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Single-electron ionization and charge exchange are considered in collisions of an atom with an ion 
of charge Z>3  and at velocities v > Z - ' I 3 .  The approach is based on the Keldysh quasiclassical 
method. The ionization and charge exchange processes are described within the framework of a 
single formalism. Effects of rotation and translation are taken into account. The calculated total 
and partial cross sections agree well with the available experimental data. 

1. INTRODUCTION general formulation of the proposed method. Section 3 con- 

~h~ single-electron c.,arge-exchange and ionization tains the analytic results for the quantum part of the prob- 

processes lem. Section 4 contains numerical calculations of the cross 
sections for processes ( la)  and (lb), as well as their compari- 

A+Z+B+A+(Z-l)'+Bf (la) son with the available experimental data and calculations by 
A+Z+B+A+Zf B++e ( lb)  others. 

play a dominant role in the stripping of atoms in collisions 
with multicharged ions. At low relative velocities, the most 
effective is the charge exchange (la), which leads to predomi- 
nant population of the ion excited states having cross sec- 
tions that increase approximately linearly with the ion 
charge Z and depend little on the velocity at u(Z 'I2. With 
increasing velocity, the charge exchange cross section de- 
creases rapidly, and the ionization cross section begins to 
increase sharply. Theoretical models have by now been de- 
veloped for a sufficiently accurate analysis of charge ex- 
change at v(Z 'I2  (Refs. 1-9; for more details see the re- 
view''), as well as ofboth processes ( la)  and ( lb)  in the region 
u,Z 'I2 where the Born perturbation theory is valid.''-l5 

In the intermediate region v -Z ' I 2  the charge-exchange 
and ionization processes must be considered within the 
framework of a single collision mechanism. The best for this 
purpose is the approach formulated by Keldysh16 and subse- 
quently developed in Refs. 17-22 (see also the monograph23) 
for ionization of an atom in an electromagnetic field. The 
physical basis of this approach is the determination of the 
passage of an atomic electron through a time-variable bar- 
rier. The first to use a modification of the Keldysh method24 
to determine the quasiclassical argument of the exponential 
in an estimate of the cross section for stripping a hydrogen 
atom by a multicharged ion were Duman et ale5 In their 
approach, however, it is impossible to investigate ionization 
in the region from the adiabatic threshold of the reaction to 
the maximum of the cross section. 

We propose in this paper for the ion-atom collision 
problem a natural generalization of the Keldysh method.16 
It permits a study of each of the reactions ( la)  and (lb) in the 
entire parameter range where relativistic effects can be ne- 
glected. The processes ( la)  and ( lb)  are distinguished by pro- 
jecting an approximate solution of the nonstationary Schro- 
dinger equation on the states of the discrete and continuous 
spectrum in the output channel, and the projection itself is 
carried out with a limiting transition to classical mechanics. 

In accord with the foregoing, we present in Sec. 2 a 

2. FORMULATION OF APPROACH, DERIVATION OF 
FUNDAMENTAL EQUATIONS 

To describe single-electron charge exchange and ioni- 
zation we use the nonstationary Schrodinger equation 

with initial condition 

lim Y (r, t )  =$%, ( r )  Y,,,, (r/r) e-ix1''2=$o (r9 t ) .  
t-r-s 

(3) 

Here Z is the ion charge, V ( r )  is the potential of the atomic 
core, and 11% , and Y,, are the radial and angular part of the 
wave function of the initial bound state of an electron and an 
atom of energy E = - x2/2. The trajectory of the internu- 
clear motion will be assumed to be a straight line: 
R(t ) = p + vt. The change of variables r' = xr, t ' = x2t, 
Z ' = x- 'Z leads to Eqs. (2) and (3) with x = 1 in the argu- 
ment of the exponential in (3). We replace the ion potential 
by the potential of the uniform electric field produced by the 
ion in the center of the atom, i.e., we use the expansion 

in which the first term in the right-hand side can be omitted, 
for when substituted in (2) it leads to an insignificant change 
of the phase of the wave function. The admissibility of the 
approximation (4) was discussed in a number of papers. For 
example, in a solution of the charge-exchange problem at 
low velocities it was shown5 that the error due to this approx- 
imation does not exceed several percent for ions with charge 
Z)  10. With increasing velocity, the time and the effective 
length of the trajectory of the below-barrier transition de- 
crease and the role of the region of the configuration space 
described by the linear approximation (4) increases. Follow- 
ing Keldysh,16 we seek the amplitudes of transitions to final 
states with definite values of the momentum p. We use the 
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equation of motion of a free electron in the field of the dipole 
potential (4) 

d 1 
i - @ p  ( r7  t )  =- - Armp ( r ,  t )  -rF ( t )  mP ( r ,  t )  , at 2 (5) 

the exact solution of which is 

i E 
ik ( t )  r- - k2 ( t ' )  dt' 

