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The propagation, refraction, and diffraction of x-ray Bloch waves in the strain field of a disloca- 
tion are analyzed. If the strain field varies slowly, it is sufficient to consider the curvature of 
trajectories and the change in the phases of the Bloch waves (the geometric optics of Bloch waves), 
but when the strain field changes rapidly it becomes necessary to take into account the creation of 
new Bloch waves (the diffraction optics of Bloch waves). Analysis of the creation of Bloch waves 
during interbranch scattering in both weak and strong distortion fields makes it possible to 
construct a Riemann function (influence function) for a crystal with a dislocation. This descrip- 
tion of ray and diffraction effects in the optics of Bloch waves is supported by the good agreement 
of the calculated results with x-ray topographic sections, which directly convey the Riemann 
function, and also with the results of a numerical simulation of the wave fields. 

As it penetrates into a crystal, an x-ray electromagnetic 
wave undergoes a qualitative change in nature and can be 
described as a set of Bloch waves corresponding to quasipar- 
ticles with a mass whose magnitude and sign depend on the 
position of the excitation point on the dispersion surface. 
The behavior of x-ray Bloch waves in ideal crystals has been 
studied quite thoroughly (see Refs. 1-3, for example). The 
splitting of the dispersion surface at the boundaries of the 
Brillouin zone has been studied. An interference of Bloch 
waves corresponding to the same or different branches of the 
dispersion surface has been predicted and observed. The cor- 
responding Riemann functions (influence functions) have 
been constructed, and the problem of the diffraction of 
bounded and modulated wave packets in ideal crystals has 
been solved completely. Various methods for using crystals 
to arrange geometric and diffractive focusing of Bloch waves 
have been proposed and implemented. An active research 
program is under way to develop coherent focusing x-ray 
optics. 

In a crystal whose ideal periodicity has been disrupted 
(by the strain field of a defect, for example) Bloch waves are 
no longer eigenfunctions of the wave equations. A natural 
generalization can be made by introducing a local dispersion 
surface in the region of the crystal of interest: The Bloch 
waves adjust to the local deviations in the crystal lattice, and 
their trajectories become curved (the geometric optics of 
quasiparticles). This approximation is valid when the distor- 
tions of the crystal vary smoothly; the pertinent characteris- 
tic length here is not the wavelength A but the extinction 
length A ,  which is determined by the splitting of the disper- 
sion surface at the boundary of the Brillouin zone and which 
is several tens of microns. Although the geometric (ray) op- 
tics of Bloch waves is analogous to the optics of media which 
have a smoothly varying refractive index, the equations of 
the geometric optics of Bloch waves, in contrast with ordi- 
nary optics, describe two families of quasiparticles with rest 
masses of opposite  sign^.',^,^ A sharp change in the strain 
field, to which the Bloch waves cannot adjust, results in a 
diffraction of these waves, in particular, interbranch scatter- 

ing. Each Bloch wave generates an entire family of Bloch 
waves, and this generation frequently complicates even a 
qualitative analysis of the scattering mechanisms. The prob- 
lem of interbranch scattering has been solved exactly only 
for two-crystal  arrangement^,^ for a uniformly bent c r y ~ t a l , ~  
and in the limit of a S-shaped change in the distortion, which 
corresponds to a stacking fault in a crystal.' In the latter case 
the problem reduces to a re-expansion of the waves in the 
eigenfunctions of the second part of the crystal, which differs 
because of the lattice displacement. 

As in ordinary optics, it is considerably simpler to ana- 
lyze the propagation and diffraction of Bloch waves in a me- 
dium whose inhomogeneity is of a layered nature, and the 
strain field varies only over depth in each scattering plane. 
The coordinatex is cyclic along the reflection vector, and the 
generalized momentum P = P, is conserved along the tra- 
jectory of a Bloch wave. The geometric-optics equations can 
accordingly be integrated.8 The momentum conservation 
also simplifies the analysis of the diffraction of the quasipar- 
ticles, since now each Bloch wave can undergo interbranch 
scattering, during which the transverse component of the 
quasimomentum is conserved; i.e., each Bloch wave can gen- 
erate only a single new Bloch wave, and this new wave will 
have the same generalized momentum but will belong to a 
different sheet of the dispersion surface. The direction of the 
ray velocity (the group velocity) may change by an angle on 
the order of the Bragg angle. In the present paper we study 
the diffraction of Bloch waves in the strain field of a disloca- 
tion parallel to the reflection vector. This problem is transla- 
tionally invariant along the direction of the reflection vector, 
and we deal with the limiting case of a smooth change in the 
strain field, the limiting case of a 8-shaped change, and all 
intermediate cases, depending on the distance between the 
dislocation and the scattering plane. The same x-ray image 
can be used to analyze different ray and diffraction mecha- 
nisms for image formation. 

In Section 1 we derive equations for the amplitudes of 
the Bloch waves and use the results to analyze the range of 
applicability of the geometric optics of Bloch waves. In Sec- 
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tion 2 we identify the regions in which Bloch waves propa- 
gate freely and the regions in which they interact (inter- 
branch scattering), and we show that interbranch scattering 
reduces to a change in the complex amplitudes of the Bloch 
waves. A perturbation theory is constructed for determining 
these amplitudes. Section 3 is a detailed analysis of the case 
of a strong distortion field, to which perturbation theory is 
not applicable. The diffraction of the Bloch waves is seen 
most clearly in this case, and the conclusions regarding the 
mechanisms for image formation and the calculated results 
can be compared definitively with experiment. In Section 4 
we construct a Riemann function for a crystal with a disloca- 
tion to describe the propagation of a perturbation from a 
point source. With decreasing distance from the dislocation 
to the scattering plane, the free propagation of Bloch waves 
gives way to a diffraction of the Bloch waves and then to a 
diffractive focusing of the Bloch waves by the strain field of 
the dislocation. The trajectories, amplitudes, and phases of 
the Bloch waves propagating in a crystal are determined; 
these properties are also determined for the new family of 
Bloch waves created in the course of interbranch scattering. 
Section 5 describes the formation of interference images on 
x-ray topographic sections, which directly convey the Rie- 
mann function of a crystal with a dislocation. The phases of 
the Bloch waves created in the course of interbranch scatter- 
ing are recorded on these interference images. The reference 
waves are Bloch waves which have not undergone diffrac- 
tion. The experimental topographic sections and the results 
of numerical simulations agree well with calculations on the 
interference of Bloch waves of different families, showing 
that the image-formation mechanisms have been determined 
correctly and that the amplitudes and phases of the Bloch 
waves have been calculated correctly. 

