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A hydrodynamic model of an inclined rotator is constructed in the form of a rotating self-gravitat- 
ing homogeneous fluid drop with internal magnetic field inclined at an angle to the rotation axis. 
The spectrum and polarization of the gravitational radiation of the system are calculated. It is 
shown that the spectrum contains the first and second harmonics of the rotation frequency, the 
first harmonic being entirely due to the contribution of Newtonian stresses. The appearance of the 
first harmonic is not acompanied by precession of the magnetic axis of the pulsar. The reaction of 
a heterodyne detector to gravitational radiation of the described type is calculated. It is shown 
that use of the polarization properties of the radiation makes it possible to increase effectively the 
sensitivity of the detecting device. 

1. INTRODUCTION 

The discovery of the radio pulsar PSR 1937 + 214, 
which has a millisecond period T = 1.557807 msec,' has re- 
opened the question of the detection of monochromatic gra- 
vitational radiation from neutron stars. For such rapidly ro- 
tating pulsars the main factor responsible for gravitational 
radiation is evidently the combined effect of the rapid rota- 
tion and the stresses of the magnetic field inclined at an angle 
to the rotation Although the power of the gravita- 
tional radiation estimated for the above pulsar on the basis of 
the spindown parameter appears to be insufficient for ex- 
perimental detection, it is not impossible that similar objects 
with larger spindown parameter could be observed. 

It should also be borne in mind that the estimate of the 
power of the gravitational radiation of pulsars based on the 
spindown parameter may be an underestimate. For it is 
based on the relation 

between the loss of energy dE  and loss of angular momentum 
dJin the case of radiation by a multipole field with frequency 
w and azimuthal number m,5 which for rigid-body rotation 
with frequency fl = dE /aJ leads to a result proportional to 
the spindown parameter.1' However, if one takes into ac- 
count the possible change in the configuration of the rotating 
star and the redistribution of the masses within it, the rela- 
tionship between the energy losses on radiation (including 
gravitational) and the observed spindown will be more com- 
plicated. Energy for the radiation can be drawn from not 
only the rotational energy but also the Newtonian potential 
energy of the star. Thus, from the classical theory of figures 
of equilibrium of a rotating homogeneous gravitating fluid it 
is known that the Jacobi ellipsoids increase their angular 
velocity of rotation through loss of angular momentum and 
energy on gravitational r ad i a t i~n .~  Because of this, an exper- 
iment to look for gravitational radiation from rapidly rotat- 
ing pulsars does not appear to be hopeless even in the case of 
a small spindown parameter TIT, which for PSR 
1937 + 214 has the order sec. 

In the present paper, we show that such an experiment 
would permit not only the detection of gravitational waves 

but also the verification of the general relativistic prediction 
of nonlinear relativistic transformation of the quasistation- 
ary Newtonian field into gravitational waves (in quantum 
language, the existence of the three-graviton vertex), which 
is of interest, in particular, in connection with the existence 
of alternative classical theories of gravitation.' 

The effect to which we wish to draw attention consists 
of the generation of the first harmonic of the gravitational 
radiation (at the rotation frequency) of a neutron star 
through the contribution of the Newtonian stresses of the 
gravitational field. We note that when gravitational radi- 
ation is calculated by means of the quadrupole formula in- 
formation about the contributions to the radiation from the 
motion of the gravitating masses and the force stresses can- 
not be obtained separately. However, if one does not use in 
explicit form the condition of the energy-momentum ten- 
sor's being conservative, then it is possible to separate the 
contributions to the Riemann tensor in the wave zone from 
the motion of masses and the magnetic and gravitational 
stresses. It is then found that the kinetic terms and the force 
stresses contribute equally to the radiation at twice the rota- 
tion frequency. But the radiation at the first harmonic is 
entirely due to the Newtonian stresses. This separation of the 
contributions of mass and stresses does not occur, for exam- 
ple, in the case of gravitational radiation from a binary sys- 
tem, for which the similarly calculated contributions differ 
only by a numerical coefficient. Of course, the separation of 
the mass and stress contributions to the gravitational radi- 
ation is not gauge invariant, i.e., it depends on the choice of 
the frame of reference. In the considered problem however 
such a choice is natural and leads to the asymptotically Gali- 
lean system in which the center of mass of the pulsar is at 
rest. 

