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The spectrum of Rayleigh scattering of light by a diatomic gas in a strong magnetic field is 
calculated from the solution of the Boltzmann transport equation. It is shown that the structure of 
the spectrum changes significantly when the magnetic field is applied. The depolarized constitu- 
ent splits into five independent components. The widths of all the polarized components of the 
spectrum become functions of the angle between the field and the scattering vector. Detailed 
examination of the parameters of the spectrum in a magnetic field can be used as a basis for 
determining the magnetic-field dependence of all the transport coefficients. 

1. INTRODUCTION 

This paper presents a calculation of the spectrum of 
Rayleigh scattering of light in a gas consisting of anisotropic 
diatomic molecules placed in a sufficiently strong external 
magnetic field. It is found that the structure of both the po- 
larized and, especially, the depolarized spectrum is very sen- 
sitive to the presence of the magnetic field. This is due to the 
partial "freezing" of the rotational degrees of freedom of the 
molecules by the magnetic field. l4 In their turn, the rota- 
tional degrees of freedom actively manifest themselves in the 
structure of the scattered spectrum.* This occurs both in its 
polarized component, through the dependence of the trans- 

and second viscosities, which are difficult to investigate un- 
der nonequilibrium gas conditions. 

All the spectral parameters of light scattered by a gas in 
a magnetic field, including the transport coefficients, can be 
expressed in terms of the eigenfunctions and eigenvalues of 
the linearized Boltzmann collision integral. In the approxi- 
mation in which the interaction potential of the gas mole- 
cules is only slightly anistropic, the angular dependence of 
the spectral parameters of the scattered light can be used to 
extract, in an explicit form, the contribution of translational 
and rotational degrees of freedom to all the transport coeffi- 
cients. 

port coefficients on the rotational degrees of freedom, and in 
2. STRUCTURE OF DEPOLARIZED CONSTITUENT OF THE the depolarized component of the spectrum, whose width is 
SPECTRUM OF RAYLEIGH SCArrERING OF BY A GAS 

determined by collisions that alter the rotational angular IN A STRONG MAGNETIC FIELD 
momentum of the molecule. Moreover, the depolarized con- 
stituent of the scattered light has its own fine structure in the The Rayleigh spectrum of a gas is determined by the 

form of three narrow valleys (at the unshifted frequency and fluctuation 

at the Mandel'shtam-Brillouin frequencies), whose intensi- @ (0,0, rz; t, r,I',) =(6f (r, t ,  rl)6J(0, 0, rz) ), 
ties are determined by the coupling between the transla- 
tional and rotational degrees of freedom during collisions. 
On the other hand, the width of the valley at the unshifted 
frequency is determined exclusively by the shear viscosity. 
Hence, the dependence of the width of the valley at the un- 
shifted frequency on the direction of the magnetic field pro- 
vides us with a direct way of studying shear viscosity as a 
function of the magnetic field. 

The first theoretical paper by Kagan and Maksimov,' 
who showed that magnetic and electric fields influenced the 
transport coefficients of a gas through the vibrational de- 
grees of freedom, was followed by an extensive series of pa- 
pers devoted to this interesting p h e n ~ m e n o n . ~ ~ . ~ ' ~  The de- 
pendence of transport coefficients on external electric and 
magnetic fields was investigated for nonequilibrium gases, 
and most experiments were concerned with the thermal con- 
ductivity at different gas pressures."'2 Precision studies of 
the structure of the spectrum of Rayleigh scattering of light 
by a gas in a magnetic field, which have recently become 
possible through the use of lasers and high-resolution tech- 
n ique~ , ' ~  have yielded information on the magnetic-field de- 
pendence of all the transport coefficients, including shear 