1. X-RAY BLOCH WAVES 

X rays interact only very weakly with a medium, since 
the polarizability in the x-ray range is on the order of lop5- 

During the diffraction of x rays in a crystal, the ampli- 
tude of the diffracted wave thus becomes comparable to that 
of the incident wave only after the wave has traversed 1O5- 
lo6 coherently scattering atomic layers (i.e., only after the 
wave has propagated several tens of microns). For thicker 
perfect crystals, the diffraction can no longer be described in 
the kinematic approximation (by perturbation theory).9 The 
wave field in a crystal in a reflecting position must be sought 
as the coherent superposition of transmitted and diffracted 
waves (see Ref. 1, for example): 

where Eo and El are the slowly varying amplitudes of the 
transmitted and diffracted waves, respectively, k ,  is the 
wave vector of the incident wave, which satisfies the Bragg 
condition exactly, and g is the diffraction vector. From Max- 
well's equations we find coupled-oscillation equations for 
the amplitudes Eo and El :  The change in the amplitude of the 
transmitted wave along its propagation direction is deter- 
mined by the circumstance that this wave creates a diffract- 
ed wave, and vice versa, 

Herex, andx- , are the Fourier components ofthe polariza- 
bility of the crystal for the reflection vectors g and - g, re- 
spectively; C = 1 for the (T polarization and C = cos 28 for 
the .rr polarization; 0 is the Bragg angle; and 
k = /k ,  1 = / kl  + gl . The characteristic scattering length in 
this problem is the extinction length A =cosO/ 
Ck (,yap ])'I2. In an absorbing crystal, the polarizability x 
and thus A are complex; here Im A (Re A. Because of the 
small x-ray polarizability of the crystal, the extinction length 
A is several tens of microns, justifying the approximation of 
slowly varying wave amplitudes E, and El .  

Linearly independent solutions of system (2) corre- 
spond to Bloch waves. When we speak in terms of Bloch 
waves, there will be no scattering of any sort in an ideal 
crystal, and the extinction-modulation effect corresponds to 
simply an interference of Bloch waves with different wave 
vectors, with the difference being on the order ofA -'. 

An incident plane wave of unit amplitude whose wave 
vector k differs in direction from kl  determines the boundary 
conditions at the entrance surface of the crystal, z = - a: 

Eo ( r )  I z=-,=e2ni(k-k I", El ( r )  1 z=-a=O. (3)  

It is convenient to write 

2x1 (k-k , ) r=xAr- 'Px  ctg 8,  

where A ' = Re A ,  and to thereby convert to expressing the 
angular deviations in terms of the dynamic units P (a devi- 
ation of the incident wave by an angle q, corresponds to 
P = 2A 'A - 'q, sin 8 ,  while the values P = f 1 correspond to 
the edges of the ideal Bragg reflection curve). 

In a real crystal the polarizability x (r) (not averaged 
over a volume element which is infinitesimally small from 
the physical standpoint; see Ref. 9) ceases to be a strictly 
periodic function of the coordinates and depends on the dis- 
placement field u(r). Since the inner electron shells which are 
responsible for the scattering of the x rays are displaced 
along with the corresponding nuclei, a change in the polariz- 
ability reduces to a replacement o f x  (r) by x [r - u(r)]. The 
Fourier components of the polarizability, x,, become 
X g e  - , and corresponding phase factors appear in the 
coefficients in Eqs. (2) (see Ref. 1, for example). Since we are 
dealing with displacement fields u(r) which do not depend 
along the coordinate (x) in the direction of the diffraction 
vector g, the substitution 

n 
Eo-+Eo erp (iqF ~r ctg B+ingu 

E,  -+ (E )'"E, exp ( i  P P ~  A ctg O-ingu 1 
reduces these equations to a system of ordinary differential 
equations 

with the boundary conditions 

( 5 )  
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Here a'l Q ( z )  = - j ( I + w Z )  dz.  
A 

The parameter P describes the deviation of the incident 
plane wave from satisfaction of the Bragg condition, f l  (z) is 
the local deviation of the crystal from the Bragg condition, 
caused by the displacement field u(r), and w is the effective 
disorientation of the crystal. 

Let us examine the symmetry properties of system (4). 
In the absence of absorption, the quantity w is real. Eliminat- 
ing Eo, we find El(z;P, y) = - E :(z; - P, - y) from the 
equation for the wave El and the boundary conditions (here 
the asterisk means complex conjugation). If, on the other 
hand, B (z) is symmetric with respect to the median plane of 
the crystal (z = 0), i.e., if f l  (z) = f l  ( - z), then we would have 
E,(a;P, y) = El(a; - P, - y) even in the case with absorption 
(cf. Ref. 10). 