The proposed experiment consists of measuring the 
Riemann tensor of gravitational waves propagating away 
from the pulsar at two frequencies: the rotation frequency of 
the pulsar and twice that frequency. The detector can be 
based, for example, on the heterodyne principle proposed in 
Ref. 8. The ratio of the contributions to the gravitational 
radiation of the pulsar at the first and second harmonics 
depends on the angle of inclination of the magnetic axis of 
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the star to the rotation axis, which can be estimated indepen- 
dently in other ways. We shall show below that general rela- 
tivity predicts absence of radiation at the first harmonic only 
when the magnetic axis is at right angles to the rotation axis 
(which appears is improbable). 

The possible appearance of the first harmonic in the 
gravitational radiation of pulsars was noted earlier in Refs. 9 
and 10. However, this was associated with the possible effect 
of precession for a pulsar rotating as an asymmetric rigid 
body about an axis that does not coincide with any of the 
principal axes ofinertia. Such a model leads to the prediction 
of modulation of the sequence of electromagnetic pulses 
from the pulsar at the precession frequency. The available 
observational data" apparently rule out the existence of 
precession. We wish to emphasize that the first harmonic 
must appear in the gravitational radiation even if the mag- 
netic axis of the star keeps a constant angle of inclination to 
the rotation axis (and, therefore, there is no modulation of 
the electromagnetic pulses). The reason is that in the case of 
rotation of a figure with a magnetic field only the total angu- 
lar momentum of the masses and the electromagnetic field is 
conserved, which makes possible rotation about an axis that 
does not coincide with any of the principal axes of the body 
though the angle of inclination of the magnetic moment to 
the rotation axis remains constant. This will be shown expli- 
citly for the example of the hydrodynamic model of an in- 
clined rotator-a rotating self-gravitating fluid drop with 
internal magnetic field inclined at an angle to the rotation 
axis3 In principle, such an effect is also possible for a rigid 
model if allowance is made for the nonconservation of the 
mechanical angular momentum in the presence of the angu- 
lar momentum of the electromagnetic and Newtonian fields 
of the star, which was not done in Refs. 9 and 10. 

In the present paper, we calculate the spectrum and po- 
larization of the gravitational radiation of pulsars and con- 
sider the possibility of measuring them with a heterodyne 
detector of gravitational waves. We show that the use of the 
polarization properties of the gravitational radiation make it 
possible not only to increase effectively the sensitivity of the 
detecting device but also to obtain data on the angle of incli- 
nation of the rotation axes of pulsars relative to the direction 
to the Earth. 

2. HYDRODYNAMIC MODEL OF AN INCLINED ROTATOR 

It is well known that when a self-gravitating fluid drop 
with an internal magnetic field rotates the equilibrium con- 
figuration acquires a quadrupole moment." This is regarded 
as one of the reasons for the occurrence of quadrupole defor- 
mation and, therefore, gravitational radiation of  pulsar^.^ 
However, analytic calculations of equilibrium configura- 
tions can be made only for zero angle of inclination of the 
magnetic axis to the rotation axis" or for the rather unrealis- 
tic case of mutually perpendicular axes.2 Below, we con- 
struct a simple model in which calculations can be made by 
the method of successive approximation for any angle of in- 
clination. The accuracy of the approximation is sufficient for 
subsequent caIcu1ation of the quadrupole gravitational radi- 
ation. 