where t is the time, r is the coordinate, rrepresents the inter- 
nal degrees of freedom of the molecule, Sf is the departure of 
the distribution function f of the gas molecules from the 
equilibrium Boltzmann function f,, and the angle brackets 
represent the usual averaging over the statistical ensemble. 
For simplicity, we confine our attention to the diatomic (or 
linear) molecule for which the internal degrees of freedom 
are the three components of velocity v and the three compo- 
nents of the angular momentum M of the molecule. When 
the magnetic field B is applied, these molecules begin to in- 
teract with the field because a rotating molecule has a mag- 
netic moment p = yM, where the gyromagnetic ratio y de- 
pends on the internal structure of the diatomic m~lecule .~  
For paramagnetic molecules, y>pB/h, where p, is the 
Bohr magneton, numerically equal to 0.93 X erg/Oe. 
For most molecules, the ground state is nondegenerate with 
zero spin (nonparamagnetic molecules). The magnetic mo- 
ment of the molecules is then due to the rotation of the nu- 
cleus, and the gyromagnetic ratio is determined by the nu- 
clear magneton (for example, for nitrogen, ye0.25pn/h, 
where p, is the nuclear magneton, numerically equal to 
5.05 X erg/Oe). 
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When the magnetic field B is present, the transport 
equation for the function (r, t, r , ,  r2) for t > 0 is1,I5 

subject to the initial condition 

m (r, 0, r , ,  r 2 )  =fo ( r l )  6 (r) 6 ( r , - r2) ,  

where j ,  is the linearized integral Boltzmann operator15 act- 
ing on the function Sf. This is founded in the assumption that 
,uB 4 T, where T is the gas temperature. 

The shape of the Rayleigh spectrum I (o) for the above 
gas is expressed in terms of the function @ as follows: 

where c ( r  ) = el, a,, (r )e2,, e,, and e,, are the polarization 
unit vectors of the incident and scattered waves, 
w = w, - w,, q = k, - k,  are, respectively, the frequency 
and wave-vector differences for scattered (2) and incident (1) 
waves, and 

is the polarizability tensor of the gas molecules. The asterisk 
indicates complex conjugates, and repeated subscripts imply 
summation. When the scattered spectrum is analyzed with 
the aid of the transport equation (I) ,  it is expedient5 to trans- 
form from the description in terms of the correlation func- 
tion @ (w,q,Tl,T2) to the new functionx: 

which satisfies the equation 

h 

where K is the linearized integral Boltzmann operator acting 
on the functionx. The shape of the spectrum is expressed in 
terms ofx,  as follows: 

where (c Ix) is the scalar product of c ( r  ) and x (r ). 
Before we proceed to the solution of (4), let us analyze 

the order of magnitude of all the terms in the equation. It is 
readily verified that this equation contains three indepen- 
dent frequency parameters, namely, the Doppler frequency 
shift in free motion qv, the precession frequency yB of the 
magnetic moment of the molecule in the magnetic field, and 
the gas-kinetic collision frequency v, w$ch is a characteris- 
tic eigenvalue of the collision operator K. In this paper, we 
shall largely confine our attention to the following relation- 
ship between the parameters: 

T>yB>v>qv. (6) 

The numerical values of the pressures and magnetic 
fields that are necessary to satisfy (6) will be listed below. 
When (6) is satisfied, the term involving the magnetic field is 

the leading term in (4). The eigenfunctions of the operator 
y[M )( B]d /b' M are the spherical harmonics Y &(M/M ), 
where the direction of B acts as the quantization axis. The 
corresponding purely imaginary eigenvalues are iyBN. 
When only this term is retained in (1), the depolarized spec- 
trum (e . e2 = 0) takes the form of five infinitely narrow com- 
ponents, located at the frequencies w = 0 (N = 0), 
w = f yB (N = _f l),w = f 2yB ( N  = + 2).Theintegrat- 
ed intensity of each component depends on the direction of 
the magnetic field as follows: 

Z (N=O) ~4 (be,) (be,) ', 
2 

Z (N=* 1) ~3 - [ (be,) '+ (be,) 2-4 (be,) (be,) 1, (7) 3 
'3 

Z(N=*2) ~3 - [I- (be,)'] [i- (be,)'], b=BIB. 
3 

We note that the total integrated intensity of all the five com- 
ponents is independent of the magnetic field B [this is readily 
verified by adding together all the components of the spec- 
trum I, in (7)], and is determined by the square of the sym- 
metric component, p ,, of the polarizability tensor a,. Fig- 
ure 1 illustrates the shape of the depolarized constituent of 
the spectrum for certain relationships between b and el,e,. 