Dynamic diffraction involves a mutual scattering of the 
waves Eo and El,  according to (4). In an undistorted crystal 
with w = const, it is a simple matter to construct two linear- 
ly independent eigensolutions of system (4), i.e., Bloch 
waves, and to find a linear combination of these waves which 
satisfies boundary conditions (5). If the disorientation varies 
slowly, on the other hand (the specific condition will be 
found below), a natural generalization would consist of 
modified Bloch waves which interact only weakly in the dis- 
torted crystal because of the small value of dw/dz (the quasi- 
particles begin to interact, but they retain their individua- 
lity). At this point we use the linear transformation of Ref. 
11, which diagonalizes the matrix of system (4) under the 
condition w = const: 

We can then transform to equations for the Bloch waves p, 
and 9,: 

where w' = dw/dz. The first term on the right side of (8) 
describes the change in the phase of each of the Bloch waves, 
while the second term describes the interaction of these 
waves. Ignoring the interaction of the Bloch waves corre- 
sponds to adopting the eikonal approximation of the theory 
of the electron-microscope image": 

E,=r+ ( -a )  r+ ( z )  exp [iQ ( z ) ]  +r- ( -a )  r- ( z )  exp [-iQ ( z ) ]  , 

(9') 

E,=-r+ ( -a )  r- ( z )  exp [iQ ( z )  ] $I'- ( -a )  r+ ( z )  exp [-iQ ( z )  1, 
(9 " )  

where the phase is given by 

-a 

In this approximation the Bloch-wave amplitudes Ip, 1 and 
/p, 1 are constant. Because of the change in the local disorien- 
tation of the crystal, w, the excitation points are displaced 
along the dispersion surface. As a result, there are changes in 
the directions of the Poynting vectors; the direction of the 
trajectories of the quasi-particles changes; and there are cor- 
responding changes in the wave amplitudes Eo and E l  in 
each Bloch wave. In Eqs. (9), these changes are described by 
the factors r , (z). 

2. INTERBRANCH SCATTERING OF BLOCH WAVES 

Approximation (9) can of course be derived by the stan- 
dard method as a semiclassical approximation for Eqs. (4). 
Our approach has the advantage that the factor wt/2y2 is 
singled out immediately in (8); this factor determines the in- 
teraction of the Bloch waves (interbranch scattering). Ordin- 
arily, the eikonal approximation can be applied to dynamic- 
diffraction problems only if the change in the disorientation 
of the crystal is smooth: A / f l  '14 1 (cf. Ref. 12, for example). 
According to (8), the eikonal approximation is also applica- 
ble when a sharp change in the disorientation occurs in a 
highly disoriented region, with w s l ;  in this region of the 
crystal the eikonal approximation may be valid for some of 
the Bloch waves, with certain values of P, for which the dis- 
orientation w is large enough. 

The quantity w'/2y2 is large only in comparatively 
small regions of the crystal. In these regions there is a mutual 
scattering of Bloch waves. Since these regions are small the 
scattering of the Bloch waves can be described in terms of 
scattering amplitudes and phase shifts, so that the subse- 
quent propagation of the Bloch waves can be treated in the 
eikonal approximation, (9), but with altered amplitudes. If 
the interbranch scattering is not strong, the second term in 
(8) can be treated as a perturbation. In first-order perturba- 
tion theory we can then determine the scattering from the 
wave p, into p2 and the inverse scattering, while in second 
order we can determine the changes in the amplitudes of 
each wave. Within this accuracy we can write 

where 

I' 

W' ( z I f )  e-2im(z, f)  ' ~ ' ( z ' )  e2 ia ( z )  J dZf/ 1. = J dzl  7 
2yZ (z")  

I 

-a 
y2 ( z ' )  -a 

and the expressions for 7, and 7, differ in that i is replaced 
by - i (this procedure does not reduce to a complex conjuga- 
tion, since the extinction lengthA is complex in an absorbing 
crystal). 

The interbranch scattering of Bloch waves can be seen 
most clearly under conditions of strong absorption. Under 
such conditions, the two Bloch waves in (9) have different 
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absorption coefficients; to determine these coefficients it is 
sufficient to consider the imaginary part of the phase @ (z) 
(Im A > 0, so that Im@ < 0). The amplitudes of the Bloch 
waves decrease in proportion to the quantity 

z 
dz' 

-a 

where p' = - Im(a/A ), and where we have taken photoel- 
ectric absorption into account (the absorption coefficient p).  
This absorption was omitted along with the inconsequential 
correction for refraction of the crystal from (2). The two 
signs in (12) correspond to the first and second terms in (9), 
respectively. If IP I 5 1, the Bloch wave corresponding to the 
first term in (9) has nodes near the atomic planes and antin- 
odes between them, so that this wave is absorbed anomalous- 
ly weakly (the Bormann effect), while the wave correspond- 
ing to the second term is absorbed anomalously strongly. In 
the case of strong absorption, the Bloch wave which is sub- 
ject to the anomalously strong absorption does not reach the 
exit surface of the crystal, and the image of the defect is 
determined by the change in the amplitude of the weakly 
absorbed Bloch wave during interbranch scattering. 

Let us assume that the interbranch scattering of the 
Bloch wave occurs near the z = 0 plane and quite far from 
either surface of the crystal (so that the condition pa) l  
holds). It then follows from (11) that only the wave p, 
reaches the region of interbranch scattering; in the course of 
this scattering, this wave generates a wave p, ,  and the ampli- 
tude of the wave p, correspondingly decreases. The wave p, 
is absorbed over distances on the order of (2p)-', and the 
image is then determined by the amplitude of the wave p,. 
The interbranch scattering is set by the factor (1 - 22). The 
corresponding contribution to the intensity of the diffracted 
wave is, within terms quadratic in w'/2y2. - 
/ 1 - J2 I 2  = 1 - I J, 1 *. In particular, in the case 
P(z) = P (  -z) we find 

Let us examine in more detail the interbranch scattering 
of Bloch waves in the strain field of a dislocation parallel to 
the reflection vector. The component of the displacement 
field parallel to g, u, , is determined by the screw component 
b, of the Burgers vector: 

b. z 
u, = - arctg - , 

2n Y 

where y is the distance from the dislocation line to the scat- 
tering plane. According to (6) ,  this component of the dis- 
placement field describes the local deviation of the crystal 
from the Bragg condition, 

The components of the displacement field orthogonal to g, 
u, and u,, do not contribute to the scalar product g-u and 
thus do not cause an effective disorientation of the crystal. 

