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Phase separation boundaries with nonzero surface energy-momentum tensor (singular shells) are 
investigated. It is shown that a shell that leads to an increase in entropy (to creation of particles) in 
necessarily a singular shell. The equations of motion of such shells are obtained within the frame- 
work of special relativity. The most interesting application of these equations is to shells describ- 
ing the process of combustion or detonation. In particular, it is shown that, under certain definite 
conditions, the transformation of the vacuum-like metastable state (that arises in cosmological 
phase transitions) to the stable state is analogous to combustion. 

I. INTRODUCTION 

We shall be interested in the properties of the separation 
boundary between two phases1-in the first instance, the 
separation boundary between phases that appear under cos- 
mological conditionsG2 

The motion of a thin separation boundary, for example, 
the growth of a liquid drop in a supercooled vapor (conden- 
sation discontinuity), is usually described by the detonation 
wave equations.' The range of application of these equations 
is limited, mainly because their derivation is based on the 
assumption that the phase separation boundary is nonsingu- 
lar (we recall that a phase separation boundary is called sin- 
gular if the surface energy-momentum density tensor on the 
shell is nonzero). 

There are, however, many cases in which the phase sep- 
aration boundary cannot be considered to be nonsingular. 
Thus, in particular, the shell separating two phases with 
pure vacuum equations of state is a singular shell. Such shells 
usually arise in the study of cosmological phase transitions. 
A planar pure-vacuum phase separation boundary ("domain 
wall") was considered in Ref. 3, and a spherically-symmetric 
separation boundary ("new-vacuum bubble") was discussed 
in Ref. 4. 

In this paper, we shall derive the equations describing 
the motion of a singular shell. In special cases, these equa- 
tions describe both the growth of a pure-vacuum bubble4 and 
the propagation of a detonation wave.' 

When a pure-vacuum bubble expands, the liberated en- 
ergy of the metastable vacuum is completely converted into 
the kinetic energy of the shell. The latent heat of the phase 
transition is then liberated only after collisions between 
walls of different bubbles. We shall find that the equations of 
motion admit of another, and completely different, shell ex- 
pansion regime in which the entire vacuum energy is con- 
verted directly into the thermal energy of the internal medi- 
um. The characteristic feature of this regime is that the very 
occurence of particle creation from vacuum necessarily 
leads to a nonzero shell tension tensor. In other words, a 
shell that leads to an increase in entropy is necessarily a sin- 
gular shell. We shall see that particle creation processes con- 
tribute to the components of the shell energy-momentum 
tensor that are due to its tension (but not with its intrinsic 
mass), so that in the limit of a plane front, effects due to the 

singularity of the shell become negligible during its propaga- 
tion through the medium. In the case of vacuum "combus- 
t i ~ n , " ~  when the shell velocity tends asymptotically to the 
velocity of light, the singularity of the shell has an essential 
effect on its equations of motion for any radius of curvature 
of the separation boundaries. 

The starting point of our analysis is the equation of con- 
tinuity for the energy-momentum tensor T,,, which can have 
delta-function type discontinuities on a three-dimensional 
hypersurface. By integrating the continuity equation over 
the thickness of the hypersurface, we obtain the required 
equations of motion of the shell. These equations can also be 
obtained from the well-known continuity equations for gen- 
eral theory of relativity GTR metrics in the limit as M,, -t a 
(i.e., when gravitational effects can be negle~ted) .~ 

II. EQUATIONS OF MOTION OF A SINGULAR SHELL 

The motion of the phase separation boundary specifies a 
certain (three-dimensional) hypersurface 2 in four-dimen- 
sional spacetime. Let us introduce the coordinates x i  on this 
hypersurface, so that 

d12=3gijdxida+ (1 

is an interval on the hypersurface 2. At each point on 2 we 
erect the outward normal and introduce the coordinate n 
measured in the direction of this normal. In the immediate 
neighborhood of 2, the 4-interval then assumes the form 

The coordinates for which the metric is given by (2) are 
called Gaussian. In addition to the Gaussian coordinates, let 
us construct an arbitrary coordinate system {y" j : 

Here and henceforth Latin indices i, j, . . . run through 
these values and label the components of tensors on the hy- 
persurface, whereas Greek indices run through four values 
and label the components of tensors in spacetime. 

