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The principal relations of the quantum Hall effect in a quasi-two-dimensional electron system are 
studied in the single-electron approximation on the basis of the Kubo formula. A modified Kubo 
formula and several useful sum rules are derived directly. It is shown that if the density of states of 
the system has gaps no correction need be made to the conductivity of completely filled Landau 
levels in any finite order of perturbation theory. This leads to an exact quantization of the Hall 
conductivity of filled Landau levels. The existence of equidistant plateaus on the plot of the Hall 
conductivity vs density or magnetic field follows from the presence of localized electronic states 
on the lower edge of the broadened Landau level and of localized hole state on the upper edge of 
this level. The feasibility of experimentally isolating multielectron-correlation effects is dis- 
cussed. 

51. INTRODUCTION 

The quantum Hall effect (QHE) is now attracting in- 
creasing interest as a new pronounced manifestation of 
quantum relations on a macroscopic level. Isolated impor- 
tant features of the QHE were investigated in Refs. 2-6 in the 
single-electron approximation, but no coherent theoretical 
analysis of the principal experimental facts was presented so 
far. In the present paper we also confine ourselves to the 
single-particle approximation, for it provides a satisfactory 
explanation of the basic relations in the QHE. In addition, it 
is necessary to study all the consequences of the single-elec- 
tron approximation in order to be able to distinguish in an 
experiment the possible effects of interelectron Coulomb in- 
teraction. Some of the recently obtained data7-'' do not seem 
to fit the single-electron scheme. To interpret them it is nec- 
essary to take into account the possibility of formation, in a 
quasi-two-dimensional electron system, of a Wigner lattice 
or of a charge-density wave interacting with disordered im- 
purity  center^.'^.'^ By confining ourselves to the single-elec- 
tron approximation we also avoid dealing with details con- 
nected with spin and valley splitting of the Landau levels. 

To understand more clearly the unusual features of the 
QHE, we compare the experimental behavior of the Hall 
conductivity component uxy of a quasi-two-dimensional 
electron shown schematically in Fig. 1, with the 
Hall component, shown in the same figure, of an ideal quasi- 
two-dimensional system, a!; / = ecN,/BS, where N, is the 
number of electrons in the system, B is the magnetic field 
strength, and Sis the sample area. If in an ideal system we fill 
with electrons an integer number p of Landau levels, so that 
the electron density is n, =pno, where no = 1 / 2 d  is the 
electron density on one filled Landau level and A = (cfi/ 
eB ) ' I 2  is the magnetic length, the Hall conductivity of the 
ideal system turns out to be a multiple of the universal con- 
stant ez/2nfi: 

points n, =pno. In described experiments, on the contrary, 
the correction dux, = u, - u g  (p )  to the conductivity ax, 
of a real quasi-two-dimensional system turns out to be ex- 
tremely small (Aa,, /a!; ( p) 1 < 10W6 according to the data 
of Ref. 14) not only at the points pn,, but also in the entire 
region of electron densities near these points. This gives a 
series of equidistant plateaus on the plot of a,., vs the density 
in a constant magnetic field (Fig. 1). The width of each pla- 
teau, i.e., the region An, of densities near n, =pno where 
oXy(n,),u~j (p) ,  is a steep function of the temperature. 

With decreasing temperature the plateaus can broaden 
on both sides of the point pn,. This important experimental 
fact means that for values n, 2pno the system conductivity is 
less than the ideal one at the same electron densities, while at 
n, 5pno the Hall conductivity of a real system is larger than 
the ideal value. A qualitative explanation of the observed 
effects can be obtained in the single-electron approximation 
by recognizing that the random perturbing potential present 
in the system broadens the degenerate Landau level and lo- 
calizes some of the electronic states on the tails of these lev- 
els. With increasing electron density in the system, the Fer- 
mi level lands periodically in the region of the localized 

( 0 )  ec 1 e2 
( p ) = - p - = p -  FIG. 1. Qualitative behavior of Hall conductivity o, of a quasi-two-di- 

B 2nhz 2n5' ( I )  mensional electron system in the quantum Hall e R e ~ t ' , ~ . ~  compared with 
the ideal Hall conductivity d! = nn,c/B: solid curve-T,, dashed-T,, 