FIG. 1. Spectrum of depolarized (e, . e, = 0) Rayleigh scattering of light 
by a diatomic gas in a strong magnetic field yB > Av (yB is rhe frequency 
of precession of the angular momentum around the magnetic field, and Av 
is the width of the depolarized component of the scattered spectrum. (a- 
vector b parallel to e, ore,; b--vector b lies in the plane of the vectors e, 
and e, at the angle of 45"; c-vector b perpendicular to e, and e,; d-shape 
of the spectrum for B = 0. 
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Inclusion of the collision term in (4) leads to the appear- 
ance of a finite width of each component of the depolarized 
scattered spectrum, which is equal to the frequency Av, of 
collisions with a change in the rotational angular momen- 
tum of the molecule5: 

We recall that the quantity Av 5 v is connected only with the 
anisotropic part gf the molecular potential [for a purely iso- 
tropic potential, KY, ,  (M/M ) = 01, so that Avis an indepen- 
dent collision parameter that, in general, does not coincide 
with v. 

We now proceed to the fine structure of the scattered 
spectrum due to the inclusion of the terms iq v in (4). The 
operator y[MxB]d/dM divides the space of functions in 
which (4) operates into five classes of eigenfunctions corre- 
sponding to five eigenvalues. These classes are independent 
because they are not coupled by collisions by virtue of the 
condition v < yB. The presence of the magnetic field ensures 
that, when the fine structure of the spectrum is calculated, 
the space of functions for which (4) must be solved is the class 
of functions with zero eigenvalues of the above operator: 
y[M X B]dx /dM = 0. 

The zeroth class of functions has the form 

We note that the description of the spectrum within the 
framework of the space of the functions (9) is physically equi- 
valent to a transformation from the variable M precessing in 
the magnetic field to the average between collisions 
(M) = (M . b)b." 

To solve (4) in the space of the fu%ctions (9), itikconven- 
knt  to replace the collision operator K with E = PK, where 
P is the operator representing projection onto the space of 
the functions (9). The eigenfunctions xu of the operator K 
are conveniently chosen in the form 

where e, $, (v, M )  are real functions. The operator K is real, 
so that the functions x,, and xu -, are related by 

m xu, = ( - 1) xu - m ,  and the corresponding eigenvalues 
are v,, = v, -, . The subsequent calculations in the chosen 
space (9) are practically completely analogous to those in the 
absence of the magnetic field.5 Equation (4) is expanded over 
the basis of the eigenfunctions of the collision operator k 
(10). In this representation, (4) reduces to a coupled set of 
equations for the hydrodynamic and nonhydrodynamic 
modes. The hydrodynamic modes are the following five ei- 
genfunctions of the collision operator K with zero eigenval- 
ues (these functions correspond to the five collision invar- 
iants, namely, the number of particles, the momentum mv, 
and the energy E ) :  acoustic modes 

shear modes 

and thermal-conduction modes 

where c,, c, are the specific heats of the molecule with 
allowance for translational and rotational degrees of free- 
dom at constant pressure and constant volume, respectively, 
v, = ( ~ / m ) ' " ,  T is the gas temperature, m is the mass of a 
molecule, E = C, T is the average energy of a molecule, and 
AE = c:lZT is the energy variance. When the magnetic field 
is present, the most convenient coordinate frame is that in 
which the x axis lies along the vector q, they axis lies in the 
plane of the vectors q and B, and the z axis is perpendicular 
to this plane. The corresponding unit vectors are given by 

The functions (1 1) are written in this particular coordinate 
frame. 

All the other eigenfunctions of the operator E with non- 
zero eigenvalues v,, are called nonhydrodynamic. The con- 
nection between the above modes is implemented by the op- 
erator iqv. The set of equations written in the basis of the 
eigenfunctions of the operator K [equivalent to the intergral 
equation (4)] assumes the form5 

- i ( w +  qu,,) a ,+r ia i=c i - iAc , ,  

-i (a-quSB) a z + ~ 2 a z = c z - i A c z ,  

-ioa3+I'3a3+I'3rai=-iAc3, 
(12) 