We consider the rotation of a self-gravitating drop of a 
homogeneous fluid with internal magnetic field and a nearly 
spherical shape. We shall assume that in the absence of rota- 
tion the drop, which has equilibrium radius R,, has an inter- 
nal homogeneous magnetic field 

B,,=2piRo3, (2.1) 

( p is the magnetic moment of the pulsar), this being matched 
to the magnetic dipole field in the exterior region, which in 
the near zone is 

Bat=- [pr2-3 ( p r )  r] r-'. (2.2) 
If the drop rotates with constant angular velocity w inclined 
at angle a to the direction p of the magnetic moment, the 
equilibrium configuration takes the form of a triaxial ellip- 
soid (due to the anisotropy created by the magnetic stresses), 
and we write the equation of its surface 2 in the form 

(r2-Ro7Sa,,x.x,)  I Z==O, (2.3) 

We shall consider the case of fairly slow rotation, when the 
components of the tensor a, are small compared with unity; 
the corresponding conditions will be obvious from the ob- 
tained approximate solution. 

The energy-momentum tensor of this system is a sum of 
four terms: 

Tpv=ppv+b,vi-twv+tpv, (2.4) 

corresponding to the contributions of the masses, the mag- 
netic field, the Newtonian field, and the viscous stresses. In 
what follows, we shall be interested in the spatial compo- 
nents of the energy-momentum tensor, which for the terms 
on the right-hand side of (2.4) have the form 

pu=pu;u,-1-Pbij (2.5) 

[ p  is the density of the fluid, assumed constant, P is the 
pressure, and v(r, t ) is the velocity field]; 

it being necessary to take into account both the internal mag- 
netic field (2.1) and the external field in the near zone (2.2); 

where cib is the Newtonian gravitational potential, and G is 
the gravitational constant. The viscous stress tensor T ,  (of 
anisotropic pressure) is calculated by solving the equations 
of hydrostatic equilibrium in a rotating coordinate system. 

To determine the motion of the masses and calculate the 
equilibrium configurations of the fluid, we shall use the 
equation 

dT'"/dxV=O, (2.8) 

which holds in the case of a sufficiently weak gravitational 
field [Eq. (2.8) contains the ordinary and not the covariant 
derivative, since the Newtonian stresses are already included 
in FV] .  The nonlinear general relativistic corrections can be 
found by the standard method of post-Newtonian approxi- 
mations. " , I 3  From the conservation condition (2.8) we ob- 
tain the equations of hydrostatic equilibrium: 
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An expression for the Newtonian potential of the de- 
formed drop can be readily derived by using the expressions 
for the potential of a homogeneous triaxial ellipsoid. Taking 
into account the terms linear in a U ,  we can represent the 
potential in the interior region in the form 

(2.11) 

where a = tr av and x 2  = 477-Gp is the square of the Jeans 
frequency. The corresponding expression for the Newtonian 
potential outside the star will have the form 

Of practical interest is the case when the magnetic energy of 
the drop is less than the Newtonian energy, i.e., 

~=B2i4nGpZR2< 1, (2.13) 

and the rotation frequency w is small compared with the 
Jeans frequency x .  The equilibrium configurations are found 
by expanding all quantities in powers of the parameterp and 
the ratio w / x .  In accordance with the hydrodynamic equa- 
tions (2.9) and (2.10) and Maxwell's equations, the following 
boundary conditions must be satisfied on the surface2 of the 
drop: 

2 2 
8nP I ,=Be,,-Bin, 

where n is the vector of the normal to the surface. It  is readily 
seen that the conditions of matching of the interior magnetic 
field (2.1) to the exterior (2.2) cease to hold on the surface of 
the deformed drop. This means that, with allowance for the 
deformation, the interior and exterior magnetic fields ac- 
quire small corrections SB, and SB,,, , which ensure fulfill- 
ment of the boundary conditions. However, since SB, and 
SB,,, are small quantities of first order, they are to be ig- 
nored when the equilibrium configuration is found, i.e., the 
tensor a v .  Bearing in mind what we have said, we obtain 
from Eqs. (2.9), (2. l o ) ,  and (2.14) in the lowest nonvanishing 
approximation in the parameters P and w / x  the following 
expression for the tensor a,- : 

