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The low-temperature (to -40 mK) electric conductivity of n-Ge is investigated in the region of 
the metal-insulator transition induced by compensation. The metallic conductivity vanishes in 
continuous fashion near the transition. The power-law temperature dependence of the resistivity 
p (T)  in the critical region acquires on the insulator side at sufficiently low temperatures an activa- 
tion dependencep(T) a exp(T,,/T)", x ~ 0 . 5 .  The latter dependence is interpreted within the 
framework of the hopping conduction model with variable hop lengths in the region of the Cou- 
lomb quasigap. The critical behavior of the metallic and activated conductivities are obtained and 
compared with the predictions of scaling theory, as are the parameters that determine these 
conductivities, viz., the correlation length, the Coulomb gap, the localization radius, and the 
static dielectric constant. 

1. INTRODUCTION 

The transition of any system from a metallic into an 
insulator state is associated with carrier localization on a 
Fermi level. If the localization is induced by a disordering 
factor, the transition is frequently called an Anderson transi- 
tion.' An example, in particular is the known single-electron 
"Anderson model." The Anderson transition is one of the 
most pronounced and least understood in the physics of dis- 
ordered systems, because in real systems, as will be shown in 
the present paper, it is essentially a many-electron process. A 
convenient model object for the study of the transition is a 
strongly doped semiconductor having metallic conductivity, 
in which compensating impurities that capture the majority 
carriers are introduced in set doses. The fluctuating electro- 
static potential produced in the system because of the ran- 
dom distribution of the impurities is in fact the disordering 
factor that leads to localization of the uncompensated ma- 
jority carriers. lv2 

In a strongly doped and weakly compensated semicon- 
ductor, the Fermi level EF is situated in the region of the 
delocalized states of the majority or impurity band, while the 
energy boundary between the delocalized and localized 
states (the mobility threshold or the percolation level) is in 
the corresponding tail of the density of states. With increas- 
ing compensation this boundary and EF shift towards each 
other. When they coincide the system goes over into the in- 
sulating state. This question was first considered qu?ntita- 
tively in the models of Mott' and of Shklovskii and Efros.' 
They constitute in fact a respective extrapolation, from the 
insulator side where the Anderson criterion for localization 
in the impurity band is used, and conversely, from the metal 
side with bands that are bent by the large-scale (poorly tun- 
neling) fluctuating potential. In~estigations~-~ of compen- 
sated Ge gave no unequivocal answer concerning their 
equivalence. They showed, on the one hand, the fluctuations 
of the potential on the transition can tunnel quite readily at 
real doping levels, i.e., are not large-scale. On the other 
hand, they showed that, nonetheless, the uncompensated- 
carrier density n, that is critical for the transition increases 

with the doping in accordance with the classical percolation 
theory.' 

Mottl predicted, in the framework of quantum prem- 
ises concerning the mobility threshold, a jumplike vanishing 
of the metallic conductivity u(0) = lim u, at the transi- 
tion, and the existence of metallic conductivity as a finite 
limit: 

OM= lim o(0). 
n-rno+O (1) 

From the Anderson localization criterion and the 
Kubo-Greenwood formula, or with the aid of the Drude for- 
mula for the electric conductivity of a metal and the Ioffe 
and Regel idea that the minimum mean free path in a system 
cannot be smaller than the average distance between scatter- 
ing, it was estimated in Ref. 1 that UM = Ce2/fil, where I is 
the average distance between potential wells or scattering 
centers, Cz0.05, and the remaining notation is standard. 

From classical percolation considerations follows a 
continuous vanishing of u(0) at the transition, owing to the 
rarefaction of the percolation net up to formation in this net 
of one-dimensional channels in which metallic condu~tivity 
is no longer p~ss ib le .~  The conclusion that there is no break 
in u(0) follows also from the recently developing scaling the- 
ory of metal-insulator transitions (see, e.g., Refs. 7 and 8), 
which describes the critical behavior of the system by ana- 
logy with second-order phase transitions, in the form of 
power functions @ (6 )of the coherence lengthg = g * I  1 - n/ 
n, / "l, where 6 * and vt are constants, ie., 

In particular, for metallic conductivity u(O), we have 
according to Ref. 7, v,,, z - ye, u*(O) = Au,, where A z 1. 
Recent experiments9 on uncompensated Si:P have shown 
that u(0) does not become discontinuous at the transition and 
can be described by the scaling formula (2) with 
U*(O)Z 13uM (at C = 0.05) and v,,! ~ 0 . 5 5 .  According to 
 measurement^'^ on Ge:Sb, introduction and increase of the 
compensation K lead to an increase of y,,, and to a decrease 
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ofA, viz., As3 .3  and vdO, z 1  at Kz0.55. To be sure, the 
error of the results of Ref. 10 is larger than in Ref. 9, since the 
measurements were made at higher temperatures and the 
samples were in a state farther from the transition. It is possi- 
ble that because of these circumstances no values of a(0) 
smaller than the calculated a, were observed in Ref. 10. 

