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We consider the theory of quasi-one-dimensional conductors with combined Peierls effect, when 
the dielectric gap in the electron spectrum is the result of two effects: the fixed potential A.  of the 
main structure of the chain and the strain field A i  due to the interaction of the lattice with the 
electrons. We investigate two semi-phenomenological models that describe systems with either a 
single electron or a noninteger number electrons per molecule of the conducting chain. Certain 
microscopic models of specific compounds are also considered. Exact solutions are obtained for 
the periodic structures formed upon appearance of an excess electron density n. In the limit n - 4  
we obtain various charged solitons that act as impurity carriers in the considered systems. We 
discuss the observed properties of certain polymers (polyacetylene and its derivative, polypheny- 
lene) and of compounds in which a charge-density wave develops against the background of a non- 
Peierls superstructure. 

81. INTRODUCTION 

Most quasi-one-dimensional conductors are, at least at 
low temperatures, in the dielectric state. In most extensive 
classes of these substances (charge transfer complexes 
(CTC), the KCP, MX, families, and others, this transition is 
due as a rule to spontaneous breaking of the system symme- 
try, resulting in the appearance of a superstructure with a 
wave vector equal to the diameter of the Fermi surface 2k,. 
On the contrary, among the polymer materials this pheno- 
menon (the Peierls effect) is observed only in the trans-(CH), 
polymer. Moreover, in each class of matter, with exception 
of the MX, families, there exist materials that should have 
dielectric properties even in their basic structure, without 
formation of lattice structures. Such are all the semiconduct- 
ing polymers except trans-polyacetylene (cis-polyacetelene, 
polydiacetylenes, polyphenylenes, polypyrroles, et others, 
see Fig. la-d. Among the CTC and KCP, such materials are 
those whose conducting properties are ensured by total 
charge transfer from divalent donors or acceptors to a con- 
ducting chain. Representatives of materials of this kind 
among the KCP are the so-called compounds with non- 
Peierls suberstructures,' and among the CTC this is the 
compound (DBTTF),(SnCl), (Ref. 2). In these substances the 
chemical formula and the structure are such that the flat 
Fermi surface lie from the very outset on the boundaries of 
the Brillouin zone, so that a gap is produced on the Fermi 
surface also in the absence of the Peierls effect. However, the 
widths of the forbidden bands in the electron spectra of these 
substances turn out usually to be of the same order ( -  lo-' 
eV for CTC, - lo-' eV for KCP, and 1-2 eV for polymers) 
as in analogous substances with spontaneous metal-insula- 
tor transitions. This observation, as well as the theoretical 
models presented below, allow us to assume that in these 
substances the interaction of the electrons with the lattice 
exerts a substantial influence on the properties of the dielec- 
tric state, although, unlike in Peierls dielectrics, it is not its 
only cause. We shall call such quasi-one-dimensional sub- 
stances dielectrics of the combined type, to distinguish them 

from the Peierls dielectric and of the opposite limit of a di- 
electric with a rigid structure. 

The deformable component in the lattice structure of a 
combined-type dielectric plays a substantial role because the 
Peierls state is characterized by strong self-trapping of the 
electron and hole excitations,, which leads to formation of 
deep polarons and charge or spin solitons (see the review495). 
The Peierls effect in dielectric of the combined type can also 
lead to strong self-trapping. The most interesting manifesta- 
tion of these effects can be the existence of bipolar on^^.^ and 
solitons with non-integer charge in systems of the type of 
Fig. lb. In particular, doping or other methods of charge 
transfer should lead, just as in trans-polyacetylene (see the 
review7) to the apperance of nonparamagnetic carriers. 

One can single out a few of the materials that are now of 
greatest interest and for which the available experimental 
data permit the construction of definite theoretical models. 
This is cis-polyacetylene (Fig. lb), which is of interest be- 
cause of the proximity of its structure to polyphenylene (Fig. 
lb), for which data on the nonmagnetic nature of the carriers 
are a~a i lab le ,~  and a family of crystalline polymer5-polydia- 
cetylenesg (Fig. lc). The optical properties of cis- and trans- 
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(CH), were compared in Refs. 4,6, and 10. A highly interest- 
ing case would be that of "orthogonal combination," when 
the ground state of the system is doubly degenerate (Ref. 6)." 
This class can include trans-isomers of polyphylacetylene 
(R=H, R'-phenyl in Fig. le),Io as well as of the polymer 
(C,HF, with R-H, R1=F, the synthesis of which was dis- 
cussed in the literature." 

