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A potential is derived for the interaction between two electrons in a circularly polarized light 
wave of arbitrary intensity. The potential has local minima at large distances. Bound states can 
form at these minima in a sufficiently strong field. In the near zone, the potential in a strong field is 
non-Coulomb. That component of the radiation pressure exerted on the two electrons which 
stems from coherence effects is calculated. 

Let us examine the interaction between two electrons in 
an electromagnetic wave of arbitrary intensity. The quan- 
tum-mechanical problem of the scattering of an electron by 
an electron in a strong field was studied in Refs. 1 and 2. The 
external field was taken into account exactly, while the inter- 
action between electrons was treated by perturbation theory. 
The general expression for a Mdller-scattering matrix ele- 
ment is extremely complicated, but it simplifies in the nonre- 
lativistic limit, which was studied in Refs. 3-5. 

If, however, we do not concern ourselves with the subt- 
leties of the quantum-mechanical structure, the interaction 
problem can be handled by a classical description of both the 
motion of the electrons and the scattered radiation field over 
a broad range of the intensity of the external field. Below we 
derive an effective classical interaction potential averaged 
over the period of the light wave. We show that this potential 
is quite different from a Coulomb potential in a sufficiently 
strong field. 

1. EFFECTIVE POTENTIAL FOR THE INTERACTION 
BETWEEN ELECTRONS 

The motion of an electron in a monochromatic electro- 
magnetic wave is a superposition of two motions: a uniform 
translational motion of the center of the orbit at some aver- 
age velocity and an oscillatory motion whose characteristics 
are determined by the frequency and amplitude of the exter- 
nal field. The relative velocity of the motion of the centers of 
mass of the electrons is not changed substantially by the im- 
position of the electromagnetic field, so that the case of a 
nonrelativistic average relative motion is quite general. This 
situation can arise, for example, when a laser beam is applied 
to a plasma or to an electron beam. We will accordingly 
restrict the discussion below to the simplest and most inter- 
esting case: that in which the electrons are at rest on the 
average and have an arbitrary oscillation velocity. In this 
case the interaction between electrons is described by an 
adiabatic potential. 

The motion of an electron is described by the classical 
equation (c = 1) 

which incorporates the radiation reaction6 g,. In strong 
fields the reaction g, is generally comparable to the force 
acting between charges. In lowest-order perturbation the- 
ory, however, the two forces enter the average equation of 

motion in an additive manner, so that g, can be ignored if our 
problem is to find the force acting between the charges. 

The field acting on an electron consists of the external 
field E,(& )-(where g = t - z) of a plane wave which is propa- 
gating along the z axis and the field E,  of the other electron: 

E (r, t) =Eo (El +El (r, t). (2) 

The external field E,(( ) and the static part of the field E,(r, t ) 
are treated rigorously, and the alternating part of E, (the 
scattered field, El , )  by perturbation theory. The change 
caused in the motion of an electron by the scattered field 
gives rise to an average force exerted on the electron by the 
external field. At distances large in comparison with the 
classical radius of the electron the scattered field is much 
weaker than the external field, 

El,<Eo. (3) 

We represent the motion of a particle as the superposi- 
tion 

where p,(t ) is the trajectory of the electron in the external 
field E,(g), and the term p,(t ) describes fast oscillations due 
to the scattered field El, (p,+,). The slow motion of the 
center of mass is described by the term r(t  ). We thus have 

(R(t)  >=r ( t ) ,  ip, ( t )  )=(p, (t)>=O, 

where the angle brackets denote an average over the oscilla- 
tion period of the external field. Correspondingly, we write 
the electron velocity as 

v=dr/dt+v,+v,, vo,,=dp0,,ldt, ( 5 )  

so that we have ( v , ,  ) = 0. By virtue of condition (3),p, and 
v ,  are small in comparison withp, and v, and can be sought 
by perturbation theory. We now assume that the external 
field is circularly polarized: 

E, (g) =E, (cos g, sin I), 0) ,  $=at. ( 6 )  

This assumption puts the expressions for the unperturbed 
motion in their simplest form: 

PO=-PO (COS $, sin $, O ) ,  pn=eEo/myo2, 

v0=vo (sin I), -cos 11, O), v,=poo, (7) 

y2= (1-v02)-i=1+ (eE,/mo) '. 