FIG. 1. Image of a dislocation in the case of strong absorption. The ab- 
sorption coefficient is ,u = 0. l r ;  the crystal thickness is 8.4; and the Bragg 
condition is satisfied exactly (P = 0). Solid curve-approximation (13); 
dashed curve-numerical solution of Eqs. (4). a) g.b = 1; b) g b  = 2; c) 
g b  = 3; d)gb = 4. 

With decreasing y, the gradient of the effective disori- 
entation w' progressively increases. Straightforward calcu- 
lations show that the interbranch scattering becomes impor- 
tant at y 5 0.2A. In the limit y+O we have P (z) = 1/ 
2g.bA '8 (z), corresponding to a stacking fault with a phase 
shift 27rg.A~ = 77g.b. If gab is even, the phase shift is a multi- 
ple of 277 and corresponds to a displacement of the reflecting 
planes by an integer number of periods. The free propagation 
of the Bloch waves is not disturbed. Odd values of g.b corre- 
spond to a displacement of the reflecting planes by half the 
period; the Bloch wave which is weakly absorbed in one part 
of the crystal becomes absorbed in another part, and in the 
case of strong absorption the intensity of the Bloch wave 
transmitted through a stacking fault drops to zero. 

Figure 1 compares the results calculated on interbranch 
scattering in approximation (1 3) with the results of a numeri- 
cal solution of Eqs. (4) for various values of the diffracting 
capability of the dislocation g-b. Approximation (13) gives a 
good description of interbranch scattering in those regions 
where this scattering is not strong. For even values of g.b, 
expression (13) also gives the correct value at y = 0, so that 
this approximation is a good interpolation over the entire 
range of y. 

Al'shitz et al. ii have carried out numerical calculations 
which reveal the contribution of interbranch scattering and 
absorption. They proposed a different approximate descrip- 
tion of the interbranch scattering, by retaining one of the two 
terms in (9) and using it to construct another, linearly inde- 
pendent, solution. Chukhovskil et aZ. l3  have developed an 
approximate description of interbranch scattering through 
an expansion in the small parameter 2 4  1 + P 2)1 '2y/~ 1. 
This approximation describes interbranch scattering only at 
extremely small values of y. It is also possible to construct a 
description of interbranch scattering for small y which is 
analogous to (1 I), by using as a zeroth approximation the 
exact solution for a stacking fault (with a phase shift a gab) 
instead of the unperturbed Bloch waves. According to Ref. 
14, it is the interbranch scattering shown in Fig. 1, rather 
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than the change in the absorption in the highly distorted 
region and the repulsion of the Bloch-wave trajectories from 
this region (for which corresponding calculations were car- 
ried out in Ref. 4, for example), which determines the x-ray 
image of dislocations in the case of the anomalous transmis- 
sion of one of the two Bloch waves. Absorption is of minor 
importance here because of the small dimensions of the re- 
gion which absorbs both of the Bloch waves. 

3. INTERBRANCH SCATTERING OF BLOCH WAVES; STRONG 
DISTORTION FIELDS 

We will consider separately the scattering of Bloch 
waves in the strain field of a dislocation in the case of large 
values of gab, since in this case we cannot use perturbation 
theory, and the large dimensions of the strong-distortion re- 
gion present new opportunities for studying the diffraction 
optics of Bloch waves. Experimental results for this case 
have been obtained by making use of large reflection orders 
and a group of closely spaced dislocations; these experimen- 
tal results are described in Section 5 below (see also Ref. 15). 
Simple estimates from the conditionAw'(2y2 show that the 
range of applicability of the eikonal approximation, (9), de- 
pends strongly on the value of P. If I P I 5 1, then in a region of 
a high gradient of the effective disorientation, w'b 1, the ef- 
fective disorientation w itself will also be large. As a result, 
approximation (9) is valid for y X (0.2-0.3)A. If, on the other 
hand, I P I ) 1, then approximation (9) can no longer be used at 
much higher values of y: The crystal disorientation 0 
caused by a dislocation offsets the initial deviation of the 
wave from the Bragg condition, P, and in the region of large 
values of w' the value of w may be small. 

At small values of y, the diffraction of Bloch waves 
reduces to an interbranch scattering involving a reversal of 
the x component of the quasimomentum. As a result, the 
short-range field of the dislocation serves as a diffraction 
lens which focuses the Bloch waves.I5 

Let us examine the case I P 1 ) 1 in more detail, since in 
constructing the Riemann function of a point source for a 
crystal with a dislocation (in Section 4) we will need to sum 
the contributions of Bloch waves with all values of P. In 
regions with / w 1 # 1 (in particular, far from the dislocation), 
the eikonal approximation can still be used. One of the coef- 
ficients T+ (z) in (9) vanishes, while the other becomes unity, 
so that the Bloch waves of two families reduce to the waves 
Eo and El. It follows from (9) that the wave amplitudes are 
constant at / w 1 b 1, while their phases vary in accordance 
with 

Eomexp [i@ ( z )  sign w] , E,mexp [-i@ ( z )  sign w] , (16) 

where sign w is the sign function. Near the dislocation, with 
y 5 A, the maximum disorientation of the crystal (for a given 
value of y), j3 (0), is much greater than unity. If the momen- 
tum satisfies P5P(O), then there are regions in which we 
have / w l 5  1 and thusA Iw11/29 X 1. In the strain field ofa  
dislocation there are two such regions, around the points 
5 z, [z, is the positive root of the equation j3 (z) = PI. The 

eikonal approximation cannot be used there, so that the 
Bloch-wave amplitudes corresponding to the asymptotic be- 

havior of the wave field before and after this region are dif- 
ferent. At z < - z, the amplitudes of the Bloch waves are 
determined by boundary conditions (5): 

E,=exp[i@ ( z )  -i@ ( - a ) ] ,  E,=O. (17) 

Near the point - z,, the solution of wave equations (4) does 
not reduce to two noninteracting Bloch waves (the quasipar- 
ticles interact strongly), while at z >  - z, the solution 
should have the following form, according to (16): 

Eo=fo exp{i [@ (-2,) - @ ( - a ) ]  -i [@ ( z )  -@ ( - z , ) ] ) ,  

E,=f, exp{i[@(-zP),-@(-a)]+i[@(z)-@(-z,)]). (1 8) 

In terms of Bloch waves, the switch from (17) to (18) means 
that the interbranch scattering has caused a Bloch wave of 
unit amplitude to create a new Bloch wave with an ampli- 
tude I fl 1 while suffering a decrease in its own amplitude to 

I fo . Energy conservation requires I fo / + / f, 1 = 1 (the ab- 
sorption is slight here because of the small dimensions of the 
regions of interbranch scattering. The problem of inter- 
branch scattering thus reduces to one of determining the 
complex scattering amplitudes fo and fl for the given disori- 
entation w(z). The interbranch scattering must be examined 
in two regions in the strain field of the dislocation. 