In most cases, with the exception of polyphenylene and 
polpyrrole, the gap Eg in the electron spectrum is small com- 
pared with the total width D of the T-electron band (or of the 
d-electron band for KCP). This permits the use of semiphen- 
omenological continual models, whose parameters can be 
selected in accord with experimental data. Two characteris- 
tic cases can be singled out, designated hereafter as the mod- 
el C and the transition model AC. The model C, introduced 
in Refs. 4 and 6, takes into account the interaction of the 
electrons in the vicinity of the center or of the edge of the 
Brillouin zone with one nondegenerate deformation mode. 
This case is most typical of polymers. The AC model de- 
scribes systems in which the potentials of both the Peierls 
deformation and of the nonpeierls 2k, superstructure are 
superimposed on the initial state with non-integer number of 
electrons per cell @, # 1,2). Such a system can be regarded as 
a charge-density wave in a special case of "single commen- 
surability." 

The electronic properties of systems describable by 
models C and AC differ noticeably; this makes it possible in 
principle to determine their adequacy from experimental 
data. 

We investigate in this paper the ground state of systems 
described by the models C ($2) and AC ($3) at a finite electron 
density, and determine the character of the charge excita- 
tions. In $4 is given a microscopic derivation of the param- 
eters of the continual model for certain concrete examples 
and are discussed the most interesting of the known com- 
pounds. 

52. CONTINUAL MODEL CFOR A COMBINED STATE 

The electronic properties of a one-dimensional dielec- 
tric with a narrow forbidden band Eg can be described on the 
basis of the effective Hamiltonian ,. 

v i  
H= ( (1) 

which acts on the electron wave function $ = ($+,$-). (We 
use throughout a velocity u = 1.) In the homogeneous state 
A ( x ) = a    con stand^, = 21. 

The appearance of A (x) # 0 in a Peierls dielectric is the 
result of spontaneous breaking of the system symmetry as a 
result of the interaction of the metal electrons with the lattice 
deformations-the Peierls effect. In a dielectric of the com- 
bined type, A (x) can be represented in the form (see Fig. 2a) 

A ( x )  =A,+A, ( x )  eiq, A,=const, cp=const. (2) 

Here A, is the potential produced by the basic structure of 
the chain, for example by the rigid polymer skeleton of the 
bonds, Ai (x) is the contribution made to the potential A (x) 
by the deformation of the lattice stabilized by the interaction 

FIG. 2. 

with the electrons, and q, is the phase difference between the 
matrix elements of the interacting electrons with potentials 
A, andAi(x). 

The parameters A, and q, are determined by the atomic 
structure of the initial lattice. For certain concrete examples, 
the values will be determined in $4 below. A, = 0 for a 
Peierls dielectric (e.g., trans-(CH), , see Fig. la). 

The lattice deformation energy is determined only by 
the component Ai (x). Therefore the functional of the system 
energy should be of the form 

where g is the electron-phonon interaction constant, E are 
the eigenvalues of the operator (I), and p is the chemical 
potential of the electrons. We introduce the functions u, (x), 
v, (x), A,(x) and the parameter A, in accord with the formu- 
las (see Fig. 2) 

A ( 5 )  = [ - iAi+Az ( x ) ]  e*, 

&=A, sin cp ,  Az=Ai(x)  + A, cos cp, (4) 

( x )  ~ 2 - ' ~  (uE*uE). 