Linearizing Eq. (1) in terms of the scattered field, we 
find 
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where the Lorentz forces F,,, are caused by the fields E, and 
El,  taken at the point r + p,(t ). 

Using (6) and (7), we can rewrite the first two terms on 
the right side of (8) as 

where n, is a unit vector along the z axis, and z ,  reflects the 
change in the phase6 due to the scattered field. We then have 
the following equation for the transverse velocity compo- 
nent (in the xy plane): 

yuL+E,z,=G,-vo(voG), G = dt' F , ( t f ) .  J (10) - m 

From (8)-(10) we find 

From this point on the problem is one of averaging Eqs. (10) 
and (1 1) over the period of the field. For this purpose we 
calculate the average value (Eo(6 )z,), using (1 1): 

After a sufficiently long time the second term becomes domi- 
nant, since G is proportional to t. This proportionality arises 
upon the integration of the zeroth harmonic in the expansion 
of F,(t ) in a Fourier series in the period of the external field. 

Omitting the term with F,, from (12), we find the aver- 
age equation 

We see that there is a force in addition to the average per- 
turbing force (F ,, ) acting along the longitudinal direction 
on the particle. This additional force is caused by the change 
of the motion of the particle in the strong field E, by the 
scattered field El , .  This force is determined by the average 
Lorentz force exerted on the particle by the external field, 
(v, x H,) . We might note that a similar increment in the 
force was analyzed in Ref. 7, where the average radiation- 
pressure force exerted on one particle as a result of radiation 
friction was calculated. If we adopt the radiation-friction 
force as the perturbing force here, we find from (13) the same 
average radiation-pressure force as was found in Ref. 7. 

We turn now to the calculations of the average interac- 
tion forces between two electrons. We denote by a the center 
of the orbit of the first electron, and we place it at the origin 
of coordinates. This electron is revolving uniformly along a 
circle in the x, y plane, and its instantaneous position is de- 
scribed by the vector R, (t ) = p,, (t ). The position of the sec- 
ond electron,b, is described by the vector R, (t ) = r + p,, (t ), 
where r is thedistance between the centers of the orbits of the 
two electrons (Fig. 1 ). 

The force exerted on charge b by charge a is 

FIG. 1. Motion of electrons in a circularly polarized plane electromagnet- 
ic wave which is propagating along the z axis. 

where p, and A, are Fourier components of the scalar and 
vector potentials of the field produced by particle a. 

The term in the second set of parentheses has the form 
of a total time derivative. Consequently, after an average is 
taken over the time this term contributes only to the incre- 
ment of the longitudinal force: 

It can be seen from (14) that the transverse component of the 
force (directed perpendicular to the z axis) is of the form of a 
gradient. It follows from the relation 

a 
-[ at exp (ikR,) 1 = i exp [ik (r+pob) ] [k,- ( ~ ~ k )  ] 

that the longitudinal component of the force [with (1 5) taken 
into account] is also of the form of a gradient. The resultant 
force (13) is thus a potential force: 

f b = ( F b ) - n r ( v b F b ) = - v v ( r ) .  

Using the expressions for the LiCnard-Wiechert poten- 
tials, we can write V(r) as 

m 

v (r) = e2 5 d~ [ i - (va( t -T)vb( t ) )~)  , 
0 

From the equation R2(t,r) = r2 we can determine both 
the dependence of the retardation T on the time t and the 
inverse function t (7). For the motion of a charge in a circular- 
ly polarized wave, the function t (T) takes a simple form, al- 
lowing us to take an average over the time. Using expression 
(7) for the trajectory of the unperturbed motion and making 
use of the 6-function in integral (16), we find the following 
expression for the average potential: 

de (I-vo2 cos oe)  (A+A-)-'", E=T-z; 

(17) 
A,=fe+z)'-72- 
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Here the integration is carried out over all E > 0 for which the 
expression in the radical is positive. 