In an ideal system relation (1) is satisfied only at discrete T, < T,, B = const. 
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states. Let, for example, an integer number of lower ( N '  < n) 
Landau levels as well as a certain number of localized elec- 
tronic states of the level N be completely filled at T = 0. The 
wave function of completely filled lower Landau levels is 
nondegenerate, and these levels, at least for weak perturba- 
tions, are separated by a gap from the states of the partly 
filled Landau level. One should then expect the contribution 
of these levels to the Hall mobility of the system to be close to 
ideal. On the other hand the contribution of the states of the 
partly filled Landau levels should decrease abruptly with 
decreasing temperature, for in this case the electrons land, 
by definition, on localized states. This gives the electronic 
part of the plateaus (n, Spn,) of Fig. 1 .  To explain the exis- 
tence of plateaus at n, l pn ,  it must be taken into account that 
in this region of the electron densities the N th Landau level is 
almost filled to the limit. It is then convenient to describe the 
properties of the system in the language of the Landau-level 
vacancies, which are constructed by filling the missing num- 
ber of electronic states and introducing on the Landau level 
an equal number of positively charged particles. The situa- 
tion then becomes analogous to that considered above: the 
contribution of a filled Landau level to the conductivity of 
the system is ideal, while the contribution of the vacancies, 
with account taken of their localization near the upper edge 
of the Landau level, decreases steeply with decreasing tem- 
perature. This gives the hole part of the plateaus (n,  Spn,) of 
Fig. 1 .  Thus the quantum Hall effect is substantially con- 
nected with the localization of the electronic states near the 
edges of the broadened Landau levels. 

To corroborate these qualitative premises we must 
prove, first, that the Hall conductivity of completely filled 
Landau levels coincides with the corresponding ideal value 
u:; ( p ) ,  so that the correction Auxy = 0 .  Second, we must 
verify the additivity of the contributions of the filled levels 
and of the partly filled Landau level to the conductivity of 
the system. Finally, we must show that the contribution of 
the electrons or of the vacancies of a completely filled Lan- 
dau level to the conductivity of the system tends to zero 
under the conditions described above in the limit as T-0. 
This program is carried out in 553 and 4 of the present paper. 
The calculation is based on the modified Kubo formula for 
the Hall condu~ t iv i t~ , ' ~  which is convenient in the limit of a 
strong magnetic field. A direct derivation of this formula is 
therefore presented in 52 from the usual Kuba formula. 

The important role of electron-state localization in the 
formation of plateaus on the uxy (n, ) plot was noted earlier in 
Refs. 3 and 5. There, however, the theorem that there are no 
corrections to the Hall conductivity of filled Landau levels 
was proved only in lower orders of perturbation theory. Un- 
fortunately, the proof presented by Thouless4 of the quanti- 
zation of the Hall conductivity of filled Landau levels is 
based on an incorrect formula for the Hall current. We note 
that when the QHE phenomenon is explained on the basis of 
linear-response formulas it is apparently impossible to avoid 
the use of unbounded operators. We emphasize in this con- 
nection that an indispensable part of the entire presented 
reasoning must be a check on the existence of expressions 
that contain such operators. 

52. DERIVATION OF THE MODIFIED KUBO FORMULA 

We shall investigate the properties of a quasi-two-di- 
mensional electron + impurity system in the limit of a weak- 
ly perturbing potential with amplitude Vog&o,.  For bound- 
ed perturbations / V ( r ) )  < Vo the broadening of the degenerate 
Landau levels should be small compared with the distance 
between the unperturbed Landau levels. For the following it 
suffices to assume that in the intervals between the broad- 
ened Landau levels there exists an energy region (which can 
be narrow) in which the density of states of the system is 
zero. In this case, the exact wave functions and energies of 
the system can again be characterized by the Landau quan- 
tum number N, as well as by the quantum number a that 
numbers the states of the specified broadened Landau level: 
P = 1 N a ) ;  E = ENa . The wave functions I Na) will be un- 
derstood to be superpositions 

of unperturbed wave functions ILX,) taken in the Landau 
representation, where Xo is the quantized position of the os- 
cillator center. The quantum number X,  in ( 2 )  varies over the 
periodicity interval of the system in the x direction, 
O<xo<Lx, with L ,  assumed to be much larger than the char- 
acteristic lengths of the system, such as the average distance 
between the impurities, the characteristic dimension of the 
electronic states, etc. As for the coefficients c ,  (LX,) in (2) ,  
we shall assume that by virtue of applicability of perturba- 
tion theory they decrease rapidly with increasing difference 
lL - N 1 ,  and that the wave functions (2 )  are normalized by 
the condition 