- ioal+r ,al+r13a3=-iAc&,  

where ai are the coefficients in the expansion oithe solution 
x ( ~ , q , r )  of (4), with the operator 3 replacing K,  in terms of 
the eigenfunctions xi (10) of the operator K: ai = (xi /x). 
The widths r,, ..., r5 of the hydrodynamic modes in second 
order of perturbation theory in the parameter qv/v are given 
by 

ri = C ( Q V )  i . m  (QV)  an,( (van) -'. (13) 
a s 5  

The remaining quantities are defined as follows: 

m 

~ i = ( x i l  c ) ,  A = Q V  i a m  (14) 
a>5 
m 
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Since the operator is T-even, we have Ac, = Ac, and 
r, = r 2 .  The coefficient 

satisfies, as before, the Landau-Placzek relation 

For frequencies w SAv, the scattered spectrum intensity is 
given by 

I (o, 9) =Re X c k . a A + ~ e  x c,*sm. (1 5 )  

We note that the first term in (15) describes a narrow triplet 
in the polarized spectrum: the central component is deter- 
mined by the intensity (cJ2 and the width r5 of the thermal- 
conduction mode, whilst the Mandel'shtam-Brillouin 
acoustic components that are shifted by the amount f Oat. 
= qua, have the intensities ( c , ) ~  = (cJ2 and widths TI = T2. 

The second term in (15) describes the depolarized part 
of the spectrum (we consider only the portion of the depolar- 
ized spectrum that is unshifted by the magnetic field) with 
intensity of the order of and width of the order of 
Av,, (the quantities Avam are interpreted as representing 
the eigenvalues in the set vam that determine the frequency 
of collisions with a change in the rotational angular momen- 
tum M). Moreover, this term also incorporates the fine 
structure of the depolarized scattered radiation, i.e., the nar- 
row valleys at the line center and at the acoustic frequencies, 
where the valley depths are determined by the quantities 
( A c ~ ) ~ ,  (Ac4)', and (Ac,)~, and the widths by r 3 ,  r 4 ,  and T I ,  
respectively. We must now proceed to the dependence of 
these parameters of the spectrum on the magnetic field. 

3. MAGNETIC-FIELD DEPENDENCE OF THE SPECTRAL \ 

PARAMETERS OF POLARIZED SCATTERED RADIATION 

It is well-known14 that the widths of the narrow compo- 
nents in the scattered spectrum are determined by the damp- 
ing of the hydrodynamic modes, and can be expressed in 
terms of the transport coefficients, namely, the shear and 
second viscosities and the thermal conductivity. When the 
magnetic field is applied, these coefficients become aniso- 
tropic and are  tensor^.','^ 

We begin by examining T,, which is determined exclu- 
sively by the thermal-conductivity tensor x,, : 

wherep is the gas density (in g . cm-3 1: 

Substituting the explicit expressions (10) for the eigen- 
functionsx,, in (16), and separating the angular dependence 
on the velocity v, we obtain 

Since the coefficients e, 2 and the eigenvalues v,, depend 
only on the modulus of k, the constants c, in (17) also have 
the property c, = c _, . Using this relation, we obtain the 
following expressions for the xu  (see Refs. 1-4): 

The antisymmetric part of the thermal-conductivity 
tensor appears when yB - v, but does not provide a contribu- 
tion t o r ,  [according to (16)l. Using the explicit form of the 
magnetic-field dependence of the thermal-conductivity ten- 
sor,14 we can now determine the analogous relation for the 
width of the thermal-conduction component of the polar- 
ized spectrum: 

m r5 = - q Z { x + x i  COS' 01, cos 0= (be,). 
PCP 

It is clear from this expression that the width T5 is a function 
of the angle 8 between the magnetic field and the scattering 
vector q(e, = q/q). By varying the angle 8, it is possible to 
separate experimentally the isotropic from the anisotropic 
components of the width r, and thus separate the coeffi- 
cients x and x ,  in the thermal-conductivity tensor. Kagan 
and Maksimov3 have shown that, in the case of a weakly 
anisotropic potential for which Av/v ( 1, it turns out that 
x , /~ - (Av /v )~ ,  i.e., the ratio of the anisotropic part of the 
linewidth r5 to its isotropic part is of the order of (AV/V)~. 