Expression (17) is a solution of our problem. It deter- 
mines the average potential of the interaction between two 
charges in a circularly polarized electromagnetic wave. This 
potential is asymmetric with respect to the replacement of r 
by - r, and we have fb # - f,; in other words, Newton's 
third law does not hold ( fa is the force exerted on charge a by 
charge b ). 

We introduce the interaction force f and the force g that 
acts on the center of mass of charges a and b: 

f='/, (F,-Fa) =-V V,, g=F,+F,=-2V Va+2g,n,, 

(1 8) 
V=Va+V,, V,, . = I / ,  [V ( r )  *V( -r ) ]  . 

Here g, is the radiation reaction of one electron (the radi- 
ation pressure). The symmetric part of the potential thus 
determines the interaction force between the particles, while 
the antisymmtric part determines the increment in the radi- 
ation pressure due to the coherence effects which arise in the 
scattering of light by the two charges. The radiation-pres- 
sure force exerted by the external field on an individual elec- 
tron is6 

We turn now to thecharacteristic limitingcases of weak 
and strong fields and the near and far zones. 

2. WEAK FIELD 

We first consider the case of a weak field and distances 
which are not too small: 

E o ~ E l e r = m o l e ,  voKl. 

In this case the retardation effects can be treated by pertur- 
bation theory. It is more convenient here to work directly 
from Eq. (16). We find 

sincp I - cos cp 3 +(-- ) (T sin2 0-1) ] } , or (or) '  

where p = o ( r  - z) and 0 is the angle between r and n,. 

Near zone 

In the near zone o r 4 1  expression (20) simplifies, and 
the interaction potential becomes 

This result agrees with the Darwin potential6 for the interac- 
tion between electrons with equal velocities, v ,  = v, = u,: 

if we expand R,, = r + p, - pa I in this expression in pow- 
ers of p. 

The radiation-pressure force is 

as it must be in the near zone, where it is proportional to the 
square of the number of scattering  charge^.^ 

Far zone ( w e l )  

From (20) we find the interaction potential to be 

We see that the increment in the Coulomb potential is oscil- 
latory. The difference between the oscillation phases of two 
charges in a plane wave is oz. The phase p which appears in 
the potential results from an interference between the spheri- 
cal scattered wave eimr /r and the plane wave of the external 
field. The force corresponding to potential (22) is then 

X (sin cp+ (*in,) + sin 9- (n-nz) ) ] , 
cp*=o ( r i z ) .  (23) 

Here we have omitted a correction to the Coulomb force 
( - v: /?I. 

We thus see that at large distances the retarded interac- 
tion varies as r-'sinp and falls off more slowly than the 
Coulomb force. At sufficiently short distances, 

r>ro, ro= (muo)-' 

the interaction force becomes oscillatory. Oscillations in the 
retarded interaction of particles in an external field are com- 
mon. Zhukova et ~ 1 . ~  have shown that the interaction of neu- 
tral atoms in an external light field is similar in form. 

Bound states of charges in a light wave 

At large distances, r > r,,, local minima appear in poten- 
tial (22), and bound states can form at these minima. Ignor- 
ing the Coulomb part of the interaction, we find that the 
potential has extrema at the points where sin- 
p+ = sin p- = 0. To determine the nature of the extremum 
we write an expression for the second variation of the poten- 
tial, 

X{coscp+[Spsin0 + ( I  + cos 0)SzI2 

+ cos 9- [Sp sin 0 + (1 - cos 0) 6z] ') 

for small displacements (Sp, Sz) from the extremum. Here 
(Sp, Sz) are the components of the displacement vector in 
cylindrical coordinates. Under the condition cos- 
p + = cos p - = 1 the second variation S V, becomes posi- 
tive definite, corresponding to a potential minimum. This 
minimum occurs at intersections of the paraboloids of revo- 
lution p, = 2rn,  or z = + (An, - p 2 / A n ,  ), where 
n , are positive integers, and A = 2r /o  is the wavelength of 
the external field. 