The aforementioned Anderson-transition model are 
unified in a single-electron approach in which no account is 
taken of carrier interaction. Recently McMillanl' and oth- 
ers attempted to include such polarization effects in the scal- 
ing theory of the transition. McMillanl' used the result of 
Al'tsuler and Aronov12 who, considering the interference 
between the electron-electron interaction and elastic scatter- 
ing of electrons, reached the conclusion that a square-root 
singularity (pseudogap) exists in the density of states at the 
Fermi level on the metallic side of the transition and gives 
rise to anomalies of certain properties of the system. Experi- 
mental proof, obtained by tunnel spectroscopy, of the exis- 
tence of such a singularity, was reported in Ref. 13. Kaveh 
and Mott14 attributed to electron correlation the observed 
abrupt decrease of a(0) at the transition in uncompensated 
Si:P (Ref. 9). Generally speaking, the role of Coulomb inter- 
action was recognized considerably earlier for localized car- 
riers (see, e.g. Refs. 2, 15-17), where it leads to the appear- 
ance of the so-called Coulomb gap in the spectrum of the 
density of states for single-electron excitations, and accord- 
ing to certain calculations also for multielectron excitations 
of the polaron type. Such a gap should appear in the low- 
temperature thermodynamic and kinetic properties of the 
system on the insulator side of the transition. In pqrticular, a 
stronger temperature dependence is expected for the con- 
duction via hop-overs of carriers with variable (when the 
temperature varies) activation energy E and with hop length r 
(the so-called variable range hopping, VRH), compared with 
the known Mott law In a=  T -'I4 for noninteracting elec- 
trons, when the density of the localized states near the Fermi 
level is finite and constant. 

This was proved experimentally by one of us in Refs. 3, 
4, and 17. It was concluded there that in compensated Ge 
there exists on the insulator side of the Anderson transition a 
parabolic quasigap g = g,(E - E,)' (go is a constant) in the 
density of the localized states in the vicinity of the Fermi 
level E,. The estimate obtained for the coefficient go at 
strong compensation,was in fair agreement with the predic- 
tion of the theory of Efros and S h k l ~ v s k i ~ . ~  Another impor- 
tant empirical result3-' was the observed collapse of the gap 
and increase of the coefficient go as the transition was ap- 
proached (as the localization was weakened), owing to the 
weakening of the Coulomb interaction. Measurements4 of 
compensated Ge having another level and doped with a ma- 
jority impurity of different type and chemical properties 
have shown that go is a universal function, independent of 
these factors, of the ratio n/n,, meaning also of the coher- 
ence length f .  This indicates that the gap-collapse dynamics 
as well as the critical behavior of other properties of compen- 
sated Ge near the Anderson transition can be described 
within the framework of scaling theory. The main task of the 
present investigation was in fact to shed light on this ques- 
tion." 

2. PROCEDURE AND MEASUREMENT RESULTS 
To introduce the compensating Ga impurity in n-Ge in 

measured doses we used, as in Ref. 3, neutron doping of n- 
Ge:As having initial arsenic density -6X 1017 cmP3 and 
grown by the Czochralski method. The resultant density N 
of the principal impurity and the degree of compensation K 
were determined by the procedure described in Ref. 3, the 
only difference being that we used a more accurate ratio, 0.3, 
of the densities of the donor and acceptor states introduced 
in the course of the neutron doping.19 The set of compensat- 
ed n-Ge samples had the parameters Nz(6-7)X loi7 cm-3 
and 0.7 2K 2 0. They were cut in a plane perpendicular to 
the growth axis [ I l l ]  and measured -0.4 X 1 X 7 mm. 

The electric conductivity was measured with direct cur- 
rent, and at T S  l K also with an S-72D bridge at 237 Hz. 
When necessary the measurement currents and voltages 
were decreased to - 1 nA and - 10 pV, to locate the operat- 
ing point on the ohmic section of the current-voltage charac- 
teristic. In this case, as a rule, the dc power dissipated in the 
sample exceeded by more than an order of magnitude the 
power released in the bridge measurements. Equality of the 
results of both measurement methods was therefore evi- 
dence that the samples were not overheated, as was also veri- 
fied by measuring the current-voltage characteristic. The 
temperature was determined with a KG semiconductor 
thermistor in the interval 77.4-4.2 K, from the saturated 
vapor pressure of He4 and He3 in the interval 4.2-0.3 K, and 
from the magnetic susceptibility of the paramagnetic salt 
cerium magnesium nitrate. Temperatures lower than 1.4 K 
were obtained2' in an He3-He4 dissolution refrigerator. 

Figure 1 shows a family of the temperature depen- 
dences of the resistivity p ( T )  for typical investigated sam- 
ples.3' We shall be interested here exclusively in the low- 
temperature impurity conductance due to electronic 
excitations near the Fermi level. Corresponding to this con- 
ductance3 is the temperature region 5: 30 K on the left of the 
inflection points of the curves in Fig. 1. The electric conduc- 
tance of samples 1-5 at sufficiently low temperatures is me- 
tallic and finite, and special experiments have shown that 
this is not due to overheating of the samples or to surface 
conductance. Samples 6-10, and at certain temperatures 
also sample 5, show the activation temperature dependence 
typical of the insulator side of the transition, wherein the 
derivative ldlogp/dlogT I increases with decreasing tem- 
perature. The activation energy, a measure of which is this 
logarithmic derivative (see below) increases with increasing 
distance from the transition. In samples 5-7 that were close 
to the transition the activation conductivity is patently 
transformed into power-law conductivity with rising tem- 
perature. The dashed line of Fig. 1 shows the calculated (at 
C = 0.05) value of the reciprocal metallic conductivity a;'. 
It can be seen values o(O)(a, are observed (sample No. 5) 
thus contradicting the Mott premise that a, exists and 
meaning that u(0) tends to zero continuously. 