In terms of the variables U, , u, , A, and A, the functional of 
the energy (3) takes the form 

W { A  ( x )  ) =I { x, [ - i  ( z z ~ * v ~ ' + v ~ * z z ~ ' )  +Ai (u;u1 

where u, = u(E,x), v, = v(E,x), f '  = df /ax. 
The components u and v of the wave function satisfy the 

equations 

u E ' - A 2 u ~ = i ( E +  A ] )  vE,  v E t f  A2vE=i ( E - A t )  uE. , (6) 

From (6) follow equations for the functions u, (x) and u, (x): 

uEN+ (E2-Al2 -p )  u.E=O, p=A2'+A;, 

vEN+ (E2-Ai2 -4 )  UEZO, q=AZ2-A2' 
(7) 

and the normalization conditions 

Varying (5) with respect toA,(x) we obtain the self-consisten- 
cy condition 
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The solution of (lo) is 

The system of equations (6)-(9) determines the sought 
set of wave functions u, (x) and v, (x) and the deformation 
A2(x). We shall show that, just as the basic models of the 
Peierls effect, this functional system reduces to an algebraic 
one and is thus solved on the class of the so-called finite-band 
potentials.I4 The potentialsp and q in the Schrijdinger equa- 
tions (7) satisfy the stationary Kortewegde Vries (KdV) 
equation or one of the higher KdV equations.14 

For the system ((6)-(9) to be solvable in the class of fin- 
ite-band potentials it suffices that the system deformation 
energy [the last term of (511 be representable in the form of a 
linear combination of integrals of the KdV equation.I5-19. 
For the case of a Peierls dielectric (A, = 0) the deformation 
energy was of the form W,, ( A  ')/$ and was equal, apart 
from a constant factor, to one of the KdV integrals. It was 
shown in Refs. 18 and 19 that the functional (5) at A, = 0 has 
a minimum on a potential with one (in E ')forbidden band. In 
the model considered by us the deformation energy contains 
an additional term I = (A,(x)), which is not in the general 
case a KdV integral. We shall prove that nonetheless, in the 
single-band case the functional I is a KdV integral. In this 
casep(x) and q(x) satisfy the stationary KdV equation, and 
consequently A2((x) satisfies the stationary modified KdV 
(MKdV) equation. The time-dependent MKdV equation 
takes in the Hamiltonian formulation the form 

where I, is the KdV integral. It follows from this equation 
that dI/dt = 0, i.e., I i s  an MKdV and a KdV integral. In the 
Appendix we shall find the relations between the integrals 
I-  ,, I,, and I and derive equations for the extremum of the 
functional (3), without resorting to the coordinate form (9). 

We define the boundaries of the electron spectrum 
El <E,(E, as shown in Fig. 3. The wave functions u, (x) and 
v, (x) and the potentials p(x) and q(x) can be expressedI4 in 
terms of a function y(x) defined in the forbidden band (E,', 
E:). The function y(x) is determined from the equation 

where 

R ( y )  = ( y -E t2 )  (7-E22) ( y - E s 2 ) .  

FIG. 3. 
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y  ( x )  =E3'- (Es2-EZZ)lsn2 ( x  (Es2-EZ2)  'la, r )  , 

r= [ (E t - -E ,2 ) / (EQZ-El2 )  ]'I2, 
(1 1) 

where sn (f ,r) is the Jacobi elliptic sine. 
The potentials q(x) andp(x) are expressed in terms of the 

function y(x) in the following manner: 

q ( x )  =Ei2+EaZ+E,2-A12-2y ( x )  , (12) 
p ( x )  =E,2+E,Z+E,Z-A,2-27 ( x + x O ) .  (13) 

The parameter x, will be determined below. From (12) and 
(13) we can obtain A2(x): 

A, ( x )  = [E12+E22+Es2-Ai2-y ( x )  -y  ( x + x O )  ] l h .  (14) 

Following the method of Ref. 14, we obtain for the wave 
functions u, (x) and v, (x) expressions that satisfy the norma- 
lization condition (8): 

where c = const and Icl = 1. The normalization factor A ,  is 
equal to 

where L is the length of the chain. Substituting the expres- 
sion for (x) from (1 1 ) in (16) we obtain 

AE=L[E2-Ei2 -  (E3'-Ei2) E ( r )  lK  ( r )  1, (17) 
where K (r) and E (r) are complete elliptic integrals of the first 
and second kind. 