We turn now to a determination of the scattering ampli- 
tudes. If the disorientation w changes quite rapidly 
(A 1 w'l, 1), i.e., if the dynamic-diffraction region is narrow 
(Az(A ), then we need consider only the energy transfer from 
the transmitted wave to the diffracted wave (we can ignore 
the reaction of the diffracted wave on the transmitted wave). 
This approximation is equivalent to the kinematic approxi- 
mation (the first Born approximation) and corresponds to 
the following replacement of the matrix of system (4): 

After this simplification, system (4) can easily be solved:, 

n 
El ( z )  =-i - exp {in [gu  ( z )  +gu(-a) 1)  

A 

X exp 2ni P7-gu(z)  S r r f  
-a 

Since we have A I w'l ) 1 by assumption, the integral can be 
evaluated by the stationary-phase method. In particular, for 
a dislocation in the median plane of the crystal we find 

Here y, = - Ad0 /dzl = +, and the two stationary points 
z = 5 z, correspond to the two regions where Bloch waves 
are created. In the kinematic limit, I w l ~ l ,  the quantity 
(1 + w ~ ) ' ' ~  becomes I wl, and the phase-change law (10) re- 
duces to the kinematic law (2 1) [see Eq. (26) below]. Examin- 
ing the contributions of the stationary points + z, separate- 
ly, we find the following result for the scattering amplitudes 
(18): 
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The condition for the applicability of the kinematic approxi- 
mation is that the amplitude of the diffracted wave, / f, 1 ,  be 
small in comparison with the amplitude of the incident 
wave; from this condition we find yp,n2. Kinematic ap- 
proximation (19) is thus valid when the dynamic-diffraction 
region, with I wl 5: 1, has dimensions less than a tenth of the 
extinction length A. 

To find an approximation which holds for yp - 1 we 
note that near the points z, the function f l  (z) is approxi- 
mately linear; the region of linearity can be shown by simple 
calculations to span the entire dynamic-diffraction region, 
I w 1 5: 1. The solution of system (4) for the linear function w(z) 
(corresponding to a bending of the crystal) can be expressed 
in terms of the parabolic cylinder functions (Weber func- 
tions). ChukhovskiiI6 has derived an exact solution of 
boundary-value problem (4), (5) and has carried out the nec- 
essary expansion of the Weber function for the field 
w(z) = y(z - z,)/A in the strong-bending case (y 2 I), of in- 
terest here. The region of interbranch scattering surrounds 
the point z,; the Bloch waves on the two sides of this region 
are as described by (17) and (18); and the scattering ampli- 
tudes are found to be 

where the scattering phase shift 6, is expressed in terms of 
the logarithm of the gamma function, 

with y > 0 and 6, ( - y) = T - 6, (y). Balibar et a1." have 
worked from a numerical simulation to construct the wave 
field in a bent crystal for actually visualizing the trajectory c ' 
Bloch waves. They found that after passage through the dy 
namic region the intensity of the transmitted wave decreases 
in accordance with exp( - T/?), where the bending param- 
eter y is related to our dimensionless parameter y by 
y = y cos 8 /A. The constant r was found from the numeri- 
cal simulation to be r = 0.29 pm-'. The same intensity de- 
cay law follows from (23), and for the parameter T we find 
simply r = n2 cos t9 /A, which yields r = 0.28 pm-'  for the 
conditions of the numerical simulation of Ref. 12. (More 
recently, this problem has been studied analytically.17) In the 
two regions of dynamic diffraction in the strain field of the 
dislocation, z = f z,, we must use Eqs. (23) with the bend- 
ing-parameter values y = + y,. It is easy to see that at 
yp )n2 the results of the dynamic theory, (23), convert to the 
kinematic limit, (22). Applying Eqs. (23) twice, we find the 
following results for the amplitude of the diffracted wave in 
the z = a plane: 

n2 nz -- -- 
EI (a) = - 2i ( I  - e YP) ' Ise 2 Y ~  ~ i n  [@ (2,) - @ (- Z p )  

- 8, ( Y P ) ~ .  (25) 
Since w is much greater than unity for nearly all values 

of z, (1 + w ~ ) ' ' ~  becomes j w 1 ;  the phase change law becomes 
the kinematic law, 

and Eq. (25) becomes (21) with yp %.n2. With decreasing y,, 
the amplitude of the diffracted wave in the kinematic ap- 
proximation, (21), increases and can become greater than 
unity, since energy is not conserved in the kinematic approx- 
imation, (19), while in approximation (25) the amplitude of 
the diffracted wave is never greater than unity. 