We now turn to the determination of the quantities r , ,  
r 4 ,  and r3,, r4, that determine the widths of the shear 
modes. These coefficients are related to the shear viscosity 
tensor vV,, as follows: 

q j q k q r j k l e z i e ~ r ,  ri3=r3i*, 

ijkl 

where 

Isolating in (20) the angular dependence on the velocity 
v in an explicit form, we obtain 

Since the coefficients satisfy the relation dm = d -, , it is 
convenient to write the tensor vukl in the form (see Refs. 1-3) 
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In the zero-order approximation, the coefficient y in 
(22) is identical with the scalar viscosity coefficient in the 
absence of the magnetic field, and the quantities y, and 77, 

are zero. (The coefficients dm are then equal to one another.) 
The ansiotropic part of the viscosity tensor appears because 
the zeroth eigenfunctions of the form x,, cc Y,,(M/M) be- 
come mixed with functions of the form x,, a Y,,(v/u). This 
mixing leads to a correction of the first brder in Av/v to the 
coefficient d 'O'. The corrections to the coefficients dmio ap- 
pear only in the second order of perturbation theory in the 
parameter Av/v. AS a result, in first-order perturbation the- 
ory, the coefficients y, and y, are equal and of the order of 
yAv/v. In the absence of the magnetic field, the viscosity 
tensor contains additional terms due to the admixture of the 
functions Y,, (v/u) to the zeroth eigenfunctions of the form 
Y,, (M/M), where m f 0. This contribution is also of the 
order of yA v/v. 

Since the above contribution is positive for the elements 
of the tensor yijij, we may conclude that the application of 
the magnetic field produces a reduction in the tensor compo- 
nents yij0 by an amount of the order of yAv/v, and thus a 
reduction in the width r, and T, by the amount r,Av/v. 

We note that this change in the width T, and T, that 
occurs when the magnetic field is applied is greater than the 
change in r5 because it arises in lower order of the perturba- 
tion theory in Av/v. This is so because, by virtue of the invar- 
iance of 2 e  collision operator under space inversion, the 
operator K connects the functions Y,, (v/u) and Y,, (M/M ) 
only when 1 is even. Hence, in the case of thermal conductiv- 
ity (I = I ) ,  this matrix element is zero, whereas, for shear 
viscosity (I = 2), it is not. The result is that the change in the 
shear viscosity in the magnetic field is proportional to Av/v, 
and the change in the thermal conductivity to (Av/v),. In our 
view, the authors of Ref. 3 did not adequately justify the 
ass2mption that any matrix element of the form (Y,, (v/ 
v) 1 K 1 Y,, (M/M )) is zero, so that the changes in shear viscos- 
ity and thermal conductivity in the magnetic field are pro- 
portional to (Av/v),. 

We shall now use the expressions for vijk[ given by (22) 
to calculate r , ,  r , ,  r,,, r,,: 

r3A=r13=0, cos @=beX, sin 8=bey. 

As can be seen from (12), the shear modes are independent of 
one another in the chosen coordinate frame, and manifest 
themselves in the depolarized scattered spectrum only in the 
form of narrow valleys with intensities proportional to 
(Act),, i = 3,4. Substituting the explicit form of the functions 
x,, into the expression (14) for Ac,, and recalling that only 
the functions~,, with m = 0 contribute to the sum over m, 
we obtain 

I 
(Ac,) 2m (be,) (bq) (eib) (ezb) '=0, 

(24) 
(Ac3) " (be,) (bq) (elb) (e,b) (e,b) (e2b) sin2 20. 

It is clear from (24) that the valley in the depolarized spec- 
trum appears only for the mode x,, and has the maximum 
depth when the angle between b and q is 6' = 45". The valley 
vanishes when b is parallel or perpendicular to q. The con- 
trast of the valley is 

just as in the absence of the magnetic field,5 and is indepen- 
dent of the gas density. The dependence of the valley intensi- 
ty on the polarizations of the incident and scattered waves 
[Eq. (24)] is the same as for the intensity of the main compo- 
nent of depolarized scattering [see (7)]. The valley contrast is 
therefore the same for the depolarized I, and I,, compo- 
nents of the scattered radiation ( Vand H denote, respective- 
ly, the vertical and horizontal directions of polarization of 
the incident and scattered radiation). We note that the valley 
does not appear at all in the absence of the I,, component.5 