We obtain now the value of the parameter x,. We note 
that it follows from (6) and (15) that 

Substituting (18) in (14) we have after simple transformations 

1 k 
x0 = - k F [arcsin (E;-A;)%/* * 9 

We obtained a periodic solution for the deformation 
A,(x) [Eqs. (14) and (18)], with a period 

The wave functions u, (x) and v, (x) are characterized by a 
wave vector or by a momentum P (E '). From (1 5) we obtain 



For density of states we obtain from the general theory14 

The E '(P ) spectrum is shown in Fig. 3. There are two allowed 
bands with respect to E 2: El2 < E < E22 and E32 < E 2. From 
(21) it follows here that 

P(El" =0, P(Ez2) =nk/2K(r). (23) 

In addition we have P (E,2) = P (E22). 
With the aid of (23) we find that the total number of 

states (with allowance for the spin) in each of the allowed 
bands - E2 < E < E l  and El < E < E, is equal to 

n= (2/n) P (EZ2) =k/K (r) . (24) 

Equation (24) yields the first relation between the three pa- 
rameters El ,  E,, and E,. Substituting in (9) the expression for 
A2(x) from (18), for v, (x) from (15) and for u, (x) from (6) and 
using (lo), we obtain the equation 

Jly (x)  i-Jz=O, (251 

where 

A, cos cp 
Jz = ---- 

R'" (AIZ)  

E<ir 

Equation (25) is identically satisfied if Jl = J2 = 0. The sum- 
mation in (26) and (27) is with the aid of (22). The sum in (26) 
diverges logarithmically. We regularize it by subtracting 
from the equation Jl = 0 a like equation with the parameter 
values 

Ei=E2=A,=0, E8=A,, A,-&,e-'Ih, (28) 

corresponding to the homogeneous state in the Peierls model 
(A, = 0) with the same coupling constant /2 and with an oc- 
cupation number n = 0. Here 24, is the gap in the Peierls 
dielectric. As a result we get from (26) and (27) the relations 

where F(P,t ) and I7 (P,r:t ) are elliptic integrals of kind I and 
I11 respectively, 

Equations (24), (29), and (30) determine the spectrum param- 

eters El ,  E2, and E, in terms of the constants A,, A, ,q,J as 
functions of the electron density n. 

The ground-state energy Wo(n) is determined by the val- 
ue of the functional (3) if relations (24), (29), and (30) are 
satisfied. Using (22), we write Wo(n) in the form 

/ (As -- A, GOS cp)' L-I [W,  (n) - W ,  (O)] = 
K~ g2 > 

where 2 j  is the gap in the homogeneous state of the consid- 
ered combined Peierls model. 

In (3 1) we subtracted from the energy (5) the value of the 
energy of the same system at n = 0. In the calculation of (3 1) 
account must be taken of the connection between the cutoff 
momentum P,,, and the cutoff energy Em (see Ref. 18). It can 
be easily obtained, e.g., from Eq. (7): 

Calculations yield 

L-'W,(n) 

1 2kE (r) 
+-EzkE(P,tj+---- 
n n 

Here 17 (a,r) is a complete elliptic integral of kind 111. 
We obtain the distribution of the charge density 

p (x) =ez (v;vE+uE*~E)~ 
E C l l  

where e is the electron charge. Substituting in (34) Eqs. (lo), 
(1 5), and (22) we get 

eK (r') Esz-E,Z 
p(x)-n =-- 

k 
{sn2 (kx, r) f snz[k (rfx.)  , r] 

n 

x{sn" k (xf x,) , r] -sn2(kx, r)).  (35) 

Equations (lo), (1 5), (1 8), (19), (24), (30), (33), and (35) deter- 
mine the principal physical characteristics of the system. At 
A, = 0 they go over the corresponding expressions obtained 
earlier16 for the Peierls model. 

At A, + O  the orthogonal case q, = n-/2 is singled out. In 
this case, as already indicated, the system is symmetric with 
respect to the substitution A i - +  -Ai, just as at A, = 0. 
From the self-consistency condition it follows at q, = n-/2 
that E, = A, =Ae ,  and the equation for the deformation 
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A,(x) takes the simple form: 

which corresponds to a domain structure in a system with 
doubly degenerate ground state. 