4. RIEMANN FUNCTION FOR A CRYSTAL WITH A 
DISLOCATION 

The results derived above can be tested directly in ex- 
periments on the diffraction of x-ray plane waves: The 
changes in the wave fields over depth can be followed by 
using a wedge-shaped crystal. Of more interest for problems 
of dynamic diffraction in a crystal with a dislocation, how- 
ever, is the Riemann function (influence function) describing 
the propagation of a perturbation from a point source. The 
Riemann function can be used to construct the solution of an 
arbitrary spatially inhomogeneous problem,' and the Rie- 
mann function itself can be observed experimentally by 
means of topographic sections when the x-ray wave is inci- 
dent on the crystal through a narrow slit on the surface (the 
width of the slit must be much smaller than the extinction 
length). Since the slit width is much smaller than the dis- 
tances over which the amplitudes E, and El change in Eqs. 
(2), the boundary conditions on these equations at the en- 
trance surface (z = - a )  of the crystal can be written in the 
following form: 

Eo) ,=-, =86(x), El! ,=-, =O.  (27) 

As we have already mentioned, the Riemann function is 
known exactly in extremely few cases: for an ideal crystal,' 
for a uniformly bent c r y ~ t a l , ~  and for a crystal with a stack- 
ing fault.7 We would like to determine the Riemann function 
approximately for a crystal with a dislocation. For this pur- 
pose we expand the plane wave incident on the crystal 
through a narrow slit in plane waves, 

OD 

ctg 0  7d 
s ( x ) = -  2A J e x p ( i X ~ r c t g 0  d ~ ,  

- - 1 
and we sum the solutions derived above for the plane-wave 
problems, E,(z;P, y): 

ctg  8 n 
E . ( x , y , z ) = -  J E , ( Z ; P , Y ) B X P  ( i F p x c t g O )  dP.  

2A 

At sufficiently large values of y we can use the eikonal 
approximation (9). Fourier transformation (29) can be car- 
ried out by the stationary-phase method (cf. Ref. 18). The 
stationary-phase condition 

determines the trajectory of a Bloch wave with a generalized 
momentum P which remains constant along the trajectory. 
The amplitude of the diffracted wave is found to be 

E,=A+K+eiB++A-K-e'S-. (3 1) 

The phase shift of the wave along the trajectory is given by 
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-a 

and the amplitude factors are 
ctg 0 

A* =I t F* (-a) rT ( z )  (2n/Or') Ih, 

2h' 

where 

The upper and lower signs in (30)-(33) refer to the weakly 
and strongly absorbed waves, respectively. Equations (12) 
and (30)-(33) parametrically determine E,(x, y,z) and consti- 
tute the solution of the equations of x-ray geometric 
for the field w = w(z). In the geometric-optics approxima- 
tion, the propagation of a Bloch wave in a distorted crystal is 
analogous to the motion of a relativistic particle in an exter- 
nal field: The weakly and strongly absorbed Bloch waves 
correspond to particles with masses of opposite signs; the 
coordinate z plays the role of the energy; and the disorienta- 
tion p plays the role of the external electric potential. In our 
problem the coordinate x is cyclic, (15), so that the momen- 
tum P is conserved, and the geometric-optics equations can 
be integrated.' 

For solving the plane-wave problem it was sufficient to 
examine the interference of two Bloch waves, (9j, corre- 
sponding to two sheets of the dynamic dispersion surface. 
Now, the narrow slit on the surface of the crystal acts as a 
source of an entire beam of Bloch-wave trajectories; we must 
follow trajectories (30) of two families of rays, find two rays 
from different families which pass through the same point 
(x,y,z), and calculate their phase difference, (32). It is this 
phase difference which determines the interference pattern 
of the image. A detailed quantitative comparison of the ei- 
konal surfaces S* (x,y) with the position and shape of the 
interference fringes was carried out for dislocation field (1 5) 
in Refs. 8 and 19. If g.b amounts to a few units, the entire 
interference pattern of the image can be described in the ray 
approximation. An exceptional case is the region y-0, 
where, as was shown in Ref. 15, there is a focusing of Bloch 
waves analogous to the focusing by a stacking fault.' 

In strong distortion fields (at large values of gab) we find 
a completely different situation: Interbranch scattering be- 
comes important over a broad range of y, and a "central 
image" generated by interbranch scattering appears on the 
topographic sections (see Section 5 and Ref. 15). Let us exa- 
mine the corresponding contribution to the Riemann func- 
tion in more detail. The fine structure of this central image 
makes it possible to unambiguously determine the diffrac- 
tion mechanism involved in the image formation. 

As was shown in Section 3, for Bloch waves with gener- 
alized momenta P 5 1 approximation (9) remains valid. The 
Fourier transformation (29) again leads to expressions (30)- 
(34). The additional contribution to the Riemann function is 
due entirely to the interbranch scattering of Bloch waves 
with momenta P) 1. To determine this contribution, we use 
the approximations derived in Section 3. 

Fourier transformation (29) in the kinematic approxi- 

mation, (20), can easily be carried out because of the S func- 
tion S (z' + 1/2x cot B )which arises in the integration over P. 
This S function has a simple physical meaning: In this ap- 
proximation, the new wave El is transported, without any 
further diffraction, along the direction (s,) of the diffracted 
wave; the value z' = - (x cot B )/2 corresponds to the cre- 
ation point for the wave which arrives at the point with coor- 
dinate x in the z = a plane. In this approximation, the wave 
E l  directly conveys the displacement field u at the point at 
which it was created: 

ctg 0 x ctg 0 
E,.(a) =-i! .e-zwexp [-2nigu(- - -Z-- )]  . (35) 

4h' 

This result can be derived directly, without appealing to the 
Fourier representation, by relating the wave field which is 
created to the strain field of the distortions near the disloca- 
tion, as discussed in Ref. 20. We restrict the discussion here 
to the waves in the z = a plane, since the subsequent propa- 
gation of the wave E l  is simply a parallel transport along the 
s, direction. 