In the same approximation, the tensor rii has the form 

It can be seen from the expression (2.14) that in the general 
case the drop will have the shape of a triaxial ellipsoid whose 
rotation axis coincides with none of the principal axes of 
inertia of the mass distribution. However, in contrast to the 
case of a rigid top,9 precession does not arise in our case, and 

the angle of inclination of the interior magnetic field to the 
rotation axis remains constant. 

3. CURVATURE TENSOR IN THE WAVE ZONE 

The reaction of a detector to the gravitational waves is 
determined by the periodically varying components R ,iO, of 
the curvature tensor. These components are readily calculat- 
ed by standard In the region of the detector, 
the space-time metric is nearly flat, and we can therefore 
write 

g,v= quv+ hNV, (3.1) 

where q,, is the Minkowski metric tensor. In the considered 
asymptotic region h,, ( 1 ,  and the components of the curva- 
ture tensor in which we are interested have the form 

In this region, the field h,, satisfies the linearized equations 

hpv, hrq 'T=Ol  (3.3) 

which admit a large degree of freedom in the choice of the 
gauge. Since under the gauge transformation 

the components of the curvature tensor do not change, in the 
asymptotic region it is possible to use the doubly transverse 
traceless gauge: 

the choice of which, as is readily shown, does not conflict 
with Eqs. (3.3). Then (3.2) takes the simple form 

The field hii is determined by solving the equation 

whose right-hand side contains the spatial components of 
the total energy-momentum tensor of the system, including 
the Newtonian stresses of the gravitational field. We expand 
the right-hand side in a Fourier series, taking into account 
the periodic dependence of T,, on the time with frequency 
w :  

OD 

Tij(r,  t )  = 1 Ti,(k,  n)  exp (-inwt+ikr) dk/ (2n)  ', (3.8) 

and we introduce the standard polarization tensors 

e,j+== (ei'ell - ei2e,2)/2'"; cijx= (ei1ej2+e?eji)/2'", (3.9) 

where el and e2 are unit vectors orthogonal to each other and 
the vector k (and form with it a right-handed triplet). Then 
the solutions of Eq. (3.7) in the wave zone corresponding to 
the two independent polarization states (3.9) will have the 
formI4 

OI 

h+,. ( t )  =- (4GIR) T+,x (noR/R, n)erp[-ino (t-R) 1, 
,,--- 

where R is the radius vector from the pulsar to the point of 
observation. The intensity of the gravitational radiation can 
be expressed in terms of the quantities T + , , = T + , , ( nwR/  
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R,n) as follows: 
ce 

It is sufficient to calculate the Fourier components of the 
stress tensor in the long-wave approximation, replacing 
exp( - ik*r) by unity. Note that if we are not interested in the 
contributions to T, of the terms of (2.4) separately, we can, 
using the conservation condition (2.8), write down a relation 
that holds for kR,< 1: 

the use of which enables us to reduce (3.1 1) readily to the 
usual quadrupole form. Calculations show that the total in- 
tensity (3.11) of the gravitational radiation is the sum of two 
harmonics: 

where a is the angle of inclination of the magnetic axis to the 
rotation axis, and Mis  the mass of the drop [the gravitational 
constant is in the denominator of the expression (3.13), since, 
as is readily seen from (2.15)], the quadrupole moment of the 
equilibrium configuration is inversely proportional to G ). 

