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A new formalism generalizes the quasienergy method to the case of two monochromatic fields 
with different frequencies. Under certain conditions, ionization occurs by a mechanism in which 
an electron initially absorbs a fixed number of optical phonons and then undergoes a tunneling 
due to infrared light. Rigorous calculations are carried out in a model of a short-range potential. 
The possibility of observing this effect in atoms is discussed. Oscillations should appear in the 
frequency dependence of the photoelectric effect upon the imposition of an intense low-frequency 
field. 

1. INTRODUCTION cular case of a model problem which can be solved exactly. 

The nonlinear ionization of atoms by laser beams has In Set. 4 we discuss the manifestation of this mechanism in 
been studied thoroughly only in the rnany-photon limit, the ionization of atoms and the implementation of tunneling 

where the so-called adiabatic parameter' is much greater ionization in fields of two frequencies. 

than unity: 
y=o (2Im)'"IefBl. 

Here f and w are the wave amplitude and frequency, and I is 
the binding energy of the atomic level of interest. In the re- 
gion y 5 1 the ionization cannot be described as a process 
consisting of absorption of a fixed number of photons. In the 
limit y 4 1, the ionization is determined by the tunneling of 
an electron through an oscillating potential barrier; ex- 
tremely little information is available on this case. Neverthe- 
less, a study of ionization at small values of y is extremely 
worthwhile both for determining the general behavior of the 
ionization in a low-frequency field, w ( I / f i ,  and for study- 
ing the breakdown of a gas in an intense infrared field (see 
Ref. 2, for example). Although experimental work in this 
field has been carried out for a long time now (see Refs. 3-5, 
for example), it was only a recent study6 that established the 
very fact that ionization of an atom by an infrared field could 
be observed experimentally. 

We see from (1) that by reducing y (at fixed values off 
and o) we can also attain a decrease of the binding energy I. 
One possibility here is to use a target of excited atoms, which 
might be excited, for example, through resonant cascade fill- 
ing of highly excited states. 

In this paper we discuss another possibility: an ioniza- 
tion caused by two fields-an optical field (of frequency f2 ) 
and an infrared field (of frequency w)-which does not re- 
quire a special frequency f2 for the actual filling of excited 
levels. The only necessary condition is that the energy of one 
or several optical phonons be near the boundary of the con- 
tinuous spectrum at the atom. In this case, an electron which 
absorbs N optical phonons goes into a virtual state with an 
energy lE, 1 = I - Nfiw g I, from which tunneling ioniza- 
tion occurs in an infrared field with an effective adiabatic 
parameter 

yn.=o (2)EN\  m)'"lef,  

which satisfies y, 4 y. The possibility of implementing a 
similar mechanism has been discussed previously7 for the 
case of a static field; we demonstrate the possibility of this 
mechanism in an infrared field in Sec. 3 below for the parti- 

2. EXTENSION OF THE QUASIENERGY APPROACH TO THE 
CASE OF A QUANTUM-MECHANICAL SYSTEM IN FIELDS OF 
TWO FREQUENCIES 

We begin with a rather general discussion of the behav- 
ior of a quantum-mechanical system in two monochromatic 
fields of frequencies f2 and o .  We write the operator repre- 
senting the interaction with these fields in the customary 
form (in the dipole approximation): 

V(r, t )  =-d Re {fe-'"'4- Fe-'"'}, (2) 
where d is the dipole moment of the system, and f and F are 
the complex field amplitudes. 

In a field of a single frequency w it is extremely conven- 
ient to use the quasienergy solutions of the Schrodinger 
equation 

a* (r, t )  
ifi - = [Ho+Va (r, t )  I$ (r, t ) ;  (3) 

these solutions are 

$E (r, t )  = e-ZEf'n Ox (r, t )  , @ t  + - = @ ( t )  , ( 3 
[H,+v. (r, t )  - ifi @, (r. t )  = E @ E  (r, t ) .  

