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We prove the complete integrability of the Dicke superradiance model with discrete atoms. We 
construct the Bethe wavefunctions of the system for problems with infinite or finite intervals. We 
obtain a general expression for the probability of decay of an initial excited state of an atomic 
subsystem into eigenstates of the model. We study the transition to a previously-considered model 
of a continuous medium. 

1. Recently the complete integrability of a quantum 
model of Dicke superradiance of extended, essentially one- 
dimensional systems was proved in Refs. 1 by means of the 
quantal inverse scattering method (see Refs. 2,3). One of the 
basic approximations used in constructing the model is the 
continuous medium approximation. We relax in the present 
paper that restriction and show that the "field + discrete 
atoms" model is also completely integrable. 

2. Bearing in mind a subsequent comparison of the re- 
sults for continuous and discrete media we first of all con- 
struct explicitly the wavefunctions for the continuous medi- 
um model on an infinite interval - co < x  < rn . The model 
studied in Ref. 1 is defined by the Hamiltonian 

m 

H = - i  J dxe+ ( x )  a,& ( x )  -xIh f d x ~  e+ ( x )  s - ( X I  +s+ (zl e (3) 1 
-OD - m 

(1) 
and the commutation relations for the electromagneic field 
operators: 

and the spin operators describing the resonance medium: 

[si  ( x )  , sk ( y )  ] =ieikls' (x) 6 ( x - y )  . (3) 

Here i = 1,2,3; s * = s' + is2, and x is the interaction con- 
stant. Such a model was proposed in the framework of classi- 
cal field theory to describe superradiance in Ref. 4 and was 
later studied in a number of papers (see Ref. 5). 

One sees easily that the elementary single-particle exci- 
tation of the model (1) to (3) has the following wavefunction: 

m 

/ A ) =  Jdxeikr+ ( x ,  A) 10).  
- m 

(4) 

In this expression the state 10) is the vacuum of the model 
which has the properties 

E 10)=0, S -  10)=0, s3 1 ~ ) = - ' / ~ n  10); 

the operator 
r+ ( x ,  h )  = E +  ( x )  - (%%la) s' ( 5 )  

is the operator creating an excitation, the parameter 

k=h-xnlh 

plays the role of the momentum of the state, while n is the 
linear density of the medium. 

The wavefunction of the N-particle state is constructed 
from the single-particle wavefunction (4) using the Bethe 
Ansatz? 

m N 

I hi,  . . . , h N ) =  axi. . . dxN exp  S (ix k i ~ i  ) 
ix xfi[l+- hi-hj sign(xi-xj) I r + ( x , ,  hi )  . . . r + ( x N ,  h,) lo>,  

,<I 

HI h i , .  . . , h ~ ) =  ki l h ~ , .  . . , hx>. tC ) 
One can check the validity of Eq. (6) by direct calculation 
using the obvious relation 

1 h1.l s+ ( x )  = - - [r+ ( x ,  h) -r+ ( x ,  p) ] 
x" a-c~ 

We note that the state (5) is created through the action of the 
off-diagonal element B (A ) of the monodromy matrix of the 
auxiliary quantal spectral scattering problem studied in Ref. 
1 : 

I hi, . . . , h,>=B ( h i )  . . . B (hjv) 10).  (8) 
Such a construction of the Bethe states was first used by 
Sklyanin7 when studying the quantal non-linear Schro- 
dinger equation. 

3. The Hamiltonian of the model with discrete atoms 
which are situated at the points ( x ,  1 has the form - 
H d = - i  J dxe+ ( x )  ( x )  - u [ r+  (x.) s.-+e (x.)  s.+ 1, (9)  

where the atomic operators s; satisfy the commutation rela- 
tions 

[s:, sbk] =ie'kl~olG,L. (10) 

When studying the model (9), (10) we meet with a singu- 
larity typical of models with a linear spectrum of bare parti- 
cles and a delta-function-shape interaction (see, e.g., Ref. 8). 
This singularity manifests itself already in the wavefunctions 
ofthesingle-particleexcitations JA ) (H,  JA ) = A ) A  ) ). Writ- 
ing the state lA ) in the form 
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we have the following set of Schrodinger equations for the 
coefficients f (x) and c, : 

