reson- 
ances and supressed by dissipative damping. The relatively 
early (123) supression of resonance peaks is a special feature 
of the above example in which dissipative losses are found to 
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