We show that the radiation at the rotation frequency of 
the drop is due to the contribution of the Newtonian stresses 
tv to (2.4). For this, we calculate T +  ,, , substituting as Tv 
the sum (2.4) of the contributions of the masses,pv, the mag- 
netic stresses, b,, the Newtonian stresses, tu, and the aniso- 
tropic pressure, 7 , .  As in the calculation of the equilibrium 
configuration of the drop, to find the Fourier transforms of 
the quantities in (2.4) we use perturbation theory, regarding 
the parameters 0 and w/x as small. In the lowest order of 
perturbation theory, the contribution of the mass vanishes, 
and the remaining terms in (2.4) cancel each other: 

6 1 2" 
~ ~ ~ ( k ,  n)  =6tij ( k ,  n )  =- - bij ( k ,  n )  = - 

7 10nRo ,J p i~ jd (o t )  

This corresponds to the obvious absence of dipole gravita- 
tional radiation. In the second order, we take into account 
the terms that together give the quadrupole radiation. Cal- 
culation shows that in this approximation the contributions 
of the magnetic stresses and the anisotropic pressure are 
zero, while the contributions of the mass and the Newtonian 
stresses are 

axis, the nonvanishing components of the vector of the mag- 
netic moment are 

pl,=p sin a cos ot ,  p,,=p sin a sin a t ;  pll,=p cosla. (3.17) 

It canbe seen from Eqs. (3.15)-(3.17) that the mass tensorp, 
has a nonvanishing Fourier component only at the second 
harmonic (n = 2), whereas the tensor of the Newtonian 
stresses also contains a contribution of the first harmonic 
n = 1 [the second term in (3.16)]. Note that the contributions 
of the masses and the stresses at the second harmonic are 
equal, as can be seen from (3.15) and (3.16). 

We give the final expressions for the projections of the 
Riemann tensor corresponding to the two independent po- 
1arizationstatesR + ,, = - $6' 2h + ,, /at 2. Weattachtothe 
pulsar a-eoordinate system in which the z axis points toward 
to the observer and makes angle 6' with the rotation axis, and 
the x axis lies in the same plane as they. Substituting the 
Fourier transforms of (3.15) and (3.16) in (3. lo), we find 

(hi  sin 20 cos ot/2"+2"'hz (cos 20+3) cos 2ot) ,  
(3.18) 

R,=02 (hi  sin 0 sin ot/2'"+2"~h2 cos 0 sin 2ot ) ,  (3.19) 

the dimensionless amplitudes h ,  and h,  in these expressions 
being related to the radiation intensities (3.13) at the first and 
second harmonics by 

h,= (oR)-'(20GI,/3)'"; h2=(oR)-'(5G12,/8)'", (3.20) 

where R is the distance from the pulsar to the Earth. 
It can be shown that R + + iR , determined by means 

of (3.18) and (3.19) is an expansion of the component $, of the 
Weyl tensor in the asymptotic region with respect to the spin 
spherical harmonics -,S,, (6' ), the first terms (radiation at 
frequency w) corresponding to I = 2, Im 1 = 1, and the sec- 
ond (radiation at frequency 2w) to I = 2, im 1 = 2. 

4. EFFECT OF GRAVITATIONAL WAVES ON A HETERODYNE 
DETECTOR 

We calculate the response of a heterodyne detector to 
the gravitational waves described by the Riemann tensor 
(3.18), (3.19). In the simplest case, such a detector is a rotat- 
ing dumbbell oriented at right angles to the direction of 
propagation of the wave.8315 A more complicated system is 
an asymmetric rotator,16 which has the advantage that the 
working and signal rotations can be separated, since the inci- 
dent gravitational wave gives rise to a rotation of the rotator 
about the axes perpendicular to the axis of resonance rota- 
tion. The separation of the working and signal motions re- 
duces the requirements on the accuracy of synchronization 
of the rotation by several orders of magnitude. Under certain 

pi, (k, n )  == - 2,:L cfij'~"'L" exp (inot)- d ( o t )  2n ' (3'15) conditions, the effect has however the same order as the one 
0 considered in Refs. 8 and 15. Therefore, for simplicity we 

zn 
o2 d ( o t )  shall make numerical estimates for the simplest model of a 

to ( k ,  =pij(k, n )  - 4GM J (~~l ipy+f i r ip~l~)  B X ~  (inof)-* 2n heterodyne detector.8s15 
0 