We analyze now the behavior of the coefficient 
C (X,) = C,, (LX,) as a function of the parameter X,. For 
localized states whose wave-function modulus decreases in 
all directions in the xy  plane, the values of the function 

I C  (X,) I decrease rapidly outside a certain interval AXo near 
the point To; this interval characterizes the position of the x 
coordinate of the localization center of the given state. We 
classify as delocalized wave functions those whose modulus 
does not decrease in at least one direction in the xy plane. In 
particular, one should include among the delocalized states 
the basis functions of the unperturbed set ILX,), as well as 
the wave functions (2)  with 1C (Xo)l = const, which do not 
decrease in they and x directions respectively. In general one 
should expect that for delocalized states the values of the 
function / C (X,) I are distributed on the average uniformly in 
any sufficiently large specified interval of values ofAX, .  We 
shall present below a more exact definition of localized and 
delocalized states. 

We now describe briefly the properties of the operators 
used in our paper. We have assumed from the very outset 
that the potential-energy operator V ( r )  is bounded. We shall 
assume in addition that the potential V ( r )  has con$nuous 
lower-order partial derivatives; the operators d V / d x ,  
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( p = x, y) are then also bounded and the matrix elements of 
these operators over the wave functions (1) are well defined. 
On the contrary, the operators 2, of the coordinates, :, of 
the velocities in the magnetic field, .?, of the coordinates of 
the center of the cyclotron motion, which take in the Landau 
gauge A = (O,Bx,O) the form 

i h d  i h d  vx= -- -, v ----+ 
m d x  '- wcx, 

m dy 
(44 

- - h 2 -  d h 2 -  d 
X=X- - mv -ihz - Y=y+ - mv+=y-ih2 - (4b) 

6 u- dy' h dx' 

are unbounded, but not all for the same reason. The opera- 
tors :,,, are unbounded because the nonzero matrix elements 
of these operators in the unperturbed basis (LX, I C, IL + 1, 
X,) increase with increasing number L in proportion to &. 
But these matrix elements do not depend on the quantum 
number X,, and the coefficients C,, (LX,) are assumed to be 
rapidly decreasing functions of the differences I L - N 1. 
Therefore matrix elements of the operators CP always exist in 
the basis (2). The fact that the operators 6, are unbounded is 
of no great importance in the following, so long as all the 
expressions contain these operator~together with the statis- 
tical-averaging operator exp{ - pH 1 ,  which automatically 
cuts off all the high cyclotron levels. With the foregoing tak- 
en into account, we can treat the operators O, in most cases 
as ordinary bounded operators. We assign the operators C, 
and aV/ax whose matrix elements exist in basis (2) to the 
first class. O%the contrary, the matrix elements of the opera- 
tors .?, and X, do not exist generally speaking in basis (2), 
and are assigned to the second class. Indeed, in the unper- 
turbed basis the operator a/ay has only diagonal matrix ele- 
ments 

with arbitrarily large modulus 9 jX,l+oo. Therefore the 
matrix elements of the operator X 

should be regarded as diverging, at any rate for states deloca- 
lized in the x direction. The situation is analogous for the 
operator 2, since its matrix elements that are diagonal in L 

( L X ,  I 2 I LX,') =xosx,, x,. 

have likewise large modulus at large IX I. (We note that for 
the operator O, (4a), which is a definite linear combination of 
the operators a/ay and.?, the corresponding diagonal contri- 
butions cancel one another exactly.) Convergence in (5) can 
be ensured only in the case of sufficiently rapid decrease of at 
least one of the coefficients C (X,) as a function of IX, - To/ ,  
i.e., in the case when at least one of the states INa) or IN 'a') 
is localized. This is sufficient alsoior the existence of matrix 
elements of the operators 9 and Y. We regard this circum- 
stance as the definition of localization. Namely, we consider 
a state INa) to be localized if for %specified INa) the matrix 
elements of the operators 2, and X, of the second class exist 
for any choice of the states lN'af);  in the opposite case the 
state lNa) is assumed delocalized. 