3. ANALYSIS OF THE TEMPERATURE DEPENDENCE OF THE 
RESISTANCE 

We shall investigate the temperature dependence of the 
resistivity by analyzing the temperature dependence of the 
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FIG. 1 .  The resistivity of n-Ge in the region of a metal-dielectric transi- 
tion produced by compensation with direct current (e) and at 237 Hz (0). 
The numbers on the curves here and in the other figures correspond to the 
numbers of the samples. The density n, in units of lo1' cmP3 is: 1 - 5.75; 
2-4.5; 3-4.15; 4-4.0; 5-3.85; 6-3.65; 7-3.3; 8-2.85; 
9 - 2.15; 10 - 1.8. Dashed line--calculated value of u ~ ' ,  dotted-data 
from Ref. 27 for Ge:Sb. 

reduced activation energy of the conductivity WEE/ 

k T  = T - 'd In p/dT - ', using a method developed by one of 
~ s . ~ ~ 9 ~ 9 ' ~  The method makes use of the circumstance that 
most known laws governing the variation ofp(T) can be ob- 
tained as particular cases of the general expression 

p ( T )  =BTPm exp (TOIT)", (3) 
where B, m, To, and x are constants. In particular, for the 
VRH regime in the region of the quasigap 
g(E) = go(E - E,)" for localized states in the vicinity of the 
Fermi level we have x = (n + l)/(n + d + I), where d is the 
dimensionality of the space." The essence of the method is 
to investigate in place ofp(T) the quantity 

w (T)  =m+x (TOIT) ". (4) 
To proceed now to the analysis of the doubly logarithmic 
p(T)  curves of Fig. 1 it must be recognized that 
w = - a logp/a log T. For an activation (exponential)p(T) 
dependence, when the second term in the right-hand side of 
(4) is much larger than the first, we have 

log(w) z log(xTG) - x log T so that by plotting log w vs 
log Twe can easily find the value ofx. The activation energy 
E ( T )  characteristic of the VRH regime is constant if the result 
is x = 1, and variable at 0 < x < 1 (it decreases with tempera- 
ture). It is then easy, in accord with (4), to determine the 
value of To from the equation To = (w/x)'/" at T = 1 K or 
from the equation To = (l/x)"" T at w = 1 (at x = 1 both 
determine the usual constant activation energy). In the case 
of a power lawp(T) dependence, however, w = m, i.e., we get 
the exponent directly. 

Figure 2 shows the temperature dependences of w(T), 
obtained by graphic differentiation of the curves of Fig. 1. 
Those with primed numbers were taken from Ref. 3. They 
correspond to higher compensations and are needed to sin- 
gle out distinctly the characteristic region. Curve a of Fig. 2 
shows the high-temperature limit where the conductance is 
via low-energy electronic excitations in the vicinity of the 
Fermi level. At higher temperatures the energy of the cur- 
rent excitations increases quite steeply. 

If the temperature is low enough ( T <  T, , to the left of 
curve c), a region of linear dependence of log w on log T 
exists on the insulator side of the transition and corresponds 
to an exponential variation ofp(T) with a variable activation 
energy (3) with x ~ 0 . 5 :  

P (T )  =PO exp (TOIT) '". (5) 
The values of x in the region where the curves of Fig. 2 are 
linear were obtained also independently with a computer, 
using the experimental data (i.e., the points, and not the 
curves as above) described by the approximating formula (3) 
and using least squares. The results are given in parentheses 
in the caption of Fig. 2. It can be seen that they agree well 
with those obtained from Fig. 2. Near the transition (sample 
5) or, conversely, far from it (sample 7), the largest attainable 
values of x are somewhat smaller than 0.5. We note in this 
connection that the error in the determination of x is larger 
the narrower the temperature variation interval in the region 
of validity of (5), i.e., the error is a maximum at the highest 
compensations and in the vicinity of the transition. For the 

FIG. 2. Relative activation energy for the curves of Fig. 1 .  The primes 
mark the data of Ref. 3 with the following values of n [in units of 
10'' cm-'1: 5-1.3; 6'--0.9; 7 ' 4 . 1 4 .  The values ofx are: 6 - 0.44(0.49); 
7 - 0.47(0.47); 8 - 0.46(0.45); 9 - 0.48(0.49); 10 - 0.48(0.47); 5' - 0.50; 
6' - 0.47; 7' - 0.44. 
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intermediate samples Nos. 7-10, however, the relation (5) is 
valid for a temperature variation exceeding an order of mag- 
nitude. Figure 1 of Ref. 18 shows that those sections of the 
p ( T )  curves which satisfy the condition w(T) a T -'I2 are in- 
deed well rectified when plotted in the coordinates logp and 
T -'I2 that are characteristic of the insulator side of the tran- 
sition, thus verifying the obtained xz0.5.  