As a result of calculations, the details of which are given 
13'161 in Ref. 15, it is possible to obtain an equation for determining 

where,uLi andpl l i  are the components of the magnetic mo- the angle q, between the x axis and one of the arms of the 
ment perpendicular to and parallel to the rotation axis. dumbbell under the influence of the gravitational radiation 

In a coordinate system with z axis along the rotation (without allowance for damping): 
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vi=-'lro2ht (sin 28 sin 29 cos ot+2 sin 0 cos 29 sin a t ) ,  
(4.1) 

(~2=--4o~h~(cos 28 sin 29 cos 2 o t f  cos 0 cos 29 sin 2ot). 

It is convenient to represent the solution of Eq. (4.1) in the 
form 

~i,z=Qt+cpo+A(pi,z (t) , (4.2) 

where f2 is the angular velocity of the dumbbell rotation 
without allowance for the effect of the gravitational wave, 
and Ap,,, are small corrections due to the influence of the 
gravitational radiation of frequencies w and 201, respectively. 
Assuming that over the time interval in which we are inter- 
ested h ,,, , f2, and w change negligibly little, we find from 
(4. I )  and (4.2) 

1 
[ 

1+cos 8 
AT,=- - 02h, sin 0 

4 (o+2Q) " Fi+ + 
(u-za) 

1 (l+cos +(I-cos o)2 (4.3) 

( O - P ) ~  

where 

P,'=*cos 2q3, [(0*2Q) t-sin ( ~ ~ 2 9 )  t] 

f sin 29, [I-cos (ort29) t] , 

F2'=*cos 2cpO[2 ( o i Q )  t-sin 2 (w*Q) t] 
(4.4) 

f sin 2rp,[l-cos 2(o*Q)t]. 

As can be seen from (4.3), a change in the direction of rota- 
tion of the dumbbell gives rise to a difference in the responses 
of the heterodyne detector to the gravitational radiation. 
Thus, the simultaneous use of two dumbbells rotating in dif- 
ferent directions can significantly increase the sensitivity of 
the detector by separating the difference between their re- 
sponses. 

In the case f2 = w, + w/2, i.e., when the condition 
of exact synchronism is satisfied, we obtain from (4.1) 

AT,* ( t )  =-'/8h,02t2 sin 2rpo (cos @TI)  sin 0, 

Aq2* (t)  =-'12h202t2 sin 2rqo (ITcos 8) '. (4.5) 

In deriving Eqs. (4.5), we have assumed that the amplitude of 
the gravitational wave is constant, which corresponds to a 
steady pulsar rotation regime. One can also consider the pe- 
riod in which steady rotation is established after the forma- 
tion of the star. It was shown in Ref. 4 that if the pulsar 
rotation frequency is equal to the characteristic frequency 
(bifurcation point) the intensity of the gravitational radiation 
at the second harmonic increases strongly, and its time de- 
pendence is 

Im ( t )  =I2, (0) 7% (t+7) -% (4.6) 

TABLE 11. 

(the parameter r has the order 0.03 sec). Taking into account 
(4.6), we obtain instead of (4.5) in the given case 

hqZ* ( t )  =-0,1h2 (0) sin 29, (IFCOS 0) 202.t"3t"3. (4.7) 
In making estimates in what follows, we shall be optimistic 
and assume that the condition of perfect synchronism is sat- 
isfied. Estimates of the noise for a heterodyne detector are 
given in Refs. 16 and 17. 