2 J 

In the amplitude of the transition 
1 

( t )  = J at' Jdrmp* ( r ,  t )  v (r) ~ i ( r ,  t )  , 
-.o 

(8) 

a ( p )  = lim a, ( t )  ( 8 4  

the function Pi (r,t ) is an exact solution of Eq. (2) with initial 
condition (3), and V(r) is an atomic potential not taken into 
account in (5). The error of (8) is determined by the contribu- 
tion of the higher multipoles that appear in the expansion of 
the Coulomb potential (4) and should, strictly speaking, be 
taken into account together with the potential V(r). This con- 
tribution, however, is of order of smallness Z - ' I 2  compared 
with the integral (8). The approximation used by us for the 
function Pi (r,t ) and the method of calculating the integral 
(8a) are given in Sec. 3. The wave function of the electron 
detached from the atom can be represented in the form 

= % ~ P G  (P, t )  e x p [ i k ( t )  r-'2, ( P I  +i%(p, t )  I .  (9) 

The wave function (9) is correct near the atom, at 
r<R -2 ' I 2 ,  where the expansion (4) is valid. To  determine 
the partial cross sections for the processes ( l a )  and ( lb )  we 
use the quasiclassical character of the electron motion in the 
finite channel. The small parameter of this approximation is 
the quantity Z - '  obtained from an estimate of the value of 
the action in a finite channel. I t  is instructive that electron 
capture by an ion is to levels with principal quantum number 
n -Z/2 .  We set the wave packet (9) in correspondence with 
motion of a stream of noninteracting particles, in accord 
with the statistical interpretation of the limiting transition 
from the quantum to the classical description. Their source 
is the region near the atom, where a below-barrier transition 
takes place [see Eqs. (10)-(13) below], and where expression 
(9) for the wave function is valid. The further motion of the 
particles is along classical Coulomb trajectories ion the field 
of an ion moving with constant velocity v. The flow charac- 
teristics such as the coordinate, momentum, and density at 
the running instant t,(p) are specified by the integrands of (9) 
as functions of the quantity p, which serves as a parameter: 

r ( p )  = - V P Q 2  ( p ,  t ) ,  

s ( P I  =k ( t )  , (1 1) 
v ( P )    la(^) 1' = I G ( P )  1' expi-2% ( p )  I ,  G ( p )  = lim G , ( t ) .  

1- or 

(12) 

The quality t,(p) is determined by the stationary-phase t, (p) 
of the integral (8a): 

k2 ( t , )  + l=0, to ( p )  =Re t. ( p )  . (13) 

Such a description corresponds to the matching of the wave 
function (9) to a nonstationary quasiclassical function of the 
typeA (r,t )exp[iS (r,t )] with respect to the value ofthe ampli- 
tude A and the momentum VS on three-dimensional surface 
(lo),  (13) in the space [ t,r 1. The total probability of detaching 
the electron is determined by the total flux through a closed 
surface around the atom, enclosing the region of the below- 
barrier motion, and is equal according to (12) to $dpla(p) /=, 
which coincides with the amplitude of the wave function (9) 
at large values oft .  To determine the cross sections of inter- 
est to us we change over to the following variables: M and 
Mx are the modulus and projection of the angular momen- 
tum on the ion coordinate-system axis directed along the 
relative-velocity vector v of the colliding particles. The 
quantities E, M, and M; are expressed in elementary fashion 
through r,. q,, and to, which depend on p in accord with ( lo),  
(1 I), and (13). The flux density v, in the space (E, M, Mx ) is 
connected with v(p) via 

To determine the partial probabilities W ,  = Wnl and 
the total ones 

of the charge exchange, and also the ionization probability 
W,, we must subdivide the entire space (E, M, Mx ) into re- 

gions A  ,, A  = C A , and A, corresponding to the indicated 
n l  

reaction channels, and determine the number of particles 
that enter the stream in each A  region. These probabilities 
are 

where A  :, denotes the region of integration after changing 
the variables in (15). The charge-exchange and ionization 
processes are then uniquely determined by the conditions 
E < 0 (bound states) and E > 0 (continuous spectrum), in ac- 
cord with which the values of the A  regions are specified. 