Just as in Refs. 3 and 17, the exponential relation (5) 
observed at d = 3 and T <  Tc will be interpreted in the 
framework of the VRH model in the region of the parabolic 
semigap, when 

g=go (E-EF)  ', ~ , = p / g ?  ak, (6) 

wherep is a constant p z 2 . 8  according to Ref. 21), a is the 
localization radius, and k is Boltzmann's constant. We have 
already noted that such a spectrum results from Coulomb 
interaction of the localized  carrier^^.'^.^^ and that this view- 
point is confirmed by the fact that the experimentally ob- 
tained394 value of the coefficient go for strong compensation 
is of the same order as its value in the theory of Efros and 
Shklov~ki i .~~~ '  According to this theory we have from strong 
localization 

where x is the static dielectric constant, which tends on the 
insulator side, with increasing distance from the transition, 
to its limiting value ,yo = 16 (in Ge). 

We present one more argument in favor of the Coulomb 
character of the quasigap, by comparing the theoreticalZ and 
experimental values of the parameter To for the case of 
strong compensation. The necessary estimate of the localiza- 
tion radius will be made in the effective mass approximation: 
a = aeg(Ei/~l)112, where E, = 12.7 meV is the ionization en- 
ergy of As in Ge, E ,  is the distance from the Fermi level to the 
percolation level, aefl = 1.42(a:al, )'I3 = 53 A is the effective 
Bohr radius of the electron on the As impurity with account 
taken of the complicated four-ellipsoid ~pectrurn,'~ and 
a,, I ,  = Ci(2m1, E ~ ) - ' / ~ .  Substituting in (6) the value of a for 
the most compensated sample (No. 7'), calculated from the 
value .cl z 2 5  meV obtained from the high-temperature Hall 
e f f e~ t ,~  we get the theoretical estimate To= 67 meV. Experi- 
ment, on the other hand, yields 55 meV. We see that the 
agreement is fair if allowance is made for the possible error of 
the estimate and for the fact that possibly even in sample No. 
7' the localization has not reached the strong limit at which 
the wave-function overlap can be completely neglected and 
for which Eq. (7) was deduced on the basis of computer simu- 
lation. Simulation shows also that at strong compensations 
the only parabolic energy region is near EF and is much less 
than the gap width. An appreciable part of the gap, on the 
other hana, is not parabolic, and has more readily a linear or 
even a square-root variation of the density of states. This 
explains a certain decrease of x in the most compensated 
samples. 

It can thus be concluded that the theory of ~ f r o s  and 
Shklovski? describes adequately the VRH regime far from 
the transition, on its insulator side. Our experiments, how- 
ever, just as those of Refs. 3 and 4, show that the approxima- 

tion (5) holds well for the entire insulator side of the transi- 
tion, except in its immediate vicinity, as T <  T,. The 
observed decrease of To on approaching the transition is ex- 
plained in accordance with Refs. 2,3 and 25 by the growth of 
the values of a and g as a result of the weakening of the 
localization. The x values somewhat lower than 0.5, ob- 
served near the transition, may result from the fact that at 
the very narrow Coulomb gap the experimental temperature 
was still not low enough to completely exclude the effect of 
thermal "washout," or from the fact that as the transition is 
approached the parabolic quasigap is continuously trans- 
formed into the square-root quasigap predicted in Ref. 12. 

We consider now the temperature T, at which the rela- 
tion (5) is "suppressed." It can be seen from Fig. 2 that T, has 
a maximum at moderate compensations corresponding to 
sample No. 5', and decrease both with increasing distance 
from the transition and when the latter is approached in the 
critical region. The nature of the suppression, in our opinion, 
is different on the two sides of the maximum Tc. For strong 
compensations, according to Ref. 5, the onset of the law (5) 
from the high-temperature side must be preceded by a tem- 
perature-dependent tunneling through the fluctuation bar- 
riers with a rapidly decreasing activation energy. This pro- 
cess is made more difficult the higher the compensation, and 
thus lowers the value of T, compared with the maximum. In 
this case the condition for T, is that in that vicinity of the 
Fermi level in which the tunnel transition takes place the 
energy band that decreases with temperature become com- 
parable with the width of the Coulomb gap.3 In the critical 
region, however, where the VRH regime is preceded by non- 
activated conduction, Tc is determined by the gap washout 
temperature, which is of the order of the gap width. The 
decrease of Tc as the transition is approached is in this case a 
consequence of the collapse of the gap. Of course, to observe 
the VRH regime in the quasigap region it is necessary at any 
rate that in the Fermi-level vicinity in which hops of the 
localized carriers take place the largest energy-band width, 
which is equal to - 0.5 k (TOT, )'I2, not exceed the gap width. 