Choosing w = 4~ lo3 sec-' (which corresponds to the 
period of the pulsar PSR 1937 + 214), R = 10,' cm, 
sin 2p0 = 1, cos 8 = 2-'I2, t = lo3 sec, we find on the basis 
of our expressions the values for A p  ,f, given in Tables I, 11, 
and 111. Table I corresponds to the effect on the detector of 
the gravitational radiation of frequency 2w at the time of 
formation of a pulsar whose figure is near the bifurcation 
point. The quantities Ap ,i will have the same order of mag- 
nitude at any time if as a result of freezing of the crust the 

Ba. G 1 h2 

figure of the pulsar remains unchanged from about lo4 sec 
after its formation. In Table I1 we give estimates of A p  1 
under the assumption that the figure of the pulsar is far from 
the bifurcation point and corresponds to the equilibrium 
configuration of a fluid drop. In Tables I and 11, B, is the 
interior magnetic field of the pulsar. In Table I11 we give the 
corresponding estimates for A p  f . 

It can be seen from the estimates that A p  and Ap ; 
differ by about two orders of magnitude (for 8 = .rr/2), which 
creates favorable possibilities for increasing the sensitivity of 
the detector and using it to measure the polarization of the 
gravitational waves at frequency 2w emitted by pulsars with 
millisecond period. The values of A p  : differ by somewhat 
less (by a factor of about six). 

A%+, rad I Avs-, rad 

5.10'5 
10'5 
1014 

10'2 

5. DISCUSSION OF THE RESULTS 

1.9.iO-l' 
0.77.10-'2 
0.77.10-'4 
0.77.10-'8 

1.7.10-~~ 
0.69.10-~' 
0.69. 
0.69.10-30 

On the basis of a simple hydrodynamic model of an in- 
clined rotator we have shown that the gravitational radi- 
ation of a pulsar must contain components with frequencies 
w and 2w (w is the rotation frequency), which corresponds to 
quadrupole radiation of multipole fields I = 2, lm / = 1 and 
I = 2 = jm 1 .  The radiation at frequency w is due to the ab- 

5.7. 10-l3 
2.3,10-'4 
2.3, lo-" 
2.3, 

TABLE I. TABLE 111. 

I A%+, rad I A&-, rad 
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Aw,-, rad 

-1.03.10-" 
-0.41 
-0.41. 
-0.41. 10-l8 

Am,+, rad 

0.18.10-" 
0.72. lo-'3 
0.72. 10-j5 
0.72. iO-'9 

B ,  G I 
5.10'' 

loi5 
lo"+ 
loi2 

4.3.10-2‘ 
1.7, 
1.7.10-27 
1.7.10-~' 



sence of axial symmetry of the rotating magnetized drop, 
which takes the shape of a triaxial ellipsoid. The drop rotates 
about an axis that coincides with none of the principal me- 
chanical axes of inertia, but this motion is not accompanied 
by precession because of the nonconservation of the mechan- 
ical angular momentum. This is the fundamental difference 
between the mechanism considered here for generation of 
the first harmonic from the precession mechanism proposed 
in Refs. 9 and 10. In contrast to the model of a precessing 
top, the present model does not lead to the prediction of 
modulation of the train of electromagnetic pulses at the 
precession frequency. Evidently, the nonconservation of the 
angular momentum of the masses separately must also be 
taken into account for a rigid model of a pulsar whose mag- 
netic axis and rotation axis are inclined at an angle a # 0, a/2 
to each other. 

In the framework of the considered model, the gravita- 
tional radiation of the pulsar at the first harmonic of the 
rotation frequency is entirely due to the Newtonian stresses. 
For a sufficiently small angle of inclination of the magnetic 
and rotation axes, the radiation at the first harmonic may be 
predominant. 

Using the polarization properties of the radiation, one 
can effectively increase the sensitivity of a heterodyne detec- 
tor. It follows from our estimates that the detection of gravi- 
tational radiation from pulsars with millisecond period is 
not technically hopeless. 

We thank Ya. B. Zel'dovich, whose comments helped 
to clarify the physical nature of the effect, and also 

V. N. Rudenko for discussing the model of a heterodyne 
detector. 
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