The following conditions must also be satisfied; none of 
the stream particles lands in a state with incorrect quantum 
numbers, e.g., I>n; no region A ,  = A n l  lands in an "empty" 
part of the space (E, M, M,), e.g., Mx > M ;  the statistical 
weights corresponding to volumes A ,  must be proportional 
to (21 + 1). In  accord with these requirements, we assign a 
particle to the region A ,  under the condition 

The cross sections in the different channels are expressed in 
the form 
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In the approach presented, the solution of the problem 
can be arbitrarily divided into two parts. The first consists of 
determining the state of the electron detached from the 
atom, a state specified by the quantum-mechanical descrip- 
tion (8a). The second part is to determine that part of the 
particle flux with known parameters, which lands in a defi- 
nite region of configuration space; this part is solved by clas- 
sical-mechanics methods. Its solution on the basis of Eqs. 
(10)-(12), (1 6), (1 7) can be obtained by simple numerical 
methods. 

3. SOLUTION OF QUANTUM PROBLEM 

To clarify the physical meaning of the foregoing calcu- 
lations and the ensuing regularities, we represent the solu- 
tion of the initial equation (2) in the form 

1 

lyi(r, t) =$.(r, t) b, (t) +'Pi (r, t), bo= exp [- J r(r)dr]. 

Here Yf is determined by Eq. (9), and the function $, per- 
tains to the initial atom state distorted by the external field at 
arbitrary finite values of t. In the case of slow collisions 
u.gZ 'I2, the explicit form ofthe functions $, (r,t ) of the atom 
in the ion field has been thoroughly in~es t iga ted .~~ In the 
opposite limiting case v)Z (Born perturbation theory), $, 
coincides with the initial condition (3). It is known'9 that in 
the calculation of the detachment (8) of an electron from a 
short-range potential the use of the initial condition (3) for 
$, is valid at all parameter values, and the presence of the 
Coulomb field of the neutral-atom core leads to an addi- 
tional pre-exponential factor in (8); this factor results, strict- 
ly speaking, from the distortion of the wave function of the 
initial state of the atom in the interaction region. The Cou- 
lomb factor was first introduced by Keldysh,16 and a corro- 
boration of this procedure and a calculation for multi- 
phonon ionization of the atom by an electromagnetic field is 
contained in Refs. 18, 20, and 21. In the present paper the 
difference between the long-range potential of the atomic 
core from the short-wave one is taken into account in similar 
fashion, i.e., via the Coulomb factor. 

The evolution of the amplitude b,(t ) of the initial states 
$, in the interaction of a bound electron with a multi- 
charged ion in accord with the decay given by (1 8) was cor- 
roborated later8v9 by a consistent quantum approach. We 
shall impose here any special restrictions on the real quantity 
r (t ), and calculate it from the condition for the normaliza- 
tion of the wave function (18). This yields 

In the derivation of (19) we neglected the nonorthogonality 
integrals ($, I Yf) whose contribution can be easily verified 
to be small and to be zero at t-+ co . Another approximation 
we used was to retain only the first term in the right-hand 
side of (18) on substitution of IV, in the integral (8). This 

approximation is not mandatory in this approach, but pres- 
ervation of the second term of Pf corresponds to the return 
of the particles from the multicharged ion to the core of the 
atom. This process has low probability in charge exchange 
and ionization of atoms by multicharged ions at velocities 
v > Z - 'I2, as confirmed by our calculations. The indicated 
restriction on the relative velocity means smallness of the 
characteristic time of flight in comparison with the classical 
time of revolution of the electron in the bound orbit of the 
ion. 