As the transition is approached and T, is decreased, a 
region appears, bounded by curve b of Fig. 2 and having a 
power-law dependence p(T)  a T- " . The exponent m de- 
creases continuously from values -0.4 (No. 7) to -0.25 
(No. 5). The effective power-law region increases then 
towards lower temperatures and reaches a maximum at the 
transition, when m = 0.22 5 0.03. On the metallic side, with 
increasing distance from the transition, the sphere of action 
of the power law with positive m is cancelled out on the low- 
temperature side, where an extensive region with a very 
weakp(T) dependence appears. Here w falls off abruptly with 
temperature (No. 5-2). The weakening of w(T) can be noted 
in sample No. 6 at T 5  0.1 K. With increasing distance from 
the transition on the metallic side, the exponent m decreases 
to zero and reverses sign: m > 0 for No. 2 and m < 0 for No. 1. 
For the initial sample No. 1, a positive resistance tempera- 
ture coefficient (m < 0) is preserved to the lowest working 
temperatures. We note that the change of the sign of the 
resistance temperature coefficient at low temperatures in the 
region of the metal-insulator transition in uncompensated 
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Ge is a known f a ~ t . ~ ~ , ' ~  The distinguishing feature of our 
data is that introduction of compensation shifts this sign re- 
versal from the transition towards the metallic side. 

Consider the initial sample No. 1. Figure 1 shows for 
comparison a curve from Ref. 26 (shown dotted) for uncom- 
pensated Ge:Sb with Sb density - 3.3 X 10" cmP3, having a 
value of o(0) close to that of No. 1. It can be seen that their 
a ( T )  dependences are close. We can therefore use the conclu- 
sions of Ref. 27 that such a a ( T )  dependence is determined 
mainly by the so-called correlation cor rec t i~n '~  to a(O), 
namely: Aa  a - T 'I2. When localization effects appear, the 
dominant role is gradually assumed by "localization" cor- 
rections Aa, of opposite sign. From the observed monotoni- 
city of the resultant o (T )  plot it follows that the exponent a of 
the correction Aa, a F does not differ strongly from the 
exponent for Aa, (a = 1 in Refs. 14 and 27). Allowance for 
both corrections explains the reversal of the sign of m and its 
subsequent increase with increasing distance from the tran- 
sition in the insulator direction. We call attention to the fact 
that in contrast to the metal-insulator transition in an un- 
compensated material, when the localization effects evolve 
near the transition itself, in our case these effects are initiated 
by introduction of a disordering factor-compensation- 
much earlier on the metallic side. The sign of the resistance 
temperature coefficient is correspondingly reversed earlier. 
One should think that this difference is typical in any case for 
the Anderson transition, and the distance from the region 
where m reverses sign to the transition should be larger the 
larger the disorder needed to stop the metallic conductance, 
e.g., the wider the initial impurity band or the higher the 
doping level. It is also understandable that it is incorrect to 
determine the Anderson transition from the reversal of the 
sign of the resistance temperature coefficient, as was done in 
several papers: the transition sets in fact at the larger disor- 
der. 

4. CRITICAL BEHAVIOR OF THE CONDUCTIVITY 

In principle, by measuring the conductivity one can 
spot the transition in two ways: from the condition that the 
insulator state vanish, i.e., that the activation energy vanish 
at low temperatures, or from the condition that the metallic 
conductivity o(0) vanish. The latter way is based on an a 
priori assumptions that the scaling approximation is valid 
and that the material is homogeneous. We used therefore the 
first method and obtained for the transition the critical den- 
sity nc of the uncompensated carriers from the condition 

lim To (n) =O. 
n-+nc-0 

To reduce to a minimum the possible influence of the 
inhomogeneity of the initial samples, we corrected the values 
obtained from Hall measurements at T = 300 K using the 
w(n) dependence at T = 2 K averaged for all the available 
samples. This is equivalent to using w as the argument of the 
studied functions, followed by a transition from w to n. 

The procedure for determining n, is illustrated by the 
inset of Fig. 3, where data near the transition are used for all 
the samples. It was found that n, = 3 . 9 5 ~  1017 cm-3 and 

FIG. 3. Critical behavior of the conductivity: 1 - To, 2 -p,, 3 - ~ ( 0 ) .  
Dashed: a,' (on the left) and a, (on the right). 

accordingly Kc = 1 - nc/Nz0.3. The possible relative er- 
ror of n,, just as the error of the corrected values of n, is of 
the order of several percent in the critical region. Under- 
standably, the inaccuracy of the scaling parameter 11 - n/ 
n, 1 increases as the transition is approached, thus bounding 
from below its more or less reliable values at a level of several 
percent. It also determines to a considerable degree the error 
in the critical exponents which are determined below. 

We turn first to the insulator side of the transition, 
where (5) holds at sufficiently low temperatures T <  T,. In 
this case the critical behavior of the conductivity as a func- 
tion of the density n is determined by the corresponding de- 
pendences of the coefficients To andp,. 

A plot of T,(n) is shown in Fig. 3 (the values of To for the 
samples of type No. 5 which are closes to the transition were 
obtained by extrapolating w(T) to the boundary c in Fig. 2). 
In the critical region (at K = 0.3-0.5) the approximation of 
the evolution of T,(n) by the scaling-type equation (2) leads to 
a coefficient T*,z40 K and to a critical exponent vTo 

= 2.1 f 0.1. In accordance with (6), the T,(n) dependence is 
determined by the critical behavior of the Coulomb gap and 
of the localization radius. In particular, the following rela- 
tion holds 

Questions concerning the dynamics of the Coulomb gap and 
the localization radius will be discussed later. 