The depth of the potential well is proportional to the 
intensity of the electromagnetic wave. The minimum inten- 
sity at which bound states arise, I, = E :/4r, can be found 
from the condition 
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At r-r, we then find where 

I> ( a )  ' 2 1 e , ,  I,,,= ( m o l e )  Y4n,  (24) 

a is the Bohr radius. In the visible part of the spectrum we 
would have wa- 10-3-10-4, and condition (24) would be- 
come the weak-field condition v t  = 1; (1 + I :)-'( 1. 

We thus see that in a weak field and at a short distance, 
r < r,, the interaction potential differs only slightly from a 
Coulomb potential. We do not see any qualitative changes in 
the potential until we move out to large distances. 

3. STRONG FIELD 

In a strong field, I >  I,,, , the oscillatory motion of the 
electrons becomes relativistic (y > I), and the retardation ef- 
fects cannot be treated by perturbation theory. In this case it 
is more convenient to use expression (17) to find the interac- 
tion potential. For this purpose we must solve the transcen- 
dental equations 

A* ( E )  =O, 

which determine the interval of retardation times which 
contributes to the interaction between the charges. These 
equations can be solved explicitly in certain limiting cases. 

Near zone 

At wr-g 1 the expression forA , simplifies, since sin(w~/ 
2) can be expanded in a series in E, and the expressions for 
A * take the following form in a cylindrical coordinate sys- 
tem: 

di ( E )  =2Ea,*p2f y-2~Z-1/12~0202p&3*1/i2~2~4, 

(25) 
a , = v , p i z .  

Expansion (25) has been carried out to E ~ ,  SO that the term (E/ 

y)2 is generally small in the ultrarelativistic case. 
A charge revolving in the field of an electromagnetic 

wave radiates at a characteristic frequency -my in the ul- 
trarelativistic cases6 Consequently, the near zone can be 
broken up into two subzones 

and h ~ - ~ K r a h .  

The case r ( / iy -3 

In this case, it is sufficient to retain terms up to E~ in 
expression (25) for A, , and in first order in the parameter 
wryP3(1 the integral in (17) becomes 

* e 2  '1' 

v = r d  
n .! 

E [  ( E ~ + - E )  ( E - E , - )  ( E - e 2 + )  ( E - E ~ - )  I-'", 
e l -  

& , * = r y 2 [ f  vO sin 0-cos O+ ( I T v ,  sin 2 0 ) " ] ,  (26) 
c z * = r y Z [ f  vo  sin 0-cos 0- ( I T v ,  sin 20) '"] .  

Here E &  are the roots of the equations A * (E) = 0; E: > 0 
and E: < 0. The integration over positive E between E: and 
E ;  in (26) corresponds to a particular choice of the retarded 

FIG. 2. Angular dependence of the effective interaction potential in the 
case ry' < 1. 

potential for the scattered field. Expression (26) reduces to 
the complete elliptic integral of the first kind, K (9): 

2e" v=- ( I - V ?  sin2 20) -"' K ( q )  ; 
nry2 

This expression is valid in both the nonrelativistic and ul- 
trarelativistic cases. Under the condition v,(l it becomes 
the same as (2 1). The potential (27) is symmetric with respect 
to the replacement 8--tn- - 8, so that there is no radiation 
pressure in this approximation. 

Under the condition y)l,  expression (27) takes the 
simpler form 

The angular dependence of potential (28) (at r = const) is 
plotted in Fig. 2. The potential rises sharply near the angles 
8, = n-/4 and 8, = 3 ~ / 4 ;  here lcos20 I in (28) should be re- 
placed by y- '. The reason for the increase in the potential by 
a factor of yl'%ear these angles is that the coefficient a * (8 ) 
becomes small, and the four roots E ; ~  are all approximately 
the same. 

We see thus that at short distances and in the relativistic 
case the interaction potential is different from a Coulomb 
potential: There is a strong angular dependence, and the ef- 
fective charge is reduced by a factor of y. The reason for this 
decrease is that an attraction arises between the electrons 
because of the magnetic interaction of the two identically 
directed electron currents. 

The case A y-J(r(A 

This case obviously can arise only in an ultrarelativistic 
field. The potential (17) can be written in this case as 
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FIG. 3. Angular dependence of the interaction potential in the case 
/Zy-3<r(/Z. Here the potential is highly anisotropic, and the radiation- 
pressure force is comparable in magnitude to the interaction force. 