We note that by substituting b,(t )$, in the right-hand 
side of (8) and taking into account the equation for the coor- 
dinate part of $, 

[ i / z A r - V B  ( r )  - ' / z I ~ x l m  (r) =O, (20) 

we obtain the relation 

(k) = (2n)-% enp [-ik (t) r I$.,, (r) dr, (21a) 

which connects, alongside with (19), the quantities a, (t ) and 
r (t ). The integral (21) is determined mainly in the vicinity of 
the stationary-phase point (13). By taking outside the inte- 
gral sign at this point the exponential that contains r (t ) we 
obtain 

h (p) = lim h, (t) , 
t-.m 

and by using (24) we obtain the sought connection of the rate 
of decay of the initial atomic state per unit time with the 
quantity h (p): 

which yields, taking (22)-(24) into account, 

1 
a (p) = lirn a. (t) =h (p) exp [ - T j  dpr l h (p') 1'1 , (26) 

i-. OD 

A= {to (P') -0 (P) 1 
Equations (25)-(27) demonstrate the unitarity of the partial 
and total probabilities of detaching an electron from an atom 

517 Sov. Phys. JETP 59 (3), March 1984 L. P. Presnyakov and D. B. Uskov 517 



and reduce the solution of the charge-exchange and ioniza- 
tion problem to a calculation of the quantity h ( p )  which, ac- 
cording to ( 2 3 )  and ( 2 4 ) ,  is equal to 

and has the physical meaning of the probability amplitude of 
detaching an electron on a nonstationary field of an ion from 
an atomic state that is "nondecaying" in the course of the 
collision. The r a t e r  ( t  ) of decay of this state is also expressed 
in terms of h (p) via ( 2 5 ) .  

It is interesting to note that after integrating by parts 
Eq. ( 2 8 )  is transformed into an expression that contains the 
external-field potential r.F(t  ) as a perturbation 

h ( k ,  t )  = (2n)-" J d r  p , , ( r ) r ~ ( t )  e x p [ - i k ( t ) r l .  

where the functions $,, QP, and Y, ,, are defined respective- 
ly  through ( 3 ) ,  ( 6 ) ,  and ( 2 0 ) .  In Keldysh's paper'6 an integral 
.imilar to ( 2 8 )  was written directly in the form ( 2 9 ) ,  but Eq. 
( 2 8 )  is more convenient for practical calculations. The fact 
that ( 2 8 )  and ( 2 9 )  are identical at an arbitrary potential V, in 
( 2 0 )  eliminates, in our approach, one of the basic difficulties 
in the description of asymmetric charge exchange at medium 
and high velocities, a difficulty connected with the prior- 
and post-representations for the electron-capture matrix ele- 
ments. From ( 2 9 )  follows directly the first order of perturba- 
tion theory for the problem of atom ionization at u ) Z  ' I 2 ,  

k ( t  )-p. In the quasistationary limiting case, u ( Z  ' I 2 ,  expres- 
sions ( 2 8 )  and ( 2 9 )  also lead to asymptotically exact results. 

It was already noted above that in this approach, just as 
in multiphoton ionization problems, it is advantageous to 
perform all the calculations with the wave function of an 
electron bound by a short-range potential, and to take into 
account the effects of the long-range action of the atomic 
core by using the Coulomb factor. In the particular case of a 
6-function potential, the function ki is equal to 

and the integral ( 2 8 )  can be calculated exactly 

i exp [ c  ( n / 2 +  i) ] 
h ( p ) = -  

on ( q 2 - p 2 )  'la 
{ i t  I ( 3 1 )  

+ (E)"' i c ~ , . [  ( q 2 - p 2 ) ' " ]  

where K is a Macdonald function. 
In the quasistationary limiting case, u ( Z  ' I 2 ,  Eqs. ( 3  1 )  

and ( 2 5 )  yield 

In the perturbation theory limit, u B Z " ~ ,  c-0, p / ~ - 0 ,  
expression ( 3  1)  obviously coincides with the known result of 
the dipole approximation. 

Of greatest interest is the intermediate region, in which 
it is advantageous to calculate the integral ( 2 8 )  with a more 
general wave function having a coordinate-part asymptotic 
form 

( r )  -CXIr- le-rYlm ( r l r )  , r B  1. ( 3 4 )  

The coefficient C,, depends on the concrete form of the bind- 
ing potential. The stationary-phase point t, ( p )  in the integral 
( 2 8 )  is determined from Eq. ( 1 3 ) ,  which is reducible to a qua- 
dratic one: 

At the stationary point k S 2  = - 1 the pre-exponential 
expression is regular and is equal to 

lim ' l ?  [ k Z ( t )  + I ] x ( k )  = i ( 2 n )  -'h C , , Y , , ( - i k , ) .  ( 3 6 )  
1-1. 