Suppose that the equation of the hypersurface 2 in 
terms of the coordinates {y" ) has the form p( y" ) = 0. Let us 
define the coordinate n as follows: 

n=cp ( y " )  l (gV"cp,,cp,v) 'I2, (3) 

where p,, =dp /dy p .  It is obvious that, on the hypersurface 
n = 0 that we are considering, the components of the unit 
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normal to the hypersurface 2 are 

Let T t  be the components of the energy-momentum tensor 
in terms of the Gaussian coordinates, and let the tensor S t  
bedefinedby 

6 

S a p  = lim 5 T a p  dn.  
6-0 

- 6 

A shell is said to be nonsingular if all the components of the 
tensor S t  are zero. In the case of a singular shell, the three- 
dimensional tensor S{ is nonzero, and the components S :: 
and S 7 of the tensor S t  are always zero. 

Let us integrate the equations of conservation of the 
energy-momentum tensor1' 

with respect to n from - S to + 8, and then let S tend to 
zero, remembering that only the components T{ of the ener- 
gy-momentum tensor can contain singularities. 

The first three equations T f p  = 0 can be integrated di- 
rectly, and we obtain 

I s ; ,~  f sijrj;- ~ j k r ~ ~ + [ ~ ~ " ]  =0, (7) 
or 

sj 
r 13- [Tin] (8) 

where the vertical bar in the subscript signifies covariant 
differentiation in the metric 3 g i j ,  and [ T I ]  = T r(n + 0) 
- T l(n - 0) is the discontinuity in the component T of the 
energy-momentum tensor on the hypersurface 2. 

Integrating the equation T f i p  = 0, we obtain in the lim- 
it as 6-0 

[ T n n ]  - s~I',,: = 0. (9) 

The Christoffel symbols in (9) are conveniently expressed in 
terms of the outward curvature tensor of the hypersurface 2: 

w ere iV are the components of the outward normal in 6 aussian coordinates N" = 1, N' = 0, and the first equation 
in (10) is the definition of the outward curvature tensor of the 
hypersurface. Thus, equation (9) can be rewritten as follows: 

sj,.i=- 3 [Tn"l .  (11) 

When the outward normal iV is defined in an arbitrary co- 
ordinate system, as in (4), the outward curvature tensor is 
given by 

Equations (8) and (1 1) determine the form of the hyper- 
surface 2 and, consequently, the evolution of the two-di- 
mensional phase separation boundary of arbitrary shape for 
arbitrarily specified energy-momentum tensors of both the 
internal and external phases. Moreover, these equations are 
valid when the ambient 4-spacetime is curved, provided only 
we may neglect the reaction of the energy-momentum tensor 
of the shell to the ambient geometry. Equation (8) is deter- 
mined by the internal geometry of the hypersurface alone. In 
this sense, it is simpler than (1 1) which determines the in- 

scription of the hypersurface into the spacetime surrounding 
the shell. 

1. Spherically symmetric shell 

Spherically symmetric phase separation boundaries are 
of particular interest. The element of length on this type of 
hypersurface is given by 

d12=d~2-pZ ( T )  (de2+sin2 0 d q 2 ) .  (1 3) 
where r is the time measured by an observer located on the 
shell, p ( r )  is the shell radius, and 8 and p are the angular 
coordinates. The covarient derivative in (8) is evaluated di- 
rectly with the metric (13). 

By virture of spherical symmetry, S :  = S 3, and S{ = 0 
if i# j ;  S ' ,  = S' ,  j-O, and only one equation remains in (8), 
namely, 

where 

p = d p / d ~ .  

We shall now consider the evolution of spherically- 
symmetric bubbles in flat spacetime. The most convenient 
coordinates y p  are therefore the usual spherical polar co- 
ordinates, in which the 4-interval takes the form 

ds2=dt2-dr2-1Z (de2+sin2 0dcp2). (15) 

These coordinates are used by an observer at rest at the cen- 
ter of a bubble. The equation of the surface 2 assumes the 
form 

r-R ( t )  =0, 

where R (t ) is an unknown function. 
In accordance with (3), we define the coordinate n by 

n= ( r - R  ( t )  ) / ( I -  ( d R / d t )  2, '". (16) 

To determine the outward curvature tensor, we need, in ad- 
dition, the connection between the coordinates (13) and (15) 
on the shell. We have 

Using (12), (4), and (16), we obtain 

We must now specify the right-hand sides of (8) and (11). 
Here we sacrifice generality and suppose that, both outside 
and inside the bubble, T i  is the energy-momentum tensor of 
an ideal liquid: 

where u, is the 4-velocity of an element of the medium and E 

and p are, respectively, the energy dgnsity and momentum 
measured in the frame in which the medium is at rest. Any 
possible generation of entropy (and particle creation) is thus 
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associated with the transition layer and is ascribed to the 
shell. 