The inverse Fourier transformation of expression (25) 
can be carried out by the stationary-phase method. Since (25) 
describes Bloch waves with momenta P) 1, their trajectories 
(30) are straight lines along the direction of the characteristic 
s,, by virtue of the condition w) 1. The stationary condition 
reduces to z, = 1/2lx(cot B and determines that Bloch- 
wave momentum P for which the region of interbranch scat- 
tering lies at a value of z such that, during the subsequent 
propagation along the s, direction, the new Bloch wave ar- 
rives at the point x in the z = a plane. By virtue of (26), the 
phase of the wave E ,  in this approximation differs only 
slightly from the phase in kinematic approximation (35). We 
will not write out the corresponding corrections here. The 

FIG. 2. Topographic section with an image of four closely spaced screw 
dislocations (the distance between dislocgions is ~ 2 - 5  pm).  Crystal 
thickness of 410 pm; Mo Ka radiati2n; (660) reflection; dislocation axis 
parallel to the [I 101 direction; 1/2[110] Burgers vector for each disloca- 
tion; (1 11) surface of the crystal. 
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amplitude (25) leads to the appearance in (35) of an ampli- 
tude factor 

where the value of P is found from the condition z, = 1/ 
2/xlcot 8. At y,,?, the quantity in (36) becomes equal to 
unity, as it should. With increasing 1x1 and thus with de- 
creasing P, the quantity in (36) falls off exponentially, lead- 
ing to the finite "width" in the x direction of the packet of 
new Bloch waves. [In the limit x-0 we must take into ac- 
count the creation of Bloch waves at small values ofz, where 
the function f l  (z) is very nonlinear; expressions (23) cannot 
be used for the scattering amplitudes in this region.] 

Since the packet of newly created Bloch waves consists 
of waves with momenta PB 1, during the subsequent propa- 
gation through the crystal along trajectories (30) this packet 
undergoes almost no deviation from the s, direction and is 
transported in this direction, undergoing nearly no broaden- 
ing and retaining its structure (see Fig. 3 below). 

5. FORMATION OF THE DISLOCATION IMAGE 

Figure 2 shows an x-ray topographic section of a group 
of four closely spaced screw dislocations with a resultant 
Burgers vector b = a0[2Z0], oriented parallel to the reflec- 
tion vector (see also Ref. 15, where a systematic experimen- 
tal study was made of the images of isolated screw disloca- 
tions, isolated 60" dislocations, and groups of dislocations). 
Since we have g = a; ' [650], the diffraction capability of 
the dislocations in Fig. 2 is g.b = 24. The progressive change 
in the shape of the extinction contours as the dislocation is 
approached has been analyzed in detail p r ev io~s ly~ , ' ~  in the 
geometric-optics approximation. We can accordingly focus 
our attention on the central part of the image, where we see 
the effects of the diffraction optics of Bloch waves. The parti- 
cular way in which the image depends on the absorption and 
the behavior of the waves in the crystal can be determined 
not simply from experiments but also by means of numerical 
simulations. Figure 3 shows topographic sections and the 
intensity distribution of the diffracted wave in the scattering 
plane according to calculations from Takagi's equations, (2) ,  

FIG. 3.  Calculated topographic sections corresponding to the experimen- 
tal results shown in Fig. 4; distribution of the intensity of the diffracted 
wave in the crystal. a-pt = 0; b-,,t = 3; c-pt = 12. 
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for various values of the absorption coefficient p (the values 
of the other parameters correspond to the experiments 
shown in Fig. 2). The algorithm of Ref. 21 was used for the 
numerical solution of Takagi's equations, and the blacken- 
ing scale proposed in Ref. 2 was used for visualizing the im- 
ages with the computer printer. In  the absence of absorption 
(Fig. 3a) the central image is symmetric with respect to the x 
and y axes of the topographic section and consists of two 
families of interference fringes, while the distribution of the 
diffracted wave in the scattering planes is the same on the 
two sides of the dislocation. When p t  is a few units (Fig. 3b), 
corresponding to the experimental conditions, we are left 
with only a single family of fringes, and we see an asymmetry 
of the intensity distribution in the Borrmann triangle on 
both sides of the dislocation. The good agreement of the ex- 
perimental (Fig. 2) and calculated (Fig. 3b) sections justifies 
the replacement of the group of closely spaced dislocations 
by a single superdislocation. At p t )  1 (Fig. 3c), the central 
image loses its interference nature, but the symmetry re- 
mains the same. 

The analysis of Section 4 makes it possible to complete- 
ly describe the image formation as a function of the absorp- 
tion level. In that section we expanded the wave packet inci- 
dent on the crystal through a narrow slit in plane waves, with 
all possible values of the deviation from the Bragg condition, 
P, and we followed the motion of the Bloch waves created by 
this packet in the crystal. Two families of Bloch waves with 
momenta P 5 1 propagate along trajectories (30). The waves 
with momenta P)1 undergo almost no diffraction in the 
crystal and propagate along the direction (so) of the incident 
wave until they reach the highly disoriented region near the 
dislocation, where the Bragg condition is satisfied locally for 
these waves (w = 0). Interbranch scattering occurs there, 
and new Bloch waves are created. They propagate along the 
s, direction. If there is no absorption (Fig. 3a) the image is 
determined by the interference of three families of Bloch 
waves: the two families which have undergone refraction 
and the new family created upon the diffraction of the Bloch 
waves. In accordance with the symmetry properties estab- 
lished in Section 1, the intensity distribution in the crystal is 
symmetric with respect to the xz plane, while in the z = a 
plane the topographic section is also symmetric with respect 
to the x and y axes. The basic features of the image remain 
the same when there is absorption (Fig. 3b). In  this case the 
strongly absorbed Bloch waves, for which the absorption 
coefficient is approximately 2p according to (12), do not 
reach the exit surface of the crystal, and the contrast is deter- 
mined by the interference of the weakly absorbed Bloch 
waves [the first term in (31)] with the Bloch waves created 
during the interbranch scattering, (35). According to (3 1) 
and (35), the intensity maxima in the interference pattern 
occur at the positions determined by the condition 

s ctg 0 
S+ (2) + [2ngu ( - ---I--) + 51 =2nn, 

where n is an integer. Figure 4 is a contour map of the phase 
difference (37) in the (x, y) plane of the topographic section at 
z = a. As follows from (14), the family of curves of constant 
value of the wave phase (35) constitute a fan of straight lines 

FIG. 4. Shape of the interference fringes on the image of a dislocation 
according to calculations from Eq. (37) (cf. Figs. 2 and 3b). 

which emerge from the origin. A slight x dependence of the 
phase S + changes the packing density of these lines, while a 
y dependence of S + causes the lines of a constant phase 
difference to become curved. In the z = a plane, the image is 
centrally symmetric. 