It can be seen from ( 3 6 )  that to determine the behavior of the 
preexponential function in the vicinity of the stationary 
point t ,  it suffices to know only the asymptotic form of the 
wave function ( 3 4 ) .  Recognizing that 

we obtain for the integral ( 2 8 )  

I t*(P' 
h ( p ) = G ( p ) e x p [ i S ( p ) l ,  S ( P ) = -  ~ [ k 2 ( t ) + l 1 d t ,  ( 3 8 )  

2  

G ( p )  =C,, ( l / i k , F . )  '"Y,, ( - i k , )  . 
As can be seen from ( 3 8 )  that the function h ( p )  has at 

p  = p, a sharp maximum which can be determined from the 
equation 

v, Im S ( p )  ( 3 9 )  

so that the slowly varying pre-exponential factor G ( p )  in ( 3 8 )  
can be set equal to the constant G (p , ) .  To determine the Cou- 
lomb factor we use the results of calculations performed in 
Ref. 18 for a harmonic field. The main contribution to the 
transition probability is made by the point p,. It follows from 
( 2 5 )  and ( 3 8 )  that t,(p,) = 0, i.e., the time closest to t = 0, 
where the distance between nuclei is a minimum, determines 
the probability of detaching the atomic electron. The ion 
field ( 4 )  is in this vicinity, accurate to 0 (u2t 2 ) ,  a circularly 
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polarized field of frequency w. In the case (4)  one can there- 
fore use the Coulomb factor obtained in Refs. 16 and 18 for a 
circularly polarized field whose parameter y we shall deter- 
mine from the condition that t,, = t ,  (p,) be equal to the anal- 
ogous quantity i, for a harmonic field; this yields 

In the quasistationary limiting case y g  1 the quantities y and 
yare equal to within o(y2) .  We thus obtain for the Coulomb 
factor 

The quantity A has the meaning of an effective principal 
quantum number (A coincides with the principal quantum 
number of V, = r-')  and is contained in the asymptotic 
form of the wave function of the atom 

Calculations have shown that a change off 2, by a factor of 2 
compared with (41) changes the cross sections by about lo%, 
so that the requirements on the accuracy of (41) are not strin- 
gent in the present paper. 

Equation (38) takes the form 

Equation (43) at A = 0 corresponds to (38) when (42) coin- 
cides with (34) and the Coulomb factor is fk = 1 .  

For the electron coordinate and for the flux density v, 
which are defined by (10) and (12), we obtain from (43) 

b ( P )  

r ( p ) = ~ e  J k( t f )dtr ,  ( 4 4 4  
t , (P)  

lo(P1 

v(p)=lGx12exp I - 2 1 m ~ ( p ) - 2 J r ( r ) d r  , (44b) 
- rn 

where r ( t  ) is determined from (25). 

1 
We now factor out the dependences on the components 

of the momentum p in (44b). We use here the fact that the 
function h (p )  is not small only in a narrow vicinity of the 
momentum p,, where Im S can be expanded in a Taylor se- 
ries up to second order. We recognize that 

We introduce the notation 

Thep, -dependent value ofp, at which 

will be designated p, (p,, ). The condition (47) is satisfied by 
p, = 0 .  The quantities analogous to (46) and defined at the 
point p = {p, (p, ),p, ,p, = 0 )  , will be designated tJx (p, ) and 
tJz (p, ). Accurate to the quadratic terms o(I p - pol2) we have 

r 

erf ( x )  = Zn-*I o e - ~ y  dy. 

The functions w , , ,  in (48) are normalized to unity. To 
calculate (17) with the aid of (48)-(52) we used the so-called 
statistical trials (Monte Carlo) method. A value p is chosen 
from the interval (0 ,  CO) with probability proportional to a 
quantity pwp specified through (49).  The probability distri- 
butions (50),  (5 1), and (52) are used next to selectp, ,p, , and 
p, . The obtained values ofp and p specify uniquely the quan- 
tities E and M. In the case of realization of the charge ex- 
change (E < 0 ) ,  Eqs. (16) are used to determine the values of n 
and I. As a result of NT repetitions ( N ,  - lo4) there are cal- 
culated N, (a = l ,  2 , 4 )  realizations of each partial channel 
of the reaction. The cross sections are defined as 

The total cross section a, is calculated as a single integral in 
accord with (49) and (54).  

4. ANALYSIS OF RESULTS, COMPARISON WITH 
EXPERIMENT 

The calculated ionization and charge-exchange cross 
sections and their sums, for the collision of a hydrogen atom 
H with a completely stripped ion, are shown in Figs. 1-4. A 
detailed comparison with the available experimental data 
26-29 and with other is given in Figs. 1 ,  2, 
and 3. 

