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It is shown that randomly distributed point defects disrupt the order in a two-dimensional soliton 
lattice. The size of the ordered state is found as a function of the defect density, temperature, and 
lattice parameters. 

1. Solitons or domain walls are linear regions of dis- 
turbed commenurability (of characteristic length I,), which 
appear in an adatom structure that is not commensurate 
with the substrate and compensate for the difference 
between the lattice and substrate periods (for details see the 
reviews1.'). The simplest soliton lattice is a set of parallel 
stripes with period I. When the elastic properties of such a 
lattice are examined, one can consider only its displacements 
in a direction perpendicular to the soliton line. Such lattices 
can occur in a tremendous number of incommensurate 
structures, e.g., when a commensurate structure is com- 
pressed along one of the crystallographic directions of the 
substrate (for a description of such systems see Ref. 3). Ob- 
servation of an ordered striped soliton structure in diffrac- 
tion experiments calls for very high precision. It was never- 
theless observed experimentally in a freon-graphite ~ y s t e m . ~  
The properties of such a soliton lattice were investigated in 
detail in the case of an ideal substrate (see the reviewslv2) both 
theoretically and experimentally. On a real substrate there is 
always a finite density of defects, and as the point of transi- 
tion into the commensurate phase is approached (i.e., with 
increasing period of the soliton lattice), the role of these de- 
fects, say in the loss of the order, should increase. Greatest 
interest attaches to the influence of nonequilibrium "frozen" 
substrate defects on the order in a soliton lattice. With re- 
spect to symmetry, the Hamiltonian of a striped soliton lat- 
tice is isomorphous3 to the Hamiltonian of the XY model. It 
is known5 that a random magnetic field destroys the order in 
a two-dimensional XY model. On the other hand, in a ran- 
dom-anisotropy field of orderp withp>3 ther exists a tem- 
perature region in which the thermal fluctuations restore the 

However, the random field of substrate point de- 
fects in a soliton lattice differs noticeably from the random 
fields in magnets, and calls for an investigaiton of its own. 
The problem of loss of order, which is in itself of interest, is 
important also for the understanding of the diffusion dy- 
namics of a soliton lattice,' where the point defects are 
shown by experiment to play a decisive role. 

2. The concrete nature of the lattice point defects can 
vary. The defects can be impurity atoms, vacancies, and ex- 
cess substrate atoms. The mobility of these defects can be 
extremely small at the experimental temperatures,9 i.e., they 
are "frozen." The density c of such defects, even if the sub- 
strate is thoroughly cleaned, remains on the order of 
c - (Ref. 9). Such defects alter the potential relief of the 
substrate. The adatoms can be attracted to or repelled from 
such defects. This can cause the defects to attract or repel the 

solitons, which are in fact density waves. A defect will inter- 
act with a soliton only if it is in the vicinity of the latter. We 
consider by way of example the model of the so-called aniso- 
tropic two-dimensional crystal. In this model, which de- 
scribes a large number of experimental systems, the anisot- 
ropy of the potential relief of the substrate permits the atoms 
to be displaced in only one direction (say, along the x axis).3 
The Hamiltonian of the model is 

Here u is the adatom displacement, K the elastic modulus, u 
the amplitude of the substrate potential relief, and a and b 
the periods of the film and of the substrate along the x axis. 
The single-soliton solution is of the form 

The simplest model of a point defect at a point x, in such a 
system is a potential in the form 

vo 1 - cos -u(xo) . 
" 1 ( b  

Substituting (2) in (3) we obtain the form of the potential 
barrier for the soliton: 

2n (x-xo) 
V (x) = 2Vo/ch2 

b(K/u)'" . 
Thus, the field of a point defect acting on a soliton is local- 
ized in a region of the order of the soliton width I,- b (K / 
v)'I2. Let us consider the approximate picture of the influ- 
ence of randomly disposed defects on a substrate in a soliton 
lattice at T = 0. The inhomogeneities of the defect arrange- 
ment cause certain regions to attract (or repel) the soliton 
lattice. The number N of defects interacting with the lattice 
in a region of size r X r is N-cA,?, where A, = I,/I, and I is 
the period of the soliton lattice (we put henceforth I = 1). 
The average fluctuation of the number of defects is - N  ' I 2 ,  

so that the energy associated with these inhomogeneities is 
W- V a  l 2  and has the meaning of a pinning energy. As a 
result we get the estimate 

W-V0N'"-Vo (cAo)'"r. ( 5 )  

We see that the pinning energy Wincreases linearly with the 
dimension of the region r .  At the same time, the energy of the 
elastic deformaiton of the lattice by an amount of the order 
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of unity in a region of size r x r is K (l/r)'? - K and does not 
depend on r. Therefore with increasing r the pinning energy 
W (r) reaches the value of the maximum deformation energy 
at 

r-rc=KIVo (cAo)", (6) 

meaning loss of the long-range order in regions of size r 2 rc . 
It should be noted that the actual form of the potential (4) is 
of no importance whatever for the foregoing estimates. 