In the low density limit n-0 we can obtain the expres- 
sions of Ref. 6 for spinless excitations. The self-consistency 
conditions (24), (29), and (30) go over into the relations 

A" Eoz-hi2 Eo 
ln -z= -- arcsin T , 

A. ED (AZ-ED2) 'la A 

where 2 = E,,E, = E l  = E,. 
Equation (37) determines the value of the gap in the 

homogeneous state. Equation (38) determines the position of 
the local level E,. Separating from the expression (33) for the 
energy the term proportional to the density n, we obtain the 
chemical potential or the excitation energy per electron: 

In the general case at e, # ~ / 2 ,  A, # 0 the periodic structure 
(11) and (18) describes as n-0 a lattice of solitons of the 
bipolaron type, with characteristic dimension 

and with density n/2, and hence with activation energy 
E,,, = 2p. From (35) we find readily that the bipolaron 
charge, as expected is e* = 2e. It is remarkable, however, 
that at e, # 0 the distribution of the charge is asymmetric and 
the bipolaron has a dipole moment 

The presence of the dipole moment is natural, for in the 
tight-binding limit the system considered by us goes over 
into a chain of molecules with heterogeneous chemical bond. 
In the orthogonal case e, = ?r/2 we have x,=: l/n as n-0, 
and the deformation (36) describes a lattice of kinks with 
period l/n, i.e., the kink activation energy, as a result of (39), 
is equal to 

From (35) we readily calculate the charge of the kink: 

rameters of the medium. (The remainder of the charge is 
uniformly distributed with a density (e - e*)/L that does not 
depend, in contrast to the local charge (42), on the kink posi- 
tion''.) Only this fraction e*/e of the elementary charge can 
contribute to the current. Equations (41) and (42) agree with 
the results of Refs. 6 and 20. 

The foregoing results go over into the equations given 
without proof in Ref. 6, if one introduces the parameter or 
a connected with E, by the relations 

Eo=6 cos P= [A,' sin2 cpf (Az-Ae2 sinz cp) ch-2 a]  '. 
We recall also that according to the results of Refs. 4 and 6 
the spin excitations of a system with n = 0 constitute, at 
e, # ~ / 2 ,  polarons with spin 1/2 and charge + e.  Ate, = ~ / 2  
the spin excitations are solitons of the kink with a singly 
filled level E, =A ,. They have a spin 1/2 and a fractional 
charge + ( 2 / ~ ) e  arcsin(A , /A ). 

In conclusion we dwell briefly on the parameters of the 
homogeneous ground state (n = 0). It follows from (38) that 
in the orthogonal case (e, = ~ / 2 )  the following relation al- 
ways holds 

i.e., the value of the gap with its value A ,  for a Peierls dielec- 
tric with the same coupling constant. Consequently A, # O  
and spontaneous dimerization takes place only if A ,  <A,. 

At e, = n-/2 we always have A, #O, and in the weak 
binding limit (A(cos e,) we have Ai >Ae,  i.e., at a sufficient- 
ly narrow forbidden band the Peierls effect becomes deci- 
sive. 

53. THE AC TRANSITION MODEL 

We consider in this section systems with a combined 
Peierls effect which develops on a chain with a noninteger 
number p, of electrons per molecule: p, # 0, 1, 2. 

In such systems there should appear a charge density 
wave (CDW) with a wave vector 

qo=2kj0' = (nla,) po, 

where a, is the period of the undeformed chain. We shall be 
interested in cases when simultaneously with the CDW the 
chain is modulated by a fixed periodic perturbation having 
the same wave vector go. As a rule this situation arises in 
systems where the charge transfer to the conducting chain is 
from chains of divalent ions whose density is po/2, i.e., the 
period coincides with 2?r/qo. 

Regarding both sources of the superstructure as pertur- 
bations, we can separate the deformation p(x) and the elec- 
tron wave functions $(x): 

5 (x) mA (x) exp (iqox) +Aa (x) exp (-iq,x), 

$(z) =$+ (x) exp (iqox/2) f $- (x) exp (-iqox/2). 