The calculated values of the cross sections are in good 
agreement with experiment in the entire range of energy 
variation. It can be seen from the measurement results plot- 
ted in Figs. 1-3 that the presence of an electron core in the 
atom influence the cross section only insignificantly. The 
reason is that in the considered velocity region the main con- 
tribution is made by large impact parametersp - Z  'I2, where 
the atom "feels" only the Coulomb field of the ion. At the 
same time, as shown by our calculations, introduction of an 
effective charge32 makes the agreement between theory and 
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FIG. 1. Cross section of the ionization reaction H + 
X5++H+ + X 5 +  + e incident-ion energy divided by the atomic weight. 
Curve 1--calculation, Eqs. (17); 2-Glauber approximation 31; 3- 
MCT3'. Points--experiment (Refs. 27, 28, 29), a - N5+, - 05+. 

experiment only worse. In the velocity region v-Z the 
charge-exchange cross section is negligibly small compared 
with the ionization cross section, and the results of various 
calculations based on the Born approximation agree well 
with the measurement results. 

To describe the experimental data on ionization at large 
velocities, it is expedient to use approximation formulas. Us- 
ing the dipole approximation for transitions into the contin- 
uous spectrum of the atom1* 

cs=8n(Zhi/u)21n (vzc/oihiZ); Z'"<v<Z, oi=xz/2, (55) 

and the high-energy Born a p r ~ x i m a t i o n ~ ~ " ~ - ' ~  

we obtain the approximation formula 

0=8n (Zhi/v) ln [u2/ (ciZ+czv) ] ; v>Z"~, 
(57) 

ci=aAj/gr cz=exp (-ci/2hi2). 

The constants Ai  and ci are expressed in terms of the target- 
atom wave functions,I4 and for the collisions of an ion with a 
hydrogen atom we haveAi2 = 0.283. ci = 1.26. A compari- 
son with experiment yields for the constant in (55) a value 
1.32 (values 0.322 and 1.42 are cited in Refs. 5 and 12). At 
velocities v > Z ,  when the approximation (55) is not applica- 
ble and account must be taken of the regions R < r (Refs. 33 
and 34), Eq. (57) goes over into the correct Born approxima- 
tion (56). For lower velocities we obtain from (57) expression 

FIG. 2. Cross section of the reaction H + X4+-H+ + X 4 +  + e .  The no- 
tation is given in the caption of Fig. 1; 0 - C4+,  - 0 4 + ,  - N4+. 

FIG. 3. Cross sections of the reactions H + X3++H+ + X 3 +  + e (curve 
la), and H + X 3++H+ + X 3 +  + e(curve 16 ). Thenotationis that ofFig. 
1; 0, 0 - C3+, - 0 3 + ,  - N3+, v - Li3+. 

(55), which is based on the approximation (4), which is valid 
for these velocities. 

Since the method of classical trajectories (MCT) is wide- 
ly used to calculate the cross sections of various processes, it 
is important to determine the limits of applicability of the 
MCT so as to indicate possible sources of its errors. Analysis 
of the presented experimental and theoretical data shows 
that the MCT underestimates the results systematically. The 
reason is that the electron density distribution in a single- 
electron atom, calculated by classical mechanics,35 is cut off 
at a distance r- 1 from the nucleus, whereas the quantum- 
mechanical distribution is attenuated at much larger dis- 
tances. More importantly, the MCT does not take into ac- 
count the tunnel-transition effect, which makes the main 
contribution to the probability of the ionization and charge 
exchange at low velocities. 

The results of the calculations of the cross sections for 
charge exchange (la), ionization ( lb)  and their sum 
( la)  + (lb), for charges Z = 4-26 are shown in Fig. 4. The 

FIG. 4. Ionization and charge-exchange cross sections and the total cross 
section for stripping of a hydrogen atom colliding with an ion XZ +. The 
energy of the incident ion is referred to one atomic mass unit, and the 
parametrization of the coordinates corresponds to Eq. (59). Stripping 
cross section: a-Eqs. (48), (59); b-decay model 2; c-MCT approxima- 
tion3"; f--quasiclassical exponential approximation 5; - He2+, 
- Liz+, A - Cq+ (q = 2, 3, 41, - Neq+ (q = 2 - 51, 0 - Oq+ 