The reason for taking this approach is that the @, form a 
natural orthonormal basis, and the quasienergies E deter- 
mine the spectral characteristics of the quantum system in 
the external field.' The same approach is effective in prob- 
lems involving the decay of a system caused by an external 
field. In this case, the radiation condition at infinity is im- 
posed on the functions @,, so that the quasienergies are 
complex, and Re E and Im E determine the positions and 
widths (decay probabilities) of quasistationary statese9 

We will show that in a field with two frequencies there 
are also states which are analogous to quasienergy states. To 
construct these solutions we consider the auxiliary eigenval- 
ue problem 
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where @ satisfies the periodicity conditions 

and k and n are integers. It is not difficult to see that the 
functions 

~ ~ ( r ,  t )  =e-'EtlQ (r, tl=t, t,=t) 

satisfy Eq. (3) with perturbation operator (2). The function 
@ (r, t, t ) does not satisfy any definite periodic conditions, as 
it does in the case of a single frequency; it is nevertheless a 
particular solution which describes some steady "station- 
ary" state of the system in fields of two frequencies. From the 
mathematical standpoint, the function @ (r, t, t ) considered 
as a function of the time, falls in the class of nearly periodic 
functions,I0 which have some important applications in 
mathematical physics. 

By analogy with the single-frequency case we can show 
that the CJ, with different values of E (for brevity we will 
again call the quantities E "quasienergies") are orthogonal 
and can thus be used as a basis for analyzing the properties of 
the system in two fields. Working from the "stationary" 
equation (4), we can construct several general theorems for 
the "quasienergy" states @, , and we can construct a syste- 
matic perturbation theory in f and F to calculate @, and E in 
an approach analogous to that taken previously for a single 
freq~ency."~ '~ In sufficiently weak fields the spectral fre- 
quencies of the system are determined by the quasienergies 
E, : 

air, n, k=(Ef-E,)lfi+no+kQ. 

The solutions of Eq. (4) with radiation conditions on r 
and with complex E give us quasistationary states which 
describe the decay of the system in two fields. For these solu- 
tions we can also construct a perturbation theory in com- 
plete analogy with the single-frequency case.13 In the ab- 
sence of resonances, @, and E can be written as power series 
in f and I;; in particular, if the perturbation theory uses only 
one of the fields (F, say), then in a nonresonant case @, and E 
have the structures 

where @ 'O' and E (O' are quasienergy solutions in the field5 
and the @ "'(r, t ) are periodic in t with a period 2n/w.  

It is clear that a corresponding procedure could in prin- 
ciple be followed for an arbitrary number of external fields, 
and the result would be qualitatively the same. In practice, 
however, as the number of external fields becomes large the 
final expressions become too complicated for practical use. 

3. DECAY OF A WEAKLY BOUND STATE IN INFRARED AND 
OPTICAL FIELDS 

The probability for an electromagnetic field to cause a 
decay of the system can be calculated exactly, without re- 
sorting to perturbation theory, only for the extremely simple 

model of a particle in a 6-function potential, in which case 
the unperturbed Hamiltonian H,  has only a single bound 
state, with a binding energy I. For this model and in the 
quasistationary approach, the complex quasienergy is deter- 
mined by the one-dimensional integral equation (cf. Ref. 7; 
we are using atomic units, with e = m = fi  = 1) 

[ (2E)  '" - (21) '"I  cp ( t )  

for the function p( t  ), which is determined by the behavior of 
@, (r, t, t ) at the origin of coordinates: 

cp ( t )  = lim r@, (r, t, t )  . 
7'-0 

Heres (t, t ') = SCl (r = O;t;rl = 0, t '), whereS,, istheclassical 
action for a free particle in an electromagnetic field. Corre- 
sponding to interaction (2) we have 

s ( t ,  t ' )  = 
[ a ( t ) - a ( t f )  12  

t-t' 