We shall suppose that the ambient medium is at rest 
relative to the bubble center (i.e., apart from the possible 
motions of the ambient medium, we shall also neglect reflec- 
tion of particles back into this medium). The velocity of the 
external medium relative to the shell is then R '. It is natural 
to suppose that the medium in the interior of the bubble is 
spherically symmetric. Hence the modulus of the 3-velocity 
of the internal medium relative to the shell is u = - ul/uO. 
Under these assumptions, Eqs. (8) and (1 1) assume the fol- 
lowing form for a spherically symmetric shell: 

+ 2s: (l+,2) '" u2 
S,O = Ptn +(&+PI  i n -  (I+$) '" P 1-u2 

(~+p)oUt (R')' 
- pout - 1 - ( R ' ) 2  

Using the Einstein formula for the addition of veloc- 
ities, we can rewrite (20) in terms of the 4-velocities v" of the 
internal medium relative to the center of the bubble: 

x [ b  ( I+$)% ( ( v O ) ~ +  ( v i ) ~ )  - vOvi (iP2-ti) 1, (21a) 

so$/ (i+b2)'h+2S22 (I++') " ' / p=~~~~-e i , ,+  (e+~)~,[vO (l+p2)'l* 

-vip21 '- ( & f P )  Out ( i f  2). (21b) 

In the ensuing analysis it will be useful to have the two forms 
of the equations of motion of shells, given by (20) and (21). 

Equations (20) become identical with the well-known 
equations for detonation waves1 in the case of a nonsingular 
shell Sj = 0, and also whenp-const and S/-+const in the 
limit asp-+ a, i.e., in the limit of a plane shell whose velocity 
tends to the velocity of light. Equations (20) are suitable for a 
wide class of shells, including the special case of the propaga- 
tion of detonation waves, condensation discontinuities, and 
so on." 

The energy-momentum surface density tensor on the 
shell must be known before specific cases can be investigat- 
ed. 

Ill. ENERGY-MOMENTUM SURFACE DENSITY TENSOR 

We shall now consider the tensor Sj for shells that arise 
in cosmological phase transitions. The order parameter in 
such transitions is the average &(p)  of the operator for the 
scalar field p. The evolution of the field is described by a 
Lagrange density that is invariant under a gauge group G: 

9 = (D,cp) ' (D") - V (cp) - '1, F,O, Fa"', 

where g is the gauge coupling constant of the group, T a  are 
the generators in the representation of the fields p, f are 
the structure constants of the group, and V(p) is a G-invar- 

iant polynomial of degree not higher than 4 in the fields p. 
Using the formula 

(23) 
where g = det g,, , d ( - g)1'2/dg"v = - &( - g)112gp,, we 
obtain the following expression for the energy-momentum 
tensor 

Tpv = (D,v) ' (Dvv) - '12 ~k F Y  + '/2 gkvT + H.c. , 

where 

T=V(T)  - ( ~ " c p )  * ( ~ , c p )  + i / b ~ ; x ~ a A W .  (24) 

It is clear that prior to the transition to the limit of zero 
thickness of the region separating two phases with different 
values of G, we must take the normal Gaussian coordinate 
system to be the system in which surfaces of constant n coin- 
cide with surfaces of constant G. Let x i  be the coordinates on 
the n = const surfaces; we then have /axi = 0. We now 
define the field @ as follows: q, = G + 4, i.e., (4  ) = 0. Sub- 
stituting p = G + 4 in (24), we obtain 

T i j  = (D ,  G )  ' (D,@) - I/, Ft: F ~ " X  + i / 2  gijT (q, S )  + H.c. (25) 

Finally, averaging this relation and integrating with respect 
to n between - S and 8, we find that in the limit as 8 4 :  