3. We have so far not taken into account the thermal 
fluctuations of the soliton lattice. We shall show now that 
they do not change the qualitative picture of the loss of or- 
der, but can lead to a substantial renormalization (more ac- 
curately, increase) of rc . Since r, is determined by comparing 
the pinning energy W(r) with the elastic energy K, we must 
calculate W(r) and K with account taken of the thermal fluc- 
tuations. It will be shown below that in the case of strong 
thermal fluctuations the renormalized potential of the inter- 
action with the defects always becomes Gaussian; in the case 
of weak fluctuations, however, we return to Eqs. (5) and (6), 
which do not depend on the form of the potential. In the 
study of the thermal renormalizations it is therefore conven- 
ient to choose this potential right away in Gaussian form. As 
a result we have a Hamiltonian in the form 

Here A, = I,,//, and the soliton-lattice periods are set equal 
to 1. The potential of the defects in (7) is a set of barriers 
randomly placed at the points r, . The potential barrier in (7) 
can be represented in the form 

1 m2A 
V.A. = C exp (- y) exP (2nim (u-x) ) . (8) 

12n 

In contrast to the random field previously considered in the 
X Y  all the harmonicsp to m - l/Ao are contained 
in (8). The expansion (8) always contains the first harmonic 
(the "magnetic field") which decreases more slowly upon 
renormalization than the higher harmonics.1° The presence 
of the random magnetic field upsets the order in the lattice. 
Clearly, this is due not to the concrete shape of the barrier 
but to its localization in the region -Io. 

We average over the defects, just as in Refs. 6 and 7, by 
the replica method." Expanding the partition function in 
powers of Vo A d T  and averaging of the defects we can ob- 
tain the effective pinning potential. A contribution different 
from a constant appears in the second order and is of the 
form 

Here a and p are the replica indices. Expression (9) contains 
only terms that are linear in the defect density c. The higher- 
order corrections are small ifdoc( 1, i.e., if the probability of 
the appearance of two defects in a region of size I, is low. This 
condition is not critical for our present results, but simplifies 

the analysis. After averaging over the impurities we can fol- 
low the standard renormalization-group transformation 
pro~edure . '~  Assuming next the number of replicas to be 
zero," we obtain equations for the effective pinning poten- 
tial Wand for A: 

Here { = In r, where r is the renormalized cutoff parameter. 
Equation (10 for the barrier width is obtained directly after 
integrating over the short-wave part u. The first term in (1 1) 
is connected with the change of scale, and the second can be 
obtained by stipulating conservation of form of the potential 
barrier. No renormalization ofK takes place in this problem, 
in analogy with the situation in Ref. 7. The cause is the char- 
acter of the defects, which are analogous to the phase fluctu- 
ations in the X Y  model. It follows from (10) and (1 1) that 

We see that the effective potential W of pinning by defects 
increases almost linearly with increasing size of the region. 
Thus, the thermal fluctuations of the soliton lattice lead to 
an increase of the effective thickness of the soliton (A >A,) 
and to a decrease of the characteristic pinning energy W(r) 
(the potential relief is partly smoothed out by the fluctu- 
ations). It can be seen from (12) and (13) that the thermal 
effects become substantial at T 2  T *, where T * -2?rKdo2/ 
ln(K /Vo(cA0)"'). At T *( T( T,,,, - K thecorrelationradius 
rc ( T )  is determined with the aid of (12) (in analogy with the 
derivation of (6) for rc ) and is equal to 

where rc is defined in (6). Thus, at T*(T(K the soliton- 
lattice correlation radius is substantially larger than at 
T 5  T * (satisfaction of the condition T * (K is ensured by the 
smallness of A,( 1). 

It must be noted that real soliton lattices are anisotrop- 
i ~ , ~  but the anisotropy of the elastic properties and the differ- 
ence between the periods of these lattices in different direc- 
tions leads only to anisotropy of rc and does not change its 
dependence (14) on c, V, and A,. 

In the derivation of the expression for W(r) we used a 
power expansion in V , d T .  The qualitative estimate (5), 
however, hsows that this does not bound "from below" the 
temperature interval in which the results are applicable. On 
the other hand, no account was taken here of dislocations, 
meaning that the estimate (14) will be valid at TdK. 
Allowance for dislocations leads to a decrease of rc at T 5  K. 

We not also that the procedure used in this paper per- 
mits investigation of fluctuations of a 2 0  domain wall on 
account of pinning by defects on going from commensurate 
to an incommensurate phase.'' 

In the experiment, the subdivision of the crystal into 
regions will lead to an increase of the diffraction relfections. 
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According to (14), this width will increase like c1I2. This re- 
sult can be checked by experiment. 

The authors thank V. L. Pokrovskii for discussions. 
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