To analyze the mechanism for the decay of the system 
we must examine the case 

in which the optical field F can be taken into account by 
perturbation theory; in this case, we seek the solution p( t  ), E 
of Eq. (6) in the form of expansion (5). For simplicity we will 
take F into account in only the first nonvanishing order (the 
system absorbs only a single optical phonon), and we will 
replace E by - I on the right side of (6). Now expanding eiS 
in (6) in terms of F, , , 

eis(V-~l=e(o) ( t ,  t )  + z [e:"(t, r)~,e ' '~~+e:- '  ( t ,  r )  E.*eiQ'] 
h=x,y,z 

we find equations for successively determining p ( O v  * ') andx. 
Using the identity 

we can write these equations as 

x[e( ' )  ( t ,  t )  cp"' ( t-T) - r p ( O )  ( t )  1 ,  

[ (-2 (E("*Q))'" - (21)'/~]rp:" ( t )  

- (pk(*l) ( t )  + eF1' ( t ,  t ) c p ( "  ( t - t )  1 .  (8b) 
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Equation (8aj determines the behavior of the system under 
the influence of the infrared field alone. Under conditions 
(7), the right sides of (8) contain small factors (so that the 
difference IE "'1-Zis proportional to f 2j; furthermore, p'O'de- 
pends only weakly on the time.' With an accuracy appropri- 
ate to the present calculations we can set p"'(t ) = const and 
discard terms -p i* 'I from the right side of (8b) (the differ- 
ence between such terms also gives us a small quantity - f 2) .  

As a result we find 

r p ' O '  ( t )  =1, 

ql:"' ( t )  = 
1 

-4 

(2 (I*Q) ) " - (21) " 

Calculating the terms of second order in F, and taking an 
average over the period of the infrared field, we find the 
following expression for xkm in (5b): 

zn/o ar 
o d r  xkm = - (21) '" - J d t  J r h  - e-"'[e:') (f, r )  rn,!-" ( t - r )  
2 n o  0 

This expression holds under conditions (7). 
The expression for el * 'I and el1, - 'I for an arbitrary 

relative orientation of the vectors f and F are quite cumber- 
some, so to analyze the result we consider the simplest case, 
in which the infrared radiation is linearly polarized and the 
vectors f and F are orthogonal. In this case we can write 

e:f" = 0, 

1 
f -or  sin o z  cos o (z-2t) - 

4 

and for x , ,  = xsk,,,, we find 

o z 1 x sin2-(I-cos t) + - w r  sin or cos ot]} . (lo) [ 2 4 
The integrals in (10) can be evaluated easily in the case 

f = 0. The dynamic Stark effect of a weakly bound particle in 
an optical field (cf. Ref. 14) is given by 

If L! >I ,  the imaginary part of x 'O' is nonzero and gives the 

familiar expression for the probability of the photoelectric 
effect in the model of a 6-function potential: 

In the case f $0 it is convenient to evaluate the integral 
over T by deforming the integration contour in the complex 
plane. The integral from 0 to T, is real if f2 < I  and does not 
give rise to a tunneling via quasienergy states. In the case 
I r0 1 4 0, this integral gives us x 'O' and corrections to x 'O' of 
the form 

a ( o ,  Q)f"+b(o,  Q)f'+. . . . 
There is no difficulty in evaluating the coefficients a, 6, . . . , 
but we will not go through these calculations since we have 
already discarded terms of the same order of magnitude in 
deriving (9). We might note that the exact expressions for the 
terms - f 2F *, etc., in E (the nonlinear susceptibilities in fields 
of two frequencies) can be found by solving (4) by perturba- 
tion theory or by using an expansion in both fields, f and F, 
when solving Eq. (6) (the latter approach is technically 
simpler in the case of a &function potential; cf. Ref. 7). 