The factorp, of the exponential was determined by ex- 
trapolating the low-temperature ( T <  T,) straight-line sec- 
tions of the log p-T - ' I2  curves (see Fig. 1 of Ref. 18) to infi- 
nite temperature. Its plot is also shown in Fig. 3. Values ofp, 
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and To close to those shown in Fig. 3 were obtained by least- 
squares computer reduction of the data. The large value ofp, 
at large compensations is the result of tunneling of large- 
scale potential fluctuations of the order of the screening radi- 
us R; this tunneling precedes the VRH regime from the side 
of high temperatures T >  T, . 3  The tunneling probability of 
such fluctuations is contained as a factor in p; ', and the 
necessary condition for the realization of the VRH regime is 
a hop length r(T, ) > R. With increasing tunnel transparency 
of the potential fluctuations, the value ofp, falls off steeply 
and when the fluctuations become transparentp, practically 
ceases to depend on the compensation. When the transition 
is approached, as can be seen from Fig. 3, p, has no critical 
behavior, so that the activation conductivity in the system 
has an upper bound: 

w h e r e c z 8  f2 -' . cm-'. According to thedefinition (lo), 
is a metallic conductivity, i.e., independent of tempera- 

ture, since To = 0. It is interesting that it is close 
to the calculated minimum Mott metallic conductivity 
UM ~0.05(e~/f i )n,  'I3 z 9 f2 - ' . cm- ', shown dashed in Fig. 
3. Such an agreement was frequently regarded as evidence of 
the adequacy of the concept of minimum metallic conductiv- 
ity. This conclusion is incorrect, at least in the system inves- 
tigated here, where finite values a(0)<oM are observed for 
samples close to the transition on the insulator side. 

We proceed now to the metallic conductivity o(0). Its 
value was taken to be the conductivity at T ~ 4 0  mK, which 
depends little on the temperature. Figure 3 shows a plot of 
~ ( 0 )  for the available samples. Its approximation by Eq. (2) 
yields a coefficient a*(O) = AoM, where A z 13, and a criti- 
cal exponent vd0, = 0.8 + 0.1. The latter agrees with the 
data of Ref. 10 for compensated Ge:Sb, whereas the value of 
A is several times larger and agrees with its value in uncom- 
pensated Si:P (Ref. 9). We point out that in the vicinity of the 
transition deviations occur from the scaling formula and fin- 
ite values of ~ ( 0 )  are observed on the insulator side of the 
transition. A similar singularity was observed recentlyz8 in 
uncompensated Si:P, where the passage through the transi- 
tion was in small steps from the insulator side under uniaxial 
deformation. This behavior can in principle be due to ma- 
croinhomogeneities of the material, which "smear out" the 
transition point n, over a certain region n, An. In our 
case, when the compensation was effected homogeneously 
during the course of the neutron doping, the inhomogene- 
ities present are due to technological imperfections of the 
initial n-Ge:As grown by the Czochralski method. 

5. CRITICAL BEHAVIOR OF COULOMB GAP 

Fundamental to the understanding of the critical be- 
havior of the system on the insulator side of the transition is 
the question of the dynamics of the Coulomb gap. Given its 
form (say, parabolic, g(E ) = go(E - E,)', as in our case) the 
gap is determined by two of three parameter: depth, width, 
and the coefficient go. 

The gap depth 6 is determined by the density of states 
near the Fermi level in the impurity band that is not per- 

turbed by Coulomb interaction, or near its tail at weak and 
strong compensation, respectively. It is important that in the 
region of compensations that are critical for the investigated 
system the value of8  changes little with K, since these com- 
pensations correspond to the maximum of the density of 
states in the unperturbed band. The value of S can be esti- 
mated from the empirical relation3 S = n/y, where y is the 
width of the impurity band at moderate compensation, and 
the fall-off decrement of the density of state at strong com- 
pensations. The decrement, generally speaking, does not in- 
crease strongly with decreasing density n of the uncompen- 
sated carriers. As a measure of y one can take from Ref. 3 the 
high-temperature activation energy of the Hall coefficient 
E , .  The variation of S obtained in this manner is shown in 
Fig. 1 (curve 1). Values of the same order are obtained by 
using the results of computer simulation of the gap in the 
impurity band,4 which were partly published in Ref. 24 
(curve 2 of Fig. 4.). The error of these data, including the case 
of very strong compensations, is - 10%. 

We estimate the gap width from experiment, using the 
condition for its thermal "washout": 

where D is a quantity of the order of unity. This quantity 
should be assumed to decrease slowly with compensation, in 
view of the decrease of the density of states at the gap boun- 
daries, i.e., of the value ofS. According to numerical calcula- 
t i o n ~ , ~ ~  D z 3  (the less accurate estimate D z  1 was used in 
Ref. 18). 