The system energy functional should be of the form 

where 

which turns out to be fractional and dependent on the pa- 
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The energy levels E in (44) should be determined as the eigen- 
values of the Hamiltonian (I), where the matrix element A (x) 
should be regarded as an arbitrary complex quantity, and the 
constants B and C are microscopically determined complex 
quantities. The appearance in the functional (43) of the in- 
variants S WA, and S WAC in addition to the main functional 
WA of the Peierls-Frohlich model is due to the existence of a 
non-Peierls superstructure, as a result of which q, becomes 
the reciprocal-lattice vector. 

Obviously, the condition that the lattice be stable prior 
to the turning on of the electron-phonon interaction imposes 
the restriction IB / < 1. Considering the increment SWAB 
which corresponds to the model of "weak twofold commen- 
~urability,"'~ we see that the electrons interact with two 
phonon modes A + and A -, to which correspond different 
interaction constants A + and A - : 

It is easy to verify that at lB I ? A  the interaction with the. 
electrons is substantial only for the deformation A -, which 
is characterized by the largest couping constant A_. The 
deformation A + remains fixed and is determined from the 
condition that the lattice part of the functional (43) be a mini- 
mum. As a result we return to the model C ($2) with the 
parameters 

cos (a-2p) sin (a-2P) 
Ai=A, cos cp = 

1+IBI-I 
, A,sincp= 

l-IBI-' ' 

For a weak non-Peierls superstructure IB 14 1 and 
I C 1 - I B / 'I2, SO that both phonon modesA + and A - are now 
significant. The small perturbations (45) and (46) can affect 
only the phase of the deformation A (x): 

A (x) =Aoe'lX(x)-al, A o - ~ r ; e - l l b = ~ ~ n ~ t .  

In the functional WA it suffices here to take into account 
only the changes due to the gradients x (x) of the phases. 
Bearing in mind that IC I - IB 1 'I2, we can neglect the term 
6 W,, and obtain the effective functional 

(48) 
The chemical potential ,u is determined from the specified 
density n of the supplementary electrons 

n= (p-p,)/ao=<~')/2n. (49) 

The ground state and the elementary excitations of the func- 
tional (48) are well known (see, e.g., Ref. 22). At small n the 
state of the system is characterized by a lattice of solitons 
with a period n/2. The charge excitations of the system at 
n = 0 are individual solitons with a phase shift f 2a, a 
charge f 2e, and an energy 

We consider now the question of spin excitation in the 
ACmodel. We recall that3*20 in model A the spin excitation is 
an uncharged amplitude soliton with reversal of the sign of 
A (x) in the region -lo = v/A,. It is easily seen that in this 
region the perturbations SWAB and S WAC are negligible in 
terms of the parameters IB I/Ag 1 and I C l/A,g 1. However, 
the influence of the perturbations S WAC becomes substantial 
at large distances, since this term admits in the ground state 
of only phase changes that are multiples of 2a, whereas a 
phase shift a takes place in the vicinity of the soliton core. As 
a result the phase x should become equalized at large dis- 
tances, and the final form of the soliton becomes 

In analogy with the influence of the ordering between 
chains, investigated in Ref. 20, we can determine the distri- 
bution of the phasex (x) from the extremum condition for the 
functional (48) with boundary conditions 

x (0) =n/2, x (--) =0, x (+-) =0, 2n. 

We find that at x < 0 

x (x) =-4 arctg tg - edi , [ ", 
and at x > 0 two cases are possible: 

x (x) =-x (-x) , x (x) = 2 n + ~  (--x) . (50b) 

In the case (50a) the soliton acquires a charge e concentrated 
in tails of size I${,. In case (50b) the soliton as a whole re- 
mains neutral, and the charges f e/2 in the left and right 
tails of the solitons cancel each other. 