Sz2=S0"iS2', 

where 

~ 2 2 = ~ i r n J d n { 2  a+o ( (D ,@) ' (D ,@))  + (F.:F.") - ( o - 2 ) ) .  
(26) 

1. Vacuum case 

If we neglect field fluctuations in (26), we find that 
S;,, = 0 and Sj = Sq.. We shall call this vacuum shell. For a 
shell separating two phases with vacuum equations of state 
(E + p)in = (E + P ) ~ , , ~  = 0), it follows from (20a) that 
dS:/dr = 0, and the surface energy density of the expand- 
ing bubble is independent of its radius. We can therefore 
determine S ;  by evaluating S;  for flat  all:^,^ 

where G1 and G2 are the values of the field G in the corre- 
sponding phases. In particular, for the potential 

V=~I,A (qZ-qO2) 2 

we obtain 

By integrating equation (21b), we obtain the equation of 
motion of the shell of a vacuum bubble: 

where C is an arbitrary constant of integration. For C #O, 
equation (28) becomes identical with the equation of motion 
of a bubble with nonzero Schwarzschild mass.' For spontan- 
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eously appearing bubble of new phase, the external mass 
must be zero, and the integral of (28) for C = 0 in terms of the 
coordinates of an observer at rest at the centre of the bubble 
assumes the form 

This is the well-known4 equation of motion of a pure-vacu- 
um shell. 

2. Nonvacuum shell 

Of the greatest interest, however, are nonvacuum 
shells. In fact, even when the shell is initially a pure vacuum 
shell, its expansion is accompanied by particle creation. We 
then have the key question: will this type of bubble remain 
"empty"? The process of particle creation by a vacuum shell 
has recently attracted a number of papers8 This process is 
usually looked upon as a small perturbation of the vacuum 
solution (29), but a complete analysis of this problem (within 
the range of validity of the thin-wall approximation) can be 
based on solutions of (20). The structure of the tensor S{ 
must then be additionally specified and, in its turn, can be 
found (in principle) from quantum field theory. 

In this paper, we confine our attention to some charac- 
teristic properties of (20) that do not depend in an essential 
way on the structure of S'. 

We begin by considering the case where the external 
medium is a pure vacuum (E +p),,, = 0 (metastable vacu- 
um, E,,, > O), the vacuum energy density in the interior of the 
bubble is zero, and E andp are related by some (nonequilibri- 
um) equation of state (for example, E = 3p). The equations 
given by (20) then admit of the existence of a shell with St 
= 0. However, we cannot then consider that S i = 0. Actu- 

ally, our shell is a source of particles, and this necessarily 
leads to a nonzero value of the component Si of the shell 
tension tensor. It is clear from (20) that S > 0 for this shell. 
If, on the other hand, the internal medium is a vacuum (resi- 
due of old phase), and the shell collapses, creating a particle 
on the outside, equation (20) has a solution with S: = 0 only 
for S: < 0. Next, we may suppose that the internal medium 
is in thermodynamic equilibrium (in which case we consider 
that the entire nonequilibrium transition layer is thin, and is 
ascribed to the shell). To be specific, let us suppose that the 
chemical potential of the internal medium is zero, so that 
( E  + p). = Ts. The internal medium has a nonzero entropy 
density s, and the entropy density of the external vacuum 
medium is zero. Consequently, the shell contains a nonzero 
entropy source: 

When S: = 0, we have Si = 3; and (20a) yields the 
following relation between the entropy source and 3 :: 

S,' = pT 0. 
2p ( i -u2)  'la 

The shell with S: ZO and 3: #O, is evidently a good approx- 
imation when the process of chemical burning is examined. 

We have seen that (20) admits of the existence of a shell with 
this structure even in the case of an external medium with a 
pure vacuum equation of state. Thus, in principle, vacuum 
burning becomes p ~ s s i b l e , ~  and corresponds to the following 
structure of S{:S: = 0, St = 3 i #O. Let us examine this 
effect in greater detail. 