The integral over the remainder of the contour is evalu- 
ated by the method of steepest descent (as is the integral over 
t ). We should first write the expression with sin2(0r/2) in the 
form 

The saddle point for each of the terms in (1 3) is determined 
by 

2i w  t(l)=O, + I ) = -  - 
0 Arsh yl, 7, = -12 (1-152) 1". 

w f 
If f2 <I, the result of the integration will be purely 

imaginary and will determine that width of the quasistation- 
ary level which is caused by the joint effects of the optical 
and infrared fields. The value o f x  is dominated by the term 
in (13) with I = 1, for which y, is at a minimum. The expres- 
sion for the ionization probability contains a characteristic 
tunneling exponential function, which was first derived by 
Keldysh': 

with the effective tunneling parameter 
y1=yo (I-5211) ". (151 

Expressions (14) and (1 5) justify interpreting the mechanism 
for the decay of the system in optical and infrared fields as 
tunneling induced by the infrared field from a virtual state (a 
harmonic of a quasienergy state) having an energy 
E = - I + f2 and populated with a weight -F2. We will not 
reproduce here the extremely complicated coefficient of the 
exponential function in (14) (cf. Ref. 15). The expression for 
this coefficient simplifies in the limit w + 0, in which case W 
becomes 
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and agrees in the case w = 0 with the result for a static field, 
averaged over the period of the infrared field. 

We see that the "interference" of the two fields is most 
pronounced when the frequency f2 is near the ionization 
threshold, 

I - Q K I ,  (16) 

so that the condition y, < yo holds. When the frequency is 
small, and condition (16) does not hold, an analogous effect 
arises when the field F is taken into account in higher-order 
perturbation theory if 

I - N Q K I .  

In this case the population of the Nth  harmonic and also W 
are proportional to FZN,  and the tunneling exponential func- 
tion contains a parameter 

>v=ro( l -NQ/I) '" .  

The condition for the applicability of the method of steepest 
descent imposes a condition on w which is more stringent 
than that in (7), specifically, 

m a - N Q .  

At f2 > I  the parameter y, becomes purely imaginary, 
and expression (14) and thus the imaginary part of the inte- 
gral in (10) are oscillatory functions off and f2. The ioniza- 
tion probability in this case will thus contain a small oscillat- 
ing correction in addition to the monotonic term in (12). This 
effect is analogous to the oscillations in the cross section for 
the photoelectric effect upon the imposition of a'static elec- 
tric field; these oscillations have been observed experimen- 

and have been studied in detail t he~ re t i ca l l~ . ' ~ . ' ~  It 
follows from this discussion that the imposition of an in- 
frared field can also cause a substantial modification of the 
frequency dependence of the probability for the photoelec- 
tric effect. 

4. TUNNELING IONIZATION OF ATOMS IN FIELDS OF TWO 
FREQUENCIES 

Calculations dealing with the ionization of atoms by a 
monochromatic field under the condition y 5 1 are compli- 
cated considerably by the presence of the long-range Cou- 
lomb tail on the atomic potential. A semiclassical analysis of 
this problemZ0 shows that the ionization probability in a low- 
frequency field is determined by the asymptotic form of the 
unperturbed wave function at large distances from the nu- 
cleus, as in the case of ionization by a static field. The expo- 
nential factor in W has the same form as for a short-range 
potential, but so far no correct calculations have been car- 
ried out for the coefficient of the exponential function for 
complex atoms, in contrast with the case of the static field. 

The qualitative aspects of the ionization process in the 
presence of an additional field in the optical frequency range 
can be seen most simply in the limit o = 0. In this case, weak 
optical radiation sends the unperturbed state 

$&, t ) = @oreix' to the state $(r, t ). In first-order perturba- 
tion theory we have 

q,(r, t )  =@o(r)ei lt+@l(r)ei(I-P)t+@ -I (r) ei(l+P)t,  

@ + , = - + / Z G - I * P ( ~ F )  I @o), 
(17) 

where G, is the Green's function of the atomic electron. We 
assume f2 <I ,  so that the ordinary photoelectric effect can- 
not occur, while the probability for many-photon ionization 
is negligibly small because F is small. The imposition of a 
static field f on the atom in the state $(r, t ) gives rise to a 
tunneling, whose probability is determined by the asympto- 
tic form of $ at large r. Under the condition I-f2 < I ,  the 
tunneling from the harmonic @,, for which the binding ener- 
gy is lowest, is obviously the most effective. In the general 
case in which the energy of the Nth  harmonic is near the 
threshold (0 <I-Nf2 4 I)  the decay probability is deter- 
mined by tunneling from the state 