It follows from Eq. (12) that the function f (x) is discon- 
tinuous in the pointsx = x, and the integral on the left-hand 
side of Eq. (1 3) is thus undetermined. The necessary regular- 
ization is obtained by replacing S(x - x,) by a function 
u(x - x, ) and subsequently taking the limit as u ( ~ ) - d ( x ) . ~  
One checks easily that the regularization corresponds to the 
substitution: 

f (x.) =l/z [f (x,+O) +f (x,-O)]. (14) 
Taking what we have said into account we have for x #x, 

I-ix/Zh 1, 
/ ( x ,  h )  = exp [ ~ x +  0 (x-xa)ln - 

I+zx/Zh 

Using (14) to (16) we rewrite Eq. (1 1) in the form 

The structure of the single-particle state (17) is com- 
pletely analogous to the structure of the single-particle state 
(4) of the continuous model. One checks easily by direct cal- 
culations that the N-particle excited states of the model with 
discrete atoms are described by Bethe wavefunctions: 

w 

Ih,, . . . , hr)= ' d x ,  . . . dxN @(x i ,  h i )  

Here 

where the excitation number operator N, has the form 
OI 

N. = Jdxe+ ( x )  e ( x )  + (sa3+'/z). (19) 

The transition to the case of a continuous medium occurs in 
the limit x/Ag 1; then 

f (x, h)  -exp [i (h-xnlh)xl . 
The eigenvalues A are determined by the relation A -xn/A 
and the condition x/Agl then takes the form nx-'(1, 
which corresponds to a large number of atoms in the size of 
the packet. 

4. Above we considered the problem on an infinite inter- 
val. In the case of the problem on a finite interval - L / 
2<x<L /2 with periodic boundary conditions the eigenfunc- 
tions of the system are as before determined by Eqs. (5) for a 
continuous medium and by Eqs. (18) for the model with dis- 
crete atoms (with the appropriate limits for the region of 
integration). The parameters (Ai  ) satisfy a set of transcen- 
dental equations: 

a) continuous medium 

b) discrete medium 

where M is the number of atoms and N the number of ele- 
mentary excitations of the model. 

5. The results obtained in Ref. 1 by the quanta1 inverse 
scattering method, just as the results of the present paper in 
which we constructed explicitly the Bethe wavefunctions of 
the model, are still insufficient to completely interpret the 
known experimental data on the effect of superradiance ex- 
tended In particular, there remain unexplained 
such important features of the kinetics of the superradiance 
process as the delay time of a Dicke pulse or the structure of 
the experimentally observed state. 

At present one can distinguish in the extensive litera- 
ture devoted to the theory of superradiance two basic ap- 
proaches. The first, to which most authors adhere, regards 
the oberved state of the system as the result of a dynamic 
decay of the initial excited state of the atomic subsystem. In 
the second approach the observed state is regarded as a ther- 
modynamic-equilibrium phase formed as the result of fast 
relaxation processes between states in a narrow spectral 
range near resonance. 

We shall not discuss here in any detail the second ap- 
proach. We note merely that the transcendental Eqs. (20) 
and (21) obtained above are the basis for constructing exact 
thermodynamic functions of the extended Dicke model. 

The first-dynamic-treatment of the superradiance 
phnomenon seems to us to be more realistic and therefore we 
formulate in what follows the problem of the kinetics of 
Dicke superradince of extended systems in the framework of 
the dynamic approach for the "field + discrete atoms" 
model. 

Let initially at t = 0 only the atomic subsystem be in an 
excited state. The wavefunction of the model then has at 
t = 0 the form 

where m is the number of excited atoms. This state is nor- 
malized to unity: 

and is not, as can easily be verified, an eigenstate of the mod- 
el. As time goes on it will therefore decay into a set of eigen- 
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states determined by the Bethe wavefunctions (18) where the 
parameters rapidities IA, j satisfy the set of transcendental 
Eqs. (21). Our problem is to calculate the probabilities for the 
transition of the initial state (22) into the possible eigenstates 
(181, (21). 