At angles 0<8  < ?r/4 the potential differs from (28) by a term 
which is linear in r: 

eZ oz 1 sin' 0 
V- yzr (cos 28) "' [ i+byz?(l-TsinzO ) c ~ ]  (30) 

Under the condition wyr > 1, and for angles which are not 
too small, the second term becomes dominant, and the effec- 
tive potential becomes attractive. 

At angles in the interval ?r/4 < 8 < 3n/4 the potential is 

ezco"C n 
V = - sin"6 a cos-"a ( l ,  2, l ;  -tg a) ,  a=0 - - , ,.'I* 4 

(31) 

where ,F,(a$,y; x) is a hypergeometric function, and 
C s 2 . 8 .  

For the rest of the angle interval, 3 ~ / 4  < 8<n, we find 

e z ( 2 a ) " " ~  ( ; ) I - ' I 3  v= cos 0 -- 
(3r)  " 

1 1  
x z ~ t  (3,2, 1; 2s in0  ) a  

sin 0 - cos 0 

The potential is plotted in Fig. 3; in this case it is highly 
anisotropic. The radiation-pressure force g is thus compara- 
ble in magnitude to the interaction force f but much weaker 
than g, ; specifically, g -gr 

Figures 4 and 5 are plots of the forces f andg found from 

FIG. 4. Longitudinal and transverse components of the interaction force 
in the case /Z Y - ~ < ~ ( / Z .  

FIG. 5. Radiation-pressure force exerted on the two electrons in an in- 
tense light wave. 

potential (30)-(32). Depending on the orientation of the 
charges with respect to the ray propagation direction, the 
interaction force tends to align the charges either along the 
ray, under the condition 8 <a/4, or across the ray, if a/ 
4 < 8 < v/2. The interaction force is weaker than the Cou- 
lomb force e2/? by a factor on the order of the parameter 
( ~ r ) ~ ' ~ < l .  

Interestingly, the longitudinal radiation-pressure force 
g,, is an alternating-sign force, although we are treating the 
case of the near zone. The reason is that the oscillation of the 
electrons is in phase only at distances r < yil -3. Outside this 
range the oscillations go out of phase, and the longitudinal 
radiation-pressure force exerted on the two electrons may be 
either greater or less than 2gr. 

The interaction of the particles in the external field 
gives rise to a new component of the radiation-pressure 
force: g,. This component drives the center of mass of the 
charges into motion along r,; the sign of this force compo- 
nent is determined by the angle 8. 

Far zone 

At mr) 1 we can simplify (17) by noting that the radius 
of the resolution orbit,p,, is always less than r. As a result we 
find 

de [ 1 - cos (2.301) ] 

V = % J  [ ( p a s i n ~ s i n w e ~ 2 - ~ ~ - r + n ) z ] "  . (33) 

The integration is again carried out over those values E > 0 
for which the expression in the radical would be positive. 

The integral in (33) can be evaluated easily in the case 
sin 891: 

This potential varies slowly at 8(1 and oscillates rapidly 
(over a wavelength) at values of 8 near a. This coordinate 
dependence gives rise to potential wells with a characteristic 
depth -e2/r and a width -A. 

4. CONCLUSION 

In this analysis of the interaction between electrons in 
an external electromagnetic field of arbitrary intensity, we 
have leaned heavily on the condition that the relative motion 
of the centers of the revolution orbits of the electrons in the 
light wave is slow. In this case the interaction can be de- 
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scribed by a time-average potential. I t  follows from (17) that 
in a sufficiently strong field this potential becomes different 
from a Coulomb potential, and the difference may be so pro- 
nounced that the two electrons form bound states in the ex- 
ternal field. A potential of this sort might be used in the 
problem of the scattering of slow electrons in .a  non-Born 
approximation and also to study bound states in classical 
and quantum theories. We should point out that collective 
effects might cause substantial changes in the effective po- 
tential of the interaction between electrons in a light wave. 

We sincerely thank M. V. Fedorov and V. P Krainov for 
useful discussions. 
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