The behavior of A obtained from (1 1) at D = 3 is illus- 
trated in Fig. 4. It turns out that A * = 5 meV and 
VA = 1.9 f 0.2. The absolute value ofA is determined accu- 
rate to a factor on the order of two while the relative error in 
the critical region, which sets the error of vA , is considerably 
lower and is determined mainly by the accuracy of T, . It can 
be seen that the exponent vA is close to the previously ob- 
tained vT0, meaning that the boundary c is "horizontal" in 
the critical region. In fact, this horizontality means that the 
high-temperature suppression of the VRH regime occurs at 
slowly varying values w(T,)  a (To/T,)"2, on the order of 
unity, from which it follows that T, a To. We note that A * 

FIG. 4. Behavior of the Coulomb-gap parameters: 1,2 - 6,3 - A ,  4 -go. 
The dashed line marks the insulator limit go = x3/e6. 
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FIG. 5. Dynamics of Coulomb-gap collapse on the insulator side of the 
transition. The curves are terminated on the gap boundary at 
lE-E,) = A / 2 .  

for weak compensation has the reasonable value of the order 
of the width of the impurity band, namely 
-e2N lt3x; ' ~ 8  meV, and that if (1 1) is satisfied the condi- 
tion A 20.5 k is also satisfied up to the highest 
compensation. The last circumstance allows us to use (1 1) 
also outside the critical region. 

Since S = g,(A /2)2 for a truly parabolic gap, it follows 
that knowing its depth and width we can calculate the coeffi- 
cient go: 

g0=46/A2. (12) 

A plot ofgo(n) is shown in Fig. 4. The critical divergenceg, is 
described by the coefficient g o z 3  x eV-3 . cm-3 with 
exponent vgo = - (3.9 + 0.4). The absolute value of the lat- 
ter, by virtue of the weak density dependence of6 (n) and the 
close values of the exponents Y, = vTU z v T o  is approximate- 
ly equal to 2vTO, and its error is governed by the error of vTo. 
In the limit of strong compensations, go approaches the theo- 
retical limit2 -xA/e6z 1.4X eVP3 . cmV3, shown by 
the dashed line. 

From the obtained parameters of the Coulomb gap we 
can reconstruct the absolute variation of the density of the 
localized states in the gap at energies E 5 A. By way of illus- 
tration of the indicated which can arbitrarily be called 
"VRH spectroscopy," Fig. 5 shows the dynamics of the col- 
lapse of the Coulomb gap in the investigated system. 

6. CRITICAL DIVERGENCE OF THE LOCALIZATION RADIUS 
AND OF THE STATIC DIELECTRIC CONSTANT 

The localization radius a can be calculated from Eq. (6) 
for the VRH regime in the region of a parabolic quasigap: 

The valueB = 2.8 was used in the cal~ulation.~' The results 
are shown in Fig. 6. In the critical region they are described 
by the parameters a*=:8aH ~ 4 0 0  and 
v, = - (0.8 f 0.2). It is seen from Fig. 6 that outside the 
critical region the decrease of the localization becomes faster 
with increasing compensation, a fact we attribute to a deep- 

FIG. 6. Critical behavior of 1 - a/a, ,  2 - x/x,,  3 - u(O)/u,, dashed- 
data from Refs. 9 and 29 for Si:P. 

ening of the Fermi level. The radius in the most compensated 
sample (No. 7') is aza, ,  i.e., comparable with its isolated- 
donor value that is typical of weak doping at low compensa- 
tion. Clearly, this value is not the limit, and the localization 
radius should be smaller in a more accurately compensated 
material. 

We have found above (see also Ref. 3) that, on the one 
hand, in the limit of large compensation we have in accord 
with the prediction2321 

lim go = x 2 / e 6 ,  
K * i  

and on the other hand go diverges as the Anderson transition 
is approached (Fig. 4). This divergence is due mainly to the 
weakening of the Coulomb interaction, i.e., to the diver- 
gence of x, and can be understood from relation (7) if it is 
assumed that this relation is valid not only in the region of 
sufficiently strong localization, as corroborated in Refs. 2 
and 21, but also in the case of weak localization, i.e., in the 
critical region. Under this assumption we can express the 
critical behavior of x in terms of the coefficient go obtained 
above: 

The variation of the dimensionless parameter x/xo on 
the insulator side of the transition, obtained in accord with 
(14), is shown in Fig. 6. As the transition is approached one 
can track the behavior of over almost two decades compared 
with x,. The divergence of x can be described by the scaling- 
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type formula (2) with x*--, 1.3 x,, vx = - (1.3 + 0.15). The 
result x* z x ,  seems quite reasonable, since this is the natu- 
ral insulating limit. The exponent v, exceeds slightly the 
value obtained for it in Ref. 29 from direct measurements 29, 
30 of uncompensated Si:P. The ratio vX/v,,, =: 1.6 in our 
case and -2.1 in Ref. 29. The correspondence between our 
present results and those in Ref. 29 is evidence in favor of the 
assumption made above that relations (7), (13), and (14) are 
valid on the entire insulator side of the Anderson transition, 
including the critical region. 

7. CORRELATION LENGTH 

According to scaling theory, the critical behavior of the 
metallic conductance and of the localization radius are de- 
termined respectively by the values of { - ' and 5. This en- 
ables us to reconstruct S from both sides of the transition 
independently of the analysis of the variation of a(0) and a, to 
ascertain the degree of its "symmetry," and, next, check on 
the validity of the approach used to estimate the localization 
radius and on the adequacy of the very scaling theory that 
suggest this symmetry. 