It follows from the foregoing that it is necessary to ver- 

ify tke existence of expressions containing the operators 2, 
and X, , whereas many authors use such expressions without 
due caution. For example the initial expression used by 
Thouless4 for the current of a filled Landau level is in general 
divergent. We shall prove in $3 a theorem that there is no 
correction doxy for the ideal Hall conductivity of filled Lan- 
dau level. Our justification is a modified Kubo formulaI5 
that gives an explicit ex~ression for this correction in terms 
of bounded operators aV/ax,. To this end, we present here 
a direct derivation of the modified Kubo formula and obtain, 
as a corollary, some interesting sum rule. 

We start from the usual Kubo formula for the Hall con- 
ductivity 16: 

where @, ( t  ) is a response function that takes in the basis (2) 
the form 

f a-f 
@ . , ( t ) = z  ( a ~ ~ ~ l ~ ) ( ~ l i ~ l a )  - e r p { - i G f E , t }  Ea-E, h .  

a,, 
(7) 

Here and below la) = INa), E, = EN,, and fa are the fill- 
ing ratios of the state la).  

To derive the modified Kubo formula we use the opera- 
tor identities 

,. 
h z d V  i " =---+- 
h dx ha, [k i l ,  

h h h  

where H = H, + V is the complete single-particle Hamil- 
tonian of the system. We note that relation (8) contains only 
operators of tke first class, which obviously include also the 
Hamiltonian H. Therefore the product of the velocity matrix 
elements in (7) can be expressed in term of a product of ma- 
trix elements from the right-hand sides of relations (8). Cal- 
culating next the time integral in (6) and taking the limit as 
&--to, we get 

By virtue of the aforementioned properties of the operators 
CP, the first sum in (9) can be written in the form of the mean 
value of the commutator [Ox ,O, ] = ifiw,/m (cf. the analysis 
of the corresponding sum in Ref. 5), which yields an ideal 
Hall conductivity a(! = - ecN,/BS. The second term in (9) 
is the sought correction Au,, to this quantity, which can be 
easily written in the form15 
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QI 6 
ea Acr,. = - lirn 5 dte-et 5 d z  Sp {i? (- i d z )  x ( t )) ,  (10) 
S e,,, 

0 

where j? is the equilibrium density-matrix operator, and 
T = p - ' is the temperature. We shall show now that the last 
term in (9) is identically zero. We use the operator Kubo 
identityI6 

A= [A ,  H ]  lih 
A 

transform an operator A of the second class (such as 22, or 
X,) into an operator A of the first class (such as 0, or 
d V/dx,), whose matrix elements in the basis (2) are well 
defined. We assume here that the commutator in the left- 
hand side of (1 1) is also an operator of the first class. This 
assumption is in fact always made in thz derviation of linear- 
response formulas. For any operator B from the first class 
there exists hence 

The existence of traces of the type (12) requites in the present 
case a separate consideration, by virtue of the uniqu%charac- 
ter of the spectrum of the complete Hamiltonian H of the 
system. The eigenvalues EN, of this operator increase only 
with increasing number Nof the Landau level, and at a speci- 
fied N they remain bounded functions ~f the quantum num- 
bera. Therefore the operator exp ( - pH 1 ensures only con- 
vergence of the sum over different Landau levels N. Within 
the limits of a specified Landau level the corresonding sums 
can increase with increasing size of the system, either in pro- 
portion to the number of places No = S / 2 ~ / i l  on the Lan- 
dau level, or in proportion to a certain power n > 1 of this 
number. In the former case, obviously, there exists a thermo- 
dynamic limiting approach and it is natural to assume that 
the corresponding trace exists. In the latter case there is no 
thermodynamic limit. As noted above, the matrix elements 
of the operators of the first class, (Na 1 D, IN 'a'), are bound- 
ed at given Nand N '  as functions of the quantum numbers a 
and a ' .  Therefore traces of the type (12) exist for operators of 
the first class. For operators of the second class such trages, 
generally speaking, do not exist. For example S p P J : ,  
where j?, is the equilibrium density matrix of the unper- 
turbed Hamiltonian H, must be regarded as diverging in the 
thermodynamic limit, although in this case one can choos~a  
representation in which matrix elements of the operator X, 
exist. 

Returning to Eq. (12kwe nEte that under the coz$tions 
imposed on the operators A and B, the commutator [A,B ] is a 
bounded operator and exists 

Sp ~ - B $ [ A ,  81 =Sp [e-fln; A] B. (13) 

The equality in (13) follows, in fact, from the existence of 
both traces in the sense indicated above, and from the fact 
that it is valid for arbitrary bounded operators for which 
cyclic permutation under the trace sign is legitimate. Kubo 

justified earlier equalities of the type (13) by integrating by 
parts. 