IV. VACUUM BURNING 

Thus, suppose that (E + p),,, = 0, SO, = 0, S : #O. 
Equations (20) for this shell do not contain the second deri- 
vative with respect to r. Let us solve (20) for p and u: 

Let us consider in these equations the limit asp+w. In this 
limit, the velocity of the shell tends to the velocity of light 
( p+ w ), and the parameters of the internal medium fit the 
detonation adiabatic curve1 

EinU--pin=Eout ( I + u ) ,  

if (S i / p ) 4 .  If, on the other hand, (S :/p)-const, the shell 
may move with constant velocity. Finally, when (S : / p ) - ~ ,  
the velocity of the shell again tends to the velocity of light 
and u+l, i.e., in this case, asp+ W ,  the velocity of the inter- 
nal medium relative to the shell is not constant, but the ve- 
locity of the medium relative to the bubble center is. It is then 
more convenient to use the equations of motion (21) in the 
analysis of the shell. In particular, the solution with the in- 
ternal medium at rest relative to the bubble center is possible 
in this case. 

It also follows from (32) that, in the limit asp-+ cc , we 
have > 2&,,, + p i n  if (S 22 / p ) 4  and < 2~,,, + p.  if 
(S : /p)- w , but always 2 E,,,_: 

Whatever the magnitude of S:, the entire energy of the 
metastable vacuum converts into the energy of the internal 
medium. This is, of course a direct consequence of the fact 
that S: = 0, and the energy released in the course of the 
phase transition cannot be expended in increasing the kinetic 
energy of the wall, as in the pure vacuum case.4 The shell 
expansion velocity, on the other hand, depends on 3: (and 
thus the rate of conversion of vacuum energy into the energy 
of the internal medium also depends on this quantity). 

The quantity S: is the amount of energy contained in 
the transition layer between the two phases. Although, for- 
mally, S: can be zero, if T:  experiences only a discontinuity 
and does not contain S-function singularities in the limit of 
an infinitely thin transition layer, the quantity S may be not 
zero in the case of a vacuum phase transition. 

We now turn to shells with St #O. We shall find the 
conditions under which we may say that vacuum combus- 
tion takes place. 
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The particles created during the bubble expansion pro- 
cess can form bound states with the shell.9 In that case, 
S g = S g ( p) and S increases with increasing p. We shall 
neglect this effect, and consider that SE = const. Next, par- 
ticle creation effects lead to S : = SE + s: where 3: is con- 
nected with the entropy source (30). 

Generally speaking, 3 : is a complicated function of the 
state of the medium and motion of the shell. 3: contains 
terms proportional top, p, p, and so on. However, in any of 
these cases, the quantity 3: increases with p, so that the 
amount of vacuum energy converted into the energy of the 
internal medium can only increase. Below, we shall investi- 
gate the motion of a bubble on the assumption that 
3 2 = const, and hence find the lower bound for the genera- 
tion of heat from vacuum during the process of expansion of 
the bubble of new phase. 

Equation (20b) is readily integrated on the assumption 
that all the quantities other than p ( ~ )  are constants: 

where C '  is the constant of integration. A spontaneously 
arising, pure-vacuum bubble corresponds to C = 0 in (28). 
On the other hand, the radius of the bubble produced in a 
thermostat (where the bubble can rise with a nonvanishing 
external mass), is determined by the conditions of equilibri- 
um for the bubble in the mediump = 0, p = 0 at the time of 
its creation. It then follows from (20b) that 
po = 2 s  :/( p, - pour )-a well-known formula in thermody- 
namics. In any case, for sufficiently largep, the specific value 
of Cis unimportant. Asp+ cc , equations (34) and (20a) yield 

Hence, it is readily seen that -E~,,  for any 3 :, how- 
ever small, provided u -3 : /S: . However, it is important to 
note that E,, is not an adequate criterion for estimating 
whether or not the vacuum is burning. To establish this crite- 
rion, we proceed as follows. Let Epar, be the proportion of 
the liberated vacuum energy that has been converted into the 
energy of the internal medium, and let E,, be the kinetic 
energy of the bubble walls, Ekin = 4.rrp2SE (1 + p2)112. It is 
clear that 

EpartIEkin ='/3p3~out/Ek~n -1. (36) 

We shall say that the vacuum is burning if Epart/Ekin 2 1. 
From (36) and (34) we find that 

From the relation between E, and u that follows from (35) 
under the condition that the equation of state of the internal 
medium isp, = v S 2 ~ ,  , we finally obtain 

Epart 232' (I-u)(u-u~~) 
-- 

Ek,, 3SO0 u(l+v, ') 
(38) 

where v, is the velocity of sound. We see that EPa,,/Ek,, 
vanishes for u = 1 and for u = 1 and for u = u:, and reaches 

its maximum for u = v,. Thus, for S: = const and - 
S : = const we find that Epa,, /Ekin -3 : /S g .  