The good agreement in terms of the number, position, 
and shape of the contour lines in Fig. 4, on the one hand, and 
Figs. 2 and 3b, on the other, supports our arguments regard- 
ing the mechanisms for the image formation and confirms 
the calculations of the wave amplitudes and phases on the 
basis of these mechanisms. The phase of the wave created in 
the course of the interbranch scattering in approximation 
(35) directly conveys the displacement field u in the strong- 
distortion region. The slowly varying wave (3 1) is a sort of 
reference wave for a holographic recording of this informa- 
tion, and the displacement field u(r) can be reconstructed 
from the interference pattern by making use of the knowns 
reference beam, as was pointed out in Ref. 20. With increas- 
ing x or y, the amplitude (36) of the wave created during the 
interbranch scattering falls off exponentially, determining 
the dimensions of the region of the "central image" (about 
3A in our case). Outside this region, the image is determined 
by Bloch waves (3 1). 

Pendulum oscillations of the intensity of the diffracted 
wave, which create hyperbolic interference fringes in the 
scattering plane (Fig. 3), are determined by the interference 
of two Bloch waves (3 1) which have undergone refraction in 
the strain field of the dislocation. I t  can be seen from Figs. 3b 
and 3c that when there is absorption the contrast is very 
different in the sections on different sides of the dislocation. 
This effect is analogous to those which arise during the bend- 
ing of an absorbing crystal, when the ratio of the amplitudes 
of the two Bloch waves and the contrast of the pendulum 
fringes depend on the sign of the curvature of the reflecting 
planes.23 In the highly distorted region, the excitation points 
shift toward the edge of the dispersion curve, so that the 
directions of the Poynting vectors approach the directions of 
the transmitted wave (so) and the diffracted wave (s,). At 
y > 0, the weakly absorbed wave propagates along the so di- 
rection in the strong-distortion region, while the strongly 
absorbed wave propagates along the s, direction. Nearly all 
the energy of the weakly absorbed Bloch wave is in the wave 
Eo, while nearly all the energy of the strongly absorbed wave 
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is in E l .  Working from the condition w)l, (7), and (33), we 
can easily find the ratio of the amplitude factors, A+ -. 
Although the absorption of the Bloch waves is different, and 
we have K+  )K-, the amplitudes of these Bloch waves in the 
wave El are comparable ( A+ K+ -A- K-), and (3 1) deter- 
mines the interference contrast. At y < 0, the effective dis- 
orientation w changes sign; the excitation points shift to- 
ward the other edge of the dispersion surface; and we find the 
opposite ratio of amplitude factors, A+)A-. Since the rela- 
tion K+  )K- still holds, we find A+ K+  )A- K-, explain- 
ing why there is no interference contrast. After the region of 
strong distortions is crossed, the excitation points return to 
their original positions, and the amplitude factors become 
comparable ( A + -A -). Since K+  )K-, the conditionA + K- 
+)A- K- holds outside the strong-distortion region, re- 
gardless of the sign of y, and there is no interference contrast 
due to the interference of the two families of Bloch waves 
which have undergone refraction. 

The slight difference in curvature of the interference 
contours on the experimental (Fig. 2) and calculated (Fig. 3b) 
topographic sections can be attributed to an anisotropy of 
the crystal (ignored in the computer calculations). Under our 
experimental conditions, with the x axis being a twofold axis 
and the z axis a threefold axis, the anisotropy leads to the 
replacement of the displacement components u,, (14), by 

according to Ref. 24, where v = (c;,/c& ) ' I2  = [(A + 2)/ 
(2A + 1)]'12, and A = 2c,,/(c,, - c,,) is an anisotropy pa- 
rameter (v = 0.91 for silicon). Comparison of (14) and (38) 
reveals that taking the anisotropy into account reduces to 
changing the scale along the y axis by a factor of v. After this 
change of scale, we find a quantitative agreement between 
the curvature of the contours on the experimental and calcu- 
lated topographic sections. 

In the case pt )  1 (Fig. 3c), neither the strongly absorbed 
Bloch wave nor the wave (35), which undergoes a normal 
absorption, reaches the exit surface of the crystal. The con- 
trast is determined by the intensity of the weakly absorbed 
wave in (3 1): 

FIG. 5. Amplitude contrast of an image of a dislocation in the case of 
strong absorption ( f i t  = 12), according to calculations from Eq. (38) (cf. 
Fig. 3c). 

ctg e 
IE, (u, 1 2 =  1 [ r+ (--a) r- (a)  1 K+($)  ")"1' . 09) 

The three factors here determine, respectively, the ampli- 
tude E,  in the Bloch wave which arise at the point x, accord- 
ing to (30); the absorption of the Bloch wave along its trajec- 
tory; and the change in the packing density of the 
trajectories. Figure 5 shows curves of constant intensity de- 
termined parametrically by Eqs. (39) and (30). 

The validity of our determination of the image-forma- 
tion mechanism in the case of strong absorption is confirmed 
by the good agreement of Fig. 5 and Fig. 3c and also of the 
experimental x-ray topographic section found for the same 
sample as for the section in Fig. 2, through the use of Cu Ka 
radiation. With increasing absorption, the interference im- 
age on the section fades, but the asymmetry of the image on 
the two sides of the dislocation remains (cf. Fig. 3c and Fig. 
5), making it possible to determine the sign of the Burgers 
vector of the dislocation. 

In summary, the differences in the absorption of the 
three families of Bloch waves cause the mechanism for the 
image formation to change with increasing absorption. It 
thus ultimately becomes possible to determine the contribu- 
tions of each of the families of Bloch waves to the image. 
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