The operators Â  and 3 in (1 1)-(13) must be understood 
as second-quantization operators: 

A 

where !P (r) is the electron field operator in the basis (2). Using 
(12)-(14) we get 

Putting I? = 22, and b = 0, in (15) and recognizing that 
SpFCp = 0 at thermodynamic equilibrium, we obtain the 
following sum rule: 

f a - f r  Ne  z (al~, , Iy)(y lvb~ la)- = -- &,Iir. 

Ea-Ey m (16) 
a,7 

A 

Next, putting 2 = X, and b = D, in (1 5) we obtain a second 
sum rule: 

It follows from (17) that the last term in (9) is identically 
equal to zero. This concludes the derivation of the modified 
Kubo formula (9) and (10). We note that with the aid of the 
sum rules (16) and (17) one can write the modified Kubo 
formula in other forms equivalent to (9) and (10). The correc- 
t i p  dux,, can then be expressed in terms gf the operators 
dV/dx and 0, or in terms of the operators dV/dy and 0,, . To 
this end it suffices to replace in the response function (7), 
using the corresponding identity in (8), only one of the veloc- 
ity matrix elements. In analogy with the foregoing, it is easy 
to derive a modified Kubo formula for the component ox,. 
All the foregoing derivations remain obviously valid also in 
the three-dimensional case. 

We consider now a situation when an integer number 8 
of broadened Landau levels in the system is completely filled 
with electrons at T = 0, so that the Fermi level lies in the gap 
between the Landau levels 8 - 1 and 8 ,  where the density of 
states vanishes by definition. The correction to the conduc- 
tivity of the filled Landau levels, as follows from (lo), is then 
proportional to 

(Na I &/dr 1 N f y )  ( N ' y  I a?/dy I Na) - C.C. 

"* Y N<R, N ' > E  
 EN^ - EN'y)' 

(18) 

In this expression the denominator (EN, - EN.,)2>/ ', 
where A is the width of the gap between (8 - 1)th and Nth  
Landau levels. Using this circumstance, we can obtain cer- 
tain sum rules for quantities of the type (18), by going in (16) 
and (17) to the limit as T-0 and using the commutation 
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relations (8). In particular, wecan prove the identity F (a?/ 
dx, C,,, = 0, as well as F (d V /dy, v, ) = 0. The equality F (d V / 
dx, dV/dy) = 0, however, does not follow from (16) and (17). 
It can only be shown that 

which agrees with the statement that different forms of the 
modified Kubo formula are equivalent. Nonetheless, we 
shall show in $3 that when (18) is averaged over random 
coordinates of the impurity centers the contribution of each 
finite order of perturbation theory vanishes. 

53. IDEAL CONDUCTIVITY OF FILLED LANDAU LEVELS 

We draw in the complex E plane an integration contour 
C that encloses the filled Landau levels (see Fig. 2) and ex- 
press the quantity (18), which is proportional to the correc- 
tion to the ideal conductivity of completely filled Landau 
levels, in the form 

h h 

where R = (z - H ) -  ' is the operator of the resolvent of the 
total Hamiltonian of the system. In the situation considered, 
the Fermi level coincides at T = 0 with the upper edge of the 
last of the filled Landau levels. In the presence of a gap 
between neighboring Landau levels, however, the contour of 
the integration in (20) can be shifted into the interior of the 
forbidden energy region, as shown in Fig. 2. All the opera- 
tors in (20) are then bounded on the contour C so that cyclic 

G 

FIG. 2. Integration contour C. 

permutations under the trace sign are legitim~te. It is c2n- 
venient to symmetrize (20) by recognizing that R = - dR / 
dz and integrating by parts: 

The term outside the integral sign vanishes because it is sin- 
gle-valued on the integration contour. 