What are the possible values of this ratio? 
It may be considered that 3 :/S - 1 can arise in the 

realistic field-theory models. Firstly, SE is determined by 
the coupling constants of scalar fields, whereas 3: is deter- 
mined by the maximum coupling constant in the model 
[gauge constant g in Grand Unification Theories (GUT)]. 
From the point of view of cosmological consequencies, the 
most interesting models are those that allow considerable 
supercooling of the metastable phase. On the other hand, 
this type of supercooling arises in GUT with A -g4 (see, for 
example, Ref. 10). Secondly, in GUT, phase transitions with 
considerable supercooling occur at temperatures of the or- 
der of the reciprocal of the confinement radius in the metas- 
table phase, for which all the coupling constants grow. 

Suppose now that the state of the external medium is 
not a vacuum either. As in the vacuum case, (20) again allows 
the motion of the shell with p+ co for p- cc if 

where v = v'/vO [see (21)l. 
We have considered the case SE-const, S :-const. 

However, apart from the solution given by (39), the shell may 
move with constant velocity p-const as ~ + C O  when 
(E +p),,, #O. For sufficiently large p, this kind of shell en- 
ters the detonation-wave regime, whose properties are well- 
known (see for example Ref. 1). It was suggested in a recent 
paper11 that the growth of bubbles in cosmological phase 
transitions is analogous to the propagation of spherical de- 
tonation waves. We now see that the singular shell can actu- 
ally expand like a detonation wave, and we can identify the 
conditions under which this can take place. When (E + p),,, 
is small, the velocity of the shell is close to, but not equal to, 
the velocity of light, and the internal medium is character- 
ized by parameters u, E, , p, satisfying (33). This regime is 
remarkable in that it should involve the complete conversion 
of the vacuum energy into the energy of the internal medium 
independently ofS: and3  (sincep is constant, the liberated 
vacuum energy cannot be compensated by an increase in the 
kinetic energy of the wall for largep). 

V. CONCLUSION 

Using the energy-momentum conservation law 
TI;,, = 0 as our starting point, we have shown that vacuum 
burning is possible in principle. To calculate the magnitude 
of the effect in a realistic field-theory model, we must investi- 
gate the creation of particles by a classical field with time 
dependent field gradient (expanding bubble wall). The num- 
ber of created particles and, consequently, the quantity S: , 
will depend, in particular, on how the wall moves. S in its 
turn, appears in the equation of motion of the shell given by 
(20). We can thus obtain a closed set of equations by aug- 
menting (20) with the evaluation of S{ from (25) and (26) 
within the framework of field theory. 

We have not implemented this program. Nevertheless, 
we shall suppose that the expansion of the vacuum bubble in 
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realistic Grand Unification Theories is actually analogous to 
combustion. We may expect, at least, that if the initial tem- 
perature inside the bubble is high enough, this value of the 
temperature will persist during the expansion process. Vacu- 
um burning can lead to interesting cosmological conse- 
quences, some of which were discussed in Ref. 5. 

We note here that if the vacuum burning effect does 
actually take place, the initial state of the Universe (interme- 
diate state in the oscillating Universe12) could have been a 
pure vacuum or near-vacuum state. A detailed study of the 
specific spectrum of the resulting adiabatic inhomogeneities 
could have shown that either they are "useful" in the theory 
of the origin of galaxies (see, for example, Ref. 13) or, if they 
are too large, they should impose restrictions on the param- 
eters characterizing the phase transition with vacuum burn- 
ing. 

The authors are indebted to A. Yu. Ignat'ev, V. A. Mat- 
veev, V. A. Rubakov, A. N. Tavkhelidze, and M. E. Sha- 
poshnikov for useful discussions. 

"The necessity for the covariant derivative in flat spacetime is connected 
with the curvature of the separation hypersurface and the existence of a 
privileged curvilinear coordinate system. 

"The generality of (20) is most particularly limited by the fact that we have 
neglected the reflection of particles into the external medium-a proper- 
ty that a singular shell may have. 
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