Calculating the asymptotic behavior 

where v = [2(I-Nf2 A i% -F N, and z is the charge of 
the atomic core, and using a method like that of Ref. 21 to 
join this asymptotic behavior to the semiclassical wave func- 
tion of the electron at r , Y ,  we find the following expression 
for the tunneling p r~bab i l i t y~~ :  

Since 0, is a superposition of states with different values of 
L, we see that W contains terms corresponding to an inter- 
ference of the amplitudes A YL. The quantum numbers L 
and M in (20) are determined by the selection rules in matrix 
element (1 8) and depend on the polarization of the field Fand 
the relative orientation of the vectors F and f. In particular, 
in the case of a circular polarization of F we would have 
L = M = N, and W would contain a small factor - (  fv2)N 
not present in the case of a linear polarization of F. 

It is clear from the physical standpoint that again in the 
case w #O, w ( 0 ,  the tunneling induced by the infrared 
field will almost certainly proceed from the harmonic @, 
and will be determined by the same coefficients ALM as in 
(19). As we mentioned earlier, the exponential factor in W 
has the same form as for a weakly bound level with a binding 
energy I - Nf2, so we can write 

2 ( I - N Q )  
W = C F ' ~  exp {- 

0 

1 (I+yNZ) 'Iz 
X[(I + = ~ r s h  i n -  ' r ~  I ) .  (21) 

Although again in this case we are not able to derive an exact 
expression for the coefficient C of the exponential, we can 
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make some general comments about the dependence of C on 
the frequency a. The strongest frequency dependence C (0 ) 
is determined by the frequency dependence of the coeffi- 
cients A yd in (19), which are expressed as combinations of 
composite matrix elements of the N th-order perturbation 
theory. At energies EN = - I +  NO near the ionization 
threshold we can use the well-known expression for the 
Green's function in the approximation of the quantum-de- 
fect method14 for the Green's function GEN in (18). For the 
case Y ) 1 in which we are interested here, the dependence of 
A yd on Y can then be written 

A;;' - - ZY - %  
sin n (v+pL) ' 

Here pL is the quantum defect of states with angular mo- 
mentum L. Those values of Y for which the sine in (22) van- 
ishes correspond to N-photon resonances involving real 
atomic levels. Near a resonance the sum Y + pL is approxi- 
mately equal to an integer n, the principal quantum number 
ofthe state with the energy En, = - 1/2(n - pL )-'. Carry- 
ing out an expansion of the sine in (22) for this case, we find 

In the immediate vicinity of the resonance we should add a 
term T i ,  /4 to the denominator of (23), where r,, is the 
width of the In, L ) level. The interference of the A Fd with 
different values of L becomes unimportant, since the reso- 
nant value A is much larger than the others, and Win (21) 
breaks up into the product of the probability for the N-pho- 
ton population ofthe real level In, L ) and the probability for 
the ionization of this level by the infrared field. 

In conclusion we note that this mechanism for ioniza- 
tion in fields of two frequencies is pertinent to an experimen- 
tal study of the tunneling ionization of atoms. This method 
makes it a simple matter to vary y (by a small change in the 
frequency O of the optical radiation) and to study the func- 
tional dependence of the probability on the amplitude of the 
infrared field. The saturation effects which would ordinarily 
complicate such measurements can easily be eliminated in 
this case, by changing the intensity of the optical field. It is of 
course necessary that the tunneling probability outweigh the 
probability for direct (N + 1)-photon ionization in the field 
F. The best situations are thus those with N = 1 and 2, e.g., 
the case of alkali atoms with N = 2 in the field of a ruby laser. 

In this case the tunneling ionization in the field of a CO, laser 
will be dominant at optical fields F,< lo5 V/cm. We should 
also point out that it is possible to extract further informa- 
tion about the ionization process by studying the depen- 
dence of Won the relative orientation of the polarization 
vectors of the infrared and optical fields. As in the case of a 
static field,' W can be expected to reach a maximum in the 
case of parallel polarizations and a minimum in the case of 
orthogonal polarizations. 
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