As the number N, of elementary excitations of the 
model (19) is conserved: 

[ N d ,  H d l = O ,  

only the probabilities for decay into the m-particle Bethe 
state are non-vanishing. In the quanta1 inverse scattering 
method the m-particle eigenstate is given by Eq. (8) (see also 
Ref. 1) so that to determine the probability amplitude for the 
decay 

A({x,) I {hi ) )  =(OIB+ (h i )  . . . B+(h,)sii- . . . s,+ 10) (23) 

we should establish the commutation relations between the 
operators B +(A,)  and s,+ and afterwards commute the m 
operators B +(Ai )  with them operators s,+ . The explicit form 
of the Bethe wavefunctions found in the present paper en- 
ables us to avoid solving that complicatedproblem. 

We note that the operator part 
m 

of the Bethe wavefunction (1 8) has only one term containing 
m oprators s; : 

In the scalar product of the Bethe and the initial states there 
is therefore a contribution from only a single term, while all 
other contributions vanish. 

We thus have 

where f (xjl ) is given by Eqs. (14) and (15) while 1 1 .  . . ( 1  is the 
norm, recently calculated by K ~ r e p i n , ~  of the Bethe wave- 
functions. 

The probability for the decay of the initial state into the 
final Bethe state is given by the square of the modulus of 
expression (24): 

where the rates {A, j satisfy the set of transcendental Eqs. 
(21) while the angular brackets ( (. . .) ) denote averages over 
the initial arrangement of the excited atoms. We note here to 
avoid misunderstandings that the use of periodic boundary 
conditions in deriving (24) is physically justified if we study 
superradiant decay in a system such as a ring resonator. 

If the size of the system L is sufficiently large the rapidi- 

/ 

ties (A,  ) which are solutions of the set of transcendental Eqs. 
(21) are, with exponential accuracy in the complex plane, all 
gathered in "strings" and the possible number of particles in 
each string la lies between 1 and m, i.e., l<Ia <m.22321 One 
can classify the Bethe state by the number of strings of a 
given kind v,  and the magnitude of the real part of the rapidi- 
tiesA j"' which is common to all which occur in a given string 
and 

If we are not interested in the spectral distribution of the 
strings in the final state of the system and evaluate the prob- 
ability for the decay into a type of state characterized by the 
size I and the number v,  of the strings, we must sum expres- 
sion (25) over all possible values of the real parts A j"). 

The physical quantity which is directly measured ex- 
perimentally is the intensity of the radiation which can be 
expressed in terms of the current density-of the elementary 
excitations of the ~ y s t e m . ~  The operator p(x) of the number 
of excitations has clearly the form 

M 

6 (x) =e+ (x) e (x) + ( s2 + +) 6 (x-xa) 

The total number of excitations 
L/2 

N d =  ~x;(x) 
- L i z  

is then the same as expression (19). Using the commutatjon 
relations (2) and (10) we can check that the operators p(x) 
satisfies the continuity equation 

where the current operatorj(x) is the same as the photon- 
number density operator 

A 

j (x) =.' (x) e (x) . (26) 

(We remember that we are working with a system of units in 
which the light velocity c = 1.) 

If initially at t = 0 the state of the system I@,) is given 
by Eq. (22), it takes at all later times the form 

1 @ ( t )  )=exp ( - i H d t )  I mO) 

where 

is the energy of the state while the summation is over all 
possible sets of solutions of Eqs. (2 1). 

At the initial instant the current in the system vanishes, 
i.e., 

while at time t it is given by the expression 
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The complete solution of the superradiance 
thus does require not only calculating the decay probability 
amplitude (24) but also calculating the matrix elements of 
the operator E+E in the Bethe states. The solution of such 
problems is at present one of the basic problems in the theory 
of quanta1 completely integrable models. We hope, however, 
that the problem of evaluating the decay probability of the 
initial state will be solved in the near future. 
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