On the insulator side the theory yields simply &-a. 
This leads to < ,* =a* -400 and vca z v ,  = - (0.8 + 0.2). 
On the metallic side a(0) -, Ge2/e ,  where G is a certain con- 
stant. It follows hence that = Ge2/?iu*(0)-200 G A, vEr - - - v,,, = - (0.80 + 0.15). We see that the exponents are 
in good agreement: vca = vco. Matters are worse with the 
absolute value of 6, which is determined by the coefficient 
< *. The point is that theavailable theoretical estimates1' lead 
to a value G-0.1. We find thus that { ,* is approximately 20 
times larger than { -20 A. Leaving aside the question of 
the accuracy with which the constants f l  and G were deter- 
mined in Refs. 21 and 11, respectively, we wish to call atten- 
tion to one physical cause of the symmetry of{ on both sides 
of the transition in the system investigated here. Namely, the 
observed1° dependence of the critical behavior of a(0) on the 
compensation leads, in the scaling approach, to a depen- 
dence of lon K, namely, 6 * and (v6 / increase with increasing 
compensation. The specific feature of the Anderson transi- 
tion investigated by us, however, is that this transition is 
implemented by varying the compensation, while the critical 
region, where all the coefficients and exponents are defined, 
corresponds to K-0.4 on the insulator side and K-0.2 on 
the metallic side. The value of{ determined from the metal- 
lic region is expected therefore to be several times smaller 
than that from the insulator side. This explains, incidentally, 
why our coefficient u*(O) is close to the one observed in un- 
compensated Si:P. 

8. CONCLUSION 

We shall dwell here on the main conclusion of the work 
and on the problems. 

The principal qualitative result of the conductivity 
measurements on the metallic side of the transition is that 
a(0) vanishes continuously in the compensation-induced 
Anderson transition. The critical densities corresponding to 
the vanishing of the low-energy activation energy and of the 
metallic conductivity differ somewhat.The transition point 

is therefore transformed into some region where at the very 
lowest temperature a finite value of a(0) exists, but at higher 
temperatures one can distinguish a temperature interval 
with activated conductivity. 

The analysis of the experimental data for the insulator 
side of the transition is based on an a priori assumption that 
the observed conductance with variable activation energy 
corresponds to a Mott hopping conductance with variable 
hop range (VRH). We deem it necessary to call special atten- 
tion to this, even though the VRH premise has become uni- 
versally accepted in the last few years and there is no alter- 
nate explanation. Starting from this premise, it is stated that 
a parabolic Coulomb quasigap exists in the vicinity of the 
Fermi level. The critical behavior of the gap, especially the 
result that it collapses at the transition, is deduced from the 
empirical fact that the temperature T, decreases if the condi- 
tion for thermal washout of the gap is resorted to. l 1  The basis 
of the continuation of the analysis is the assumption that gap 
preserves its parabolic shape all the way to its boundaries. 
This assumption yields the coefficient go (12) that determines 
the variation of the density of states in the gap and describes 
next with the aid of (13) and (14) the critical divergence of the 
localization radius and of the static dielectric constant. 

The critical behavior of the parameters of the system 
agrees both with the known experimental data and with the 
predictions of the scaling theory. The problem here is only 
the asymmetry of the absolute value of the correlation length 
on the two sides of the transition. 

Recognizing the important role, established in this pa- 
per, of the electron-electron interaction in the region of the 
transition, it is clear that an adequate scaling theory must 
take this interaction into account. Let us compare our data 
with the predictions of McMillan's theory." It makes use of 
a certain indeterminate parameter l<7,<3 whose value de- 
pends on the role of the electron-electron interactions, with 
7 = 3 corresponding to absence of these interactions. Within 
the framework of Ref. 11 the quantity 7 can be expressed in 
terms of the critical exponents in two ways, by the relation 
v, = vc (7 - 1) or /vg 17 = v, . For the system investigated 
they lead respectively to 7 = 2.6 and 2.4 [it turns out29 that 
for the Si:P system 7 > 3(!)]. According to Ref. 11 the p ( T )  
dependence near the transition is reminiscent of a "tree,"') 
whose trunk is the critical relation p ( T )  a T-  " , where 
m-7-'. On the two sides of the trunk are located respec- 
tively the "metallic" and "insulator" branches. From our 
experiment, however, it follows that in the critical regime 
m -0.22 _f 0.03, or approximately half the value of 7,- l. 
Moreover, the three is replaced by a "bush" of diverging 
curves, whose exponent m continuously decreases on going 
through the transition from the insulator side, and at suffi- 
ciently low compensation reverses sign on the metallic side. 

Finally, we wish to call attention to certain peculiarities 
observed by us and due to the fact that the transition takes 
place in a compensated material. We have replotted in Fig. 6, 
for comparison, the data of Refs. 9 and 29 on the critical 
behavior of a(0) and x in uncompensated Si:P (the diver- 
gence of a and the collapse of the Coulomb gap are investi- 
gated here for the first time ever). It is seen that the compen- 
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sation smears out the metal-insulator transition and makes 
the critical dependences less abrupt. This manifests itself 
quantitatively in a certain decrease of the critical exponents 
(an increase of v,,, with increasing compensation was re- 
ported earlier in Ref. 10). The smearing effect is due to intro- 
duction into the system of a disordering factor, namely the 
fluctuating electrostatic potential of the charged impurities. 
The disorder due to the compensation causes also the resis- 
tance temperature coefficient to reverse sign on the metallic 
side farther from the transition than in the absence of the 
disorder. 
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