Expression (21) must be averaged over the random co- 
ordinates of the impurity centers. This operation will be de- 
noted by a superior bar. We shall prove that the contribution 
of any finite order in the perturbation-theory expansion o f F  
vanishes. This expansion is obtained with the aid of the Dy- 
son equation 

R=Ba+BaPR, (22) 
h h 

where R, = (z - H,)- ' is the operator of the resolvent of the 
unperturbed Hamiltonian. From the structure of (21) it is 
clear that the nth order contribution F, will be equal the 
sum of C $ terms of the type 

I 

in which the operators d^Y/dx and d^Y/dy arezrranged in all lift the restriction n < m on the subscripts of these quantities, 
possible ways into a series ofN - 2 operators Vsubject to the assuming that at n)m 
condition $at in the first product of the o~erators in (23) the 

Pn,m--Pm,n,  ( a ) ~  ( a ) .  P~:=o. 
operator dV/dx is always to the left of dV/dy, while in the (25) 

second product they cha%ge places. We shift in each product Since cyclic permutation of the bounded operators under the 

of (23) the last operator R, to the first place and denote the trace sign is legitimate, we have 
resultant expression by P FA. The fizst subscript n < m indi- 
cates the posi$on of the operator dV/x, and the second the 
position of dV/dy in the series of operators V of the first 
product of the operators (23). Th?supe?cript means that the 
first in the series of operators R, is R :. By virtue of the 
foregoing the contribution of the Nth  order of perturbation 
theory for F can be written in the form 

( a )  (a-1) 
P n , m = P n + i , m + i = P n - 5 , m - 1 .  (26) 

Uniqueness of the quantities P e),, is fixed here by the condi- 
tion that each produckof opzrators under the trace sign b c  
g i n s ~ i t h  an operator R, or R and ends with an operator V 
or dV/dx. In addition, we assume that if any of the super- 
scripts or subscripts 1 is larger than Ni t  must be replaced in 
accord with the rule 1-1 - N. If it turns out that 1 < 1 we 

F,=- pi::. must substitute 1-N - 11 1 .  This rule ofcyclic replacement of 

l < n < m 6 N  
(24) the indices is assumed hereafter satisfied in all the encoun- 

tered equations. 
The purpose of the reasoning that follows is to find for The first group of relations for tke quantities P;,!, is 

the quantities Fg!, , a sufficient number of linear equations obtained by replacing the operators _R : that enter in the 
that result in% = 0. We introduce first of all the quantities definitions of these quantities by - dR,/dz and integrating 
P',4),, with arbitraryzuperscript a, which indicaEs the posi- by parts (the term outside the integral drops out as before). 
tion of the operator R in the series of operators R,, and also This yields 
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which by virtue of (26) can be written in the form 

Putting here m - n = s; s = 1,2, ...[( N - 1)/2] independent 
relations for the quantities P t!m. Since the indices are cyclic, 
relations (27b) with m - n > [(N - 1)/2] are consequences of 
the preceding ones. Equations (27) are valid, of course, also 
for the quantities Py!m averaged over the random coordi- 
nates of the impurity centers. For the averaged quantities, 
however, we have in addition the following N - 1 relations: 

N 

= O  n=i ,2  ,..., N-i. (28) 
1-1 

These equations can be verified by writing out the traces in 
the definitions of Pt,', in the unperturbed basis ILX,). It 
turns out then that averaging the sums in the left-hand side 
of (28) reduces to averaging of the expression 

The mean value of a product of the operators V depends only 
on the difference between the electron coordinates r i .  There- 
fore the mean value of Eq. (29), which contains operators 
that act on the sum of electron coordinates, is zero. It is this 
which leads to Eqs. (28). Relation (28) with n = N is a conse- 
quence of the preceding ones, as can be verified by summing 
(28) over n and using (25). 

We cannot determine the CL quantities lit!m in the 
expression for the mean value of the contribution PN, since 
we have ony [(N - 1)/2] + N - 1 relations for these quanti- 
ties. It is possible nonetheless to express F, in the form of a 
linear combination of relations (27) and (28): 

from which f o l l o w s ~  = 0. Equation (30) can be easily veri- 
fied by recognizing that the first sum in (30) can be written in 
the form 

and the second in the form 
N V 

We have shown that the mean value of the contribution 
of any finite order of perturbation theory for F i s  zero. If we 
discard the rather improbable possibility of existence of a 
non-analytic dependence of this quantity on the small pa- 
rameter Vo/hc ,  it will follow hence that itself is zero. 
Consequently when an integer number p of broadened Lan- 
dau levels is filled with electrons the conductivity of the qua- 

si-two-dimensional electron system coincides with the cor- 
responding ideal value (1). 

To avoid misunderstanding, we emphasize that the 
theorem proved in this section does not contradict the state- 
ments concerning the quantization of the Hall conductivity 
in a periodic potential,13'17 since we used in the proof an 
averaging of the conductivity over a random perturbing po- 
tential. 