64. MICROSCOPIC MODELS FOR CERTAIN COMPOUNDS 

We consider in this section simple microscopic models 
for certain important cases, and deduce from them the phen- 
omenological models investigated in $52 and 3. The most 
interesting are the systems in which the spontaneous lattice 
deformation is via displacement of the molecule positions, 
and the external fixed potential is due to the nonequivalence 
of the lattice sites. Such systems are divided into two types: 
substances with one electron per molecules,p, = 1, shown in 
Fig 2e, and substances with fractional numberp,, e.g.,' the 
compound (DBTTF),(SnCl,), with 0 = 5/4. (The anions 
SnCl, give up two electrons each to the conducting stack of 
DBTTF molecules.) 

In the tight-binding approximation such a system can 
be described by an energy functional of the displacements 
un: 

In the cases of interest to us, the molecular potentials v, are 
fixed and periodic with a period 2/p0. In the case of small 
forbidden bands one can transform to the slowly varying 
complex functions c(n) and $, (n), writing 
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$"=$+ ( n )  exp (inpon/2) +$- ( n )  exp (--inpon12), (52) 
V ( n )  =Vo+ V1  exp (inpan),  V,, V,=const. 

In the approximation (52) we obtain from (5 la) an equation 
for the eigenvalues with the Hamiltonian (2) at 

E=~+2t cos (npo/2) -2V,, v=2t sin(.rlpo/2), 

(53) 
A =2Vl-2C ( n )  exp (--inp0/2). 

The functional (5 1) takes the form 

Atp, = 1 the functions C (n) and V, are real, and we obtain 
from (I), (53), and (54) the functional of the model C in the 
orthogonal case p = a/2 with A, = 2V, = const, 
A, = 2C (n). 

For fractional values ofp, the functions C (n) is arbitrary 
and complex, while V, is a complex constant whose phase 
depends on the shifts of the ion sublattices and of the con- 
ducting chains. As a result we obtain the functional (43)-(46) 
of the AC model at B = 0 and C = 2 V,/g2. A finite value of B 
is obtained only when fourth-order anharmonicities are tak- 
en into account. 

55. CONCLUSION 

In the present paper and in Refs. 4 and 6 we investigated 
the ground state and the elementary excitations of systems 
with combined Peierls effect. It is based on the assumption 
that the assumed combination of internal and external 
breaking of the symmetry of the ground state of a quasi-one- 
dimensional conductor. The concept of a combined state can 
be useful also in an analysis of systems where the spontane- 
ous breaking of the symmetry is not tracked explicitly, such 
as polymers of the polyphenylene and polypyrrole. The ef- 
fect considered is expected to be strong in all cases when the 
optical gap in the spectrum is small compared with the total 
width of the electron band. An exception is the special case 
of orthogonal mixing, when the internal symmetry breaking 
(dimerization of the bonds) is spontaneous, but takes place 
only if the electron-phonon interaction constant exceeds a 
certain threshold or, equivalently, the external symmetry 
breaking (dimerization of the sites) is weak enough. This is 
precisely why the combined state may also not be realized in 
the as yet little investigated physical compounds such as the 
polymers of Fig. Id. In the general case the response to the 
external component A, should be strong and tend to in- 
crease the full gap. This result agrees with data on isomers of 
polyacetylene, where 24, = 1.45 eV in trans-polyacetylene 
and 2 j  = 2.05 eV in cis-polyacetylene. In the case of poly- 
diacetylenes, the gap 2 1  = 1.6 eV is too close to the value of 
the gap in trans-polyacetylene, since it must be borne in 
mind that the field A, is in this case certainly stronger than 
in the case of cis-polyacetylene. It is possible that the struc- 
ture of the .rr band in polydiacetylene differs substantially 
from that in polyacetylene, so that the estimate of 24, for 
polydiacetylene from the gap in trans-polyacetylene is not 

valid. For example, the interaction constant can decrease 
because of the rigidity produced by the three-dimensional 
ordering of he large radical groups R-Fig. lc. 