By studying the dependence of the valley width on the 
direction of the magnetic field, it is possible to separate ex- 
perimentally the isotropic from the anisotropic components 
in the expression for the valley width r , .  Within the frame- 
work of perturbation theory in the parameter Av/v, this is 
insufficient for a complete description of all the components 
of the viscosity tensor. In fact, when the rotational degrees of 
freedom are taken into account in the first order in Av/v, it is 
clear from (21) that the result is a change in the coefficient do 
alone, and the sign of the change is positive. Hence, using 
(22), we obtain 77, = 7, = - A y, wheredv > 0 is the change 
in 17 when the rotational degrees of freedom are turned on, 
y = y(u) + Ay, and the width of the valley assumes the form 

r3= (qz/p) [ q  (v) f $IAAq sin2 201. (25) 
Thus, the Sindependent part of the valley width governs the 
component of the viscosity that depends only on transla- 
tional degrees of freedom. The positive increment Ay can 
then be determined from the anisotropic part of the width 
r , ,  and hence we can find all three viscosity coefficients 
(7, = v2 = - AT, y = y(v) -1- Av), and thus completely 
characterize the magnetic-field dependence of the viscosity 
tensor. 

We now proceed to the magnetic-field dependence of 
the width r, of the acoustic mode. Using (131, we write 
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We shall now take into account the following properties of 
the eigenfunctions of the operator k: (1) the functions x,, 
must contain the v harmonics of the same parity because of 
the invariance of the operator K under space inversion and 
(2) the functionsx,, are orthogonal to the five hydrodynam- 
ic functions. By using these properties, we can extract from 
the tensor to the terms that are due to the conductivity and 
viscosity tensors xu and qdk, : 

where 

a>5 
Vao 

is the usual second viscosity coefficient that is independent 
of the direction of the magnetic field." The last two terms in 
(27) give the additional contribution to the second viscosity 
that depends on the direction of the magnetic field and van- 
ishes when we take the average over the direction of b. Sub- 
stituting the explicit expressions for the xa0 from (10) into 
these terms, and extracting the angular dependence of v, we 
obtain 

It is clear from (28) that the widthT, contains contribu- 
tions to the isotropic and anisotropic components of thermal 
conductivity and shear viscosity as well as terms due to sec- 
ond viscosity. Estimates of<,,l yield 6, - T,UI v/v -5 (A Y/v)', 
i.e., the anisotropic part of r,, due to second viscosity, is of 
the same order as the corresponding increment due to shear 
viscosity. However, these increments have different angular 
dependence. The anisotropic increment due to the thermal 
conductivity appears in the next order in the parameter Av/ 
Y, SO that its contribution to the linewidth TI need not be 
taken into account. The diagonal elements of the tensor go 
are reduced when the magnetic field is applied, and this is 
responsible for the corresponding reduction in the linewidth 
T, by the amount AT-(Av/v)T,. The dependence of 
T,,T,,T, on the direction of the magnetic field is shown in 
Fig. 2. 

Finally, we must consider the quantity Ac, that deter- 
mines the intensity of the valleys in the depolarized spec- 

FIG. 2. The widths T,,T,,T, as functions of the angle t9 between the direc- 
tion of the magnetic field and the scattering vector q: a-x = x, is the 
value of the thermal conductivity when the magnetic field is perpendicu- 
lar to the temperature gradient; x  + x, = x ,  < x , ,  ~ , / x - ( A v / v ) ~  and xll 
is the thermal conductivity when the magnetic field is parallel to the tem- 
perature gradient; b-q(u) is the component of shear viscosity that is asso- 
ciated with only the translational degrees of freedom of the molecule; A q  
is the contribution to the shear viscosity due to the rotational degrees of 
freedom; c-g = x,m/c,c, + !< - +(, + + q ( u )  - gq, 5, is the aniso- 
tropic part of the second viscosity. 

trum at acoustic frequencies. Using (14) for Ac,, we obtain 

( A C ~ ) ~ ~  (elb)'(e2b)' 

A,= 
( v21~ao00~( (pao021  1 )  

, 
Vao 

a>S 

It is clear from (29) that the dependence of the valley intensi- 
ty (Ac , )~  on the angle 19 between the vectors b and q differs 
from the corresponding angular dependence for the quantity 
(Ac,)' in (24). In particular, Ac, vanishes when cos2 0 = 1/ 
3 - A,/A,, i.e., the angle for which the valleys on the acous- 
tic components disappear is determined by the ratio Al/A2, 
so that, in contrast to Ac,, this angle depends on the particu- 
lar properties of the gas. Using perturbation theory in the 
parameter AY/Y, it is readily verified that Al/A2 -AY/Y. 