(q = 2 - 5), e ~ p e r i m e n t . ~ ~ . ~ ' . ~ ~  Sets of curves e and d4alculation of the 
ionization and charge exchange cross sections for Z = 4, 6, 8, 10 and 26 
(the charge is marked on the curves). The points 0 were obtained from the 
charge-exchange cross sectionz9 and from the calculated ionization cross 
sections for C3 + and C4 + . 
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FIG. 5. Partial cross sections en, = u,,/(I, u,,) of the reaction 
H + C6++H+ + C5+(n/)  for a velocity v = 1 a.u. and n = 4. Points: 1- 
calculation (17), 2-MCT38; 3-tight-binding method for 33 states37; 4- 
rotational "shakeup" appr~ximation,~ Eq. (61). 

cross section am for ionization at the maximum and the cor- 
responding value Em are well approximated by the power- 
law dependence 

The charge exchange cross section can be approximately 
represented in the parametrized form u, -ZQeX (EZ -I1'), 
which agrees with the known theoretical and experimental 
data.'' The results shown in Fig. 4 demonstrate the degree of 
accuracy of the different theoretical methods, compared 
with experiment, for the total cross section of single-electron 
stripping. The difference between curves a and b shows the 
influence of the fact that the barrier is not stationary. 

The choice of the parametrized coordinates in Fig. 4 is 
connected with a question of very great importance for a 
large number of applications,'' viz., the scaling law for the 
total cross section for atom stripping. A consequence of the 
approximation (4) is that the probability [of the form (27)] of 
the process (la) + ( lb)  depends only on two parameters w 
and y, which are determined in (32). The cross section is 
parametrized then in the form 

The energy E here is per unit atomic mass, and Q is a univer- 
sal function. This parametrization law was obtained empiri- 
cally in Ref. 30 and was later confirmed in e~periment.~"~' 

FIG. 6. Dependence of the partial cross sections en, = u,,/(I, u,,) of 
thereaction H + 08++H+ + 0 7 + ( n l )  on thecollision velocity for n = 5. 
Theset ofpoints 1,2,3, and4corresponds tox = 0.5,0.75, 1.0and 1.5 a.u. 
Curve 5-limiting case of v < l  a.u., Eq. (60). f%"rotational-shake-up" 
appr~ximation,~ Eq. (61). 

We emphasize that the form (59) is the consequence of the 
approximation (4) alone. The high-velocity limit of (59), as 
follows from (57), can be estimated at v - c,Z /c2 - 22. This 
agrees qualitatively with the experimental results.28 At low 
velocities the limit of the validity of (59) is connected with the 
applicability of the decay approximation and, as shown in 
Ref. 8, is of the order of Z -'I2 for systems having Coulomb 
symmetry. In the case when this symmetry is broken, the 
decay model describes also the lower-velocity region 
v < Z -'I2. We note that the processes ( la)  and (lb), in con- 
trast to their sum, do not conform to the scaling law (59). 

The partial cross section on, are no less of interest for 
the solution of applied problems than the total cross sec- 
t i o n ~ . ~ ~  The cross-section distributions in the principal 
quantum numbers n, obtained within the frameworks of var- 
ious approaches, are in satisfactory agreement with one an- 
o ther"~~ and are determined at low velocities, v < l a.u., by 
the splittings of the molecular terms of the ion + atom sys- 
tem at their quasicrossing points. On the contrary, the cross- 
section distributions in the orbital quantum numbers vary 
greatly, depending on the models assumed. For example, at 
low velocities in the rotating-axis approximation, the distri- 
bution is given by squares of Clebsch-Gordan coefficients for 
the expansion of the parabolic state n, = 0, n2 = n - 1, 
m = 0 in spherical functions 

The distribution (60) has a maximum at small I-(n/2)Ii2. 
Allowance for the interaction of the degenerate states in the 
final channel of the reaction yields in the "shakeup" approx- 
imation6 

The maximum of (6 1) takes place at I = n- 1. A numerical 
calculation 37 at a velocity u = lo7 cm/sec yielded a non- 
monotonic dependence of nl on I. The results of our calcula- 
tions of the partial cross sections for velocities v > Z -'I2 are 
shown in Figs. 5 and 6. 

Comparison with other theories shows that all the ap- 
proaches yield at v > 1 a.u. a maximum of the distribution at 
I = n - 1 and fall off differently with decreasing I (Fig. 5). 
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