The most general attribute of the combined state can be 
taken to be that no spin is possessed by the extrinsic carriers, 
namely the bypolarons in the general model C, the kinks in 
the orthogonal case, and the 2a-phase solitons in the AC 
model. In the last two cases there should also be observed, in 
analogy with spin diffusion in trans-(CH), , a particularly 
high degree of anisotropy of the mobility, due to the topo- 
logical nature of the carriers. The intrinsic carriers of both 
the current and the spin in the general model C should be 
normal polarons.4~6 In the orthogonal case, the intrinsic and 
extrinsic charge carriers coincide, and the spin carriers 
[kinks with fractional charge (42)] differ somewhat in ener- 
gy. The distinguishing property of the AC model is the small- 
ness of the charge-carrier activation energy compared with 
that of the spin carriers (2A0/a) and with the half-width A, of 
the optical gap. The agreement of the activation energies in 
the paramagnetic susceptibility and in the conductivity, ob- 
served2 in the compound (DBTTF),(SnCl,),, indicate that 
the model C is more likely to be adequate than AC. This 
means that the periodic potential of the ion sublattice is not 
small as assumed in the microscopic model of $3. 

APPENDIX 

We derive below the self-consistency conditions (26) 
and (27) by the method of Refs. 17 and 19. The derivation is 
based on the known spectral properties of a Schrodinger 
equation with a periodic potential.I4 We present the neces- 
sary results. For Eqs. (7) there exists the following expansion 
of the momentum P of the wave function u, or v, in powers 
of 1/E as E--+ w : 

where the functionals I,, are known also as integrals of the 
KdV equation. We shall need some of them: 

For the variation SPof the momentum for an m-band poten- 
tial (m is the number of forbidden bands) with band boundar- 
ies E f we have the formula 

where each function y, ( x )  has definition region in the sth 
forbidden band. On the other hand, from (A. 1) as E+ w we 
have 

It is stated that the m + 1 integrals I,, . . ., I,,, are indepen- 
dent. For a one-band potential (m = EjZ = El2, EZ2, E,') we 
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obtain from (A.2)-(A.4) 

R ( E )  = ( & - E l 2 )  ( e -EZ2)  ( e -E ,2 ) ,  &=EZ, (A.5) 

6P= [61-t ( - ~ E + s )  +1/26Z0]/2R'" ( E ) ,  

The self-consistency conditions are obtained by varying the 
energy functional (3) at fixed periods, i.e., at specified 
numbers of states in each allowed band: 

(Az-A, cos r p )  
6wph=6 J 

g2 
2 

= - [I A ~ S A ,  dx-A.  cos rpj 682 d x ]  . 
g 

(A. 10) 

For the problem to be integrable, the variation of the defor- 
mation energy (A. 10) must be represented as a linear combi- 
nation of the variations of the integrals I-, and I,, which by 
virtue of (A.3) determine the first term in (A.9). To do this we 
use the fact that at m = 1 the potential U should satisfy the 
stationary KdV equation14 and consequently the deforma- 
tion A ,  should satisfy the MKdV equation: 

A"; -6A22Az'+ AAZ1=0.  (A. 11) 

Using (A. 1 1)  we have 

A2"-2A23+AAz=B. (A. 12) 

For the constants A and B we easily obtain the expressions 

A=2 ( s -3At2 ) ,  B=4Rrh ( A t 2 ) .  (A. 13) 

With the aid of (A.7), (A.8), (A,12), and (A.13) we obtain 

-610-2 (s-2Ai2)  61-1=2R1h ( A t 2 )  61. (A. 14) 

The relation (A. 14) establishes a linear connection between 
I, and the integrals I, and I-, in the particular case of a 
single-band potential. Substituting (A. 14) and (A.7) we ob- 
tain the following expression for the variation of the defor- 
mation energy: 

Substituting (A.7) and (A. 15) in (A.9) we get 

1 61-1 (-2EZ+s) +?/,'I0 dE2 = - 
- J ,,.(E2, 

-61-1 
P 

6Zoi-2 (s -2At2)  61-t 
'OS 

4f i 'h  (A, ' )  
(A. 16) 

Equating in (A. 16) the coefficients of the independent varia- 
tions SIP,  and 61, we obtain the self-consistency conditions 

2 z A ,  cos cp dEZ 
=R1" ( A t 2 )  -,- , 

gz E R  ( E 2 )  

(A. 17) 
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