Detailed examination of the structure of the spectrum 
of Rayleigh scattering of light by a dense gas (v & q v ,  which 
corresponds to gas pressures P2 1 atm), enables us to deter- 
mine experimentally the magnetic-field dependence of all 
the transport coefficients (thermal conductivity, shear vis- 
cosity, and second viscosity). The magnetic field for which 
the above calculations are valid is defined by condition (6), 
and its order of magnitude for paramagnetic molecules (for 
example, oxygen) is B >  500 Oe for P e l  atm and yB/  
T- 5 X lop4. For T=10 atm and yB /T- 5 X lop3, the field 
is B > 5000 Oe; for nonparamagnetic molecules (such as ni- 
trogen), B > lo6 Oe for P-l atm and yB / T -  
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FIG. 3. Fine structure of the VH component of the depolarized scattered 
spectrum in a magnetic fieldyB-Av, bllq. 24 is the splitting of the shear 
modex, andx, due to effects that are odd in the magnetic field [see (30)l. 

4. EFFECT ON THE STRUCTURE OF THE SCATTERED 
SPECTRUM OF EFFECTS THAT ARE ODD IN THE MAGNETIC 
FIELD 

It is well-known that, when the magnetic field is intro- 
duced, the transport-coefficient tensors acquire terms that 
are odd in the magnetic field.14 These terms vanish in the 
limit of sufficiently strong fields ( yB  ) v).  It is readily veri- 
fied [cf. (16) and (26)] that the widths T, and r1 of the Ray- 
leigh and Mandel'shtam-Brillouin components of the polar- 
ized scattered radiation are insensitive to these effects. Odd 
effects can appear in the scattered spectrum only in the fine 
structure of the depolarized constituent at the unshifted fre- 
quency. 

When the magnetic field is not too strong ( yB-Av) ,  the 
shear viscosity tensor 77,,k( is characterized by five indepen- 
dent quantities, two of which, Im d, and Im d, [cf. Eq. (7.2) 
in Ref. 31, characterize the effects that are odd in the field. 
These terms are most clearly defined in the spectrum when 
the magnetic field lies along the scattering vector (bllq). The 
solution of the secular equation for the modesx, andx, then 
leads to two complex-conjugate eigenvalues: 

The appearance of these two complex-conjugate eigenvalues 
signifies that the fine structure of the depolarized constitu- 
ent of the scattered spectrum contains two valleys with equal 
widths r that are shifted relative to the unshifted frequency 
by the amount + A .  The ratio of the parameters A and r is 
then given by the following order-of-magnitude relation: 

Thus, by determining A from the splitting in the spec- 
trum, we can determine the quantity Im d l  + 1/2 Im d, and 
thus estimate the contribution of odd effects to the shear 
viscosity tensor. When bllq, the depolarized spectrum in the 
presence of the magnetic field consists of four components at 
the frequencies f yB and + 2yB for the VH polarization, 
and three components at the frequencies & 2yB and w = 0 

for the HH polarization. The above fine-structure splitting 
effect should be looked for in the VH-polarized scattered 
radiation because the fine structure itself appears for bl/q 
only because of the admixture of the shear modes x , , ~ ,  to 
functions ofthe form Y ( M / M  ), which contribute to depolar- 
ized scattering at frequencies + yB. The intensity of the two 
split profiles is the same. Figure 3 illustrates this situation in 
a qualitative way. The fine structure does not appear at all in 
the case of H H  polarization because the two components of 
the depolarized spectrum at the frequencies + yB are then 
absent. We note that the spectrum is symmetric relative to 
the frequency w = 0. Hence, a change in the sign of the mag- 
netic field, equivalent to the substitution w -+ - w ,  has no 
effect on the form of the spectrum. 

In conclusion, the authors thank Yu. M. Kagan and I. I. 
Sobel'man for useful discussions. 

 his situation is analogous to the splitting of purely rotational Raman 
scattering from the Rayleigh component. A transformation is then made 
from the description in terms of the Euler angles characterizing the ori- 
entation of the molecule in space to the description in terms of the angu- 
lar momentum vector M averaged over the rotational period of the mole- 
cule. 

2'It is readily shown that this definition of the second viscosity is the same 
as the generally accepted one1' 

subject to the normalization adopted above, namely, 
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