54. ROLE OF LOCALIZED STATES 
- 

Let now, as T-0, the Landau levels N ' = 0, 1 ,..., N - 1, 
be completely filled with electrons, and let a certain number 
of electrons land in localized state on the lower edge of the 

th Landau level. Using (I),  (9), and (10) we express the Hall 
conductivity of the system in the form 

The first term in this expression is the contribution of the 
filled Landau levels to the ideal Hall conductivity a,, , and 
the second gives the contribution of N, - NN, electrons of 
the partly filled Landau level to the same quantity. To verify 
the qualitative arguments of $ 1, it must be shown that in the 
limit as T-0 the last two terms of (31) cancel each other 
exactly. First, in the low-temperature limit of interest to us 
we can put f,., = 1 for the filled Landau levels (N ' < N ) and 
f,., = 0 for the practically empty levels with N ' > N. (These 
equations are valid, obviously, accurate to about exp ( - A / 
T ) , where A -hc is the characteristic width of the gap 
between neighboring Landau levels.) It is then easy to verify 
that Aa,  in (31) can be written in the form of the sum 
Aa!; + AaFj, where the term Aa!;, which is proportional to 
(1 8), describes the contribution of the filled Landau levels to 
AD,, and, as we have seen in $3, vanishes on averaging. The 
remaining term day; contains only the occupation numbers 
fpa of the partially filled level S :  

where 
<NaldP/dxlN'y><N'yl~P/dylNa) 

g (Na; N'y) = 
(EN,-EN,,)(EN~-EN~,-~A~) 

It can be assumed in this sense that the filled Landau levels 
N '  < 3 and the partly filled level make additive contribu- 
tions to the Hall mobility of the system in the low-tempera- 
ture limit. 

We divide now the states of the level N into localized 
and delocalized in accord with the definition given in $2. In 
the limit as T-0 the occupation numbers of the localized 
states f g;, and of the delocalized ones f $;, so that as T-0, 
by agreement, the Fermi level lands in the region of localized 
states on the lower edge of the Landau level m. Therefore 
those term of (32) which contain f tend to zero as T-4 
and can be left out. In the remaining expression, at least one 
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of the states INcr), INy) is localized. These terms can be 
simplified using the relations 

yhich follow from the equations of motion for the operators 
X, an5are valid under the condition that the matrix ele- 
ments X, exist. The resultant expression can be reduced to 
the form 

where the summation extends ogyAover the localized states 
of the level 8 .  The commutator [X, Y] = iil 2.  In addition, by 
agreement, as T+O all the electrons of the level land in 
localized states on the lower edge of this level, so that 

and expression (34), which coincides with dux,, cancels in 
the limit as T+O the second term of (3 1). With increasing 
number of electrons in the system, ths cancellation will con- 
tinue so long as at T = 0 the Fermi level remains in the re- 
gion of the localized states of the lower edge of the Landau 
level N. This produces on the a,(n,) plot plateaus at values 
n, ?%to. With rising temperature the number of electrons 
in localized states decreases and the cancellation is upset. 
This explains the strong plateau-width temperature depen- 
dence observed in the Clearly, to determine 
the concrete form of this dependence we must estimate the 
temperature dependence of do:. 

Let now the Fermi level land as T-0 in the region of 
localized states near the upper edge of the level N - 1. Then 
the levels with N'  < - 1 are completely filled with elec- 
trons, and the filling of the level N - 1 is close to the limit. 
Transforming to the representation with vacancies on the 
level N - 1, we write the Hall conductivity of the system in a 
form similar to (3 1): 

where %N, - Ne is the number of vacancies of the level 
N - 1. In the limit T-0 we can show that the quantity dux, 
in (35) constitutes the sum do$,! +dot,!, where the term 
do!,! is proportional as before to (1 8) and describes the con- 
tribution of the filled Landau levels with N '(X - 1 to dux, , 
a contribution that vanishes on averaging. The remaining 
term AuFj depends in this case only on the filling ratios 
fR- ,,, = 1 - fR- ,,, of the vacancies of the (N - 1)st Lan- 
dau level. In analogy with the preceding, we can establish 
that in the limit as T i 0  the quantity Aaf,!, with allowance 
for the localization of the vacancies near the upper edge of 
the (N - 1)st Landau level, cancels exactly the second term 
of (35). This explains the existence of the plateaus and their 
temperature dependence in the density region n, 5: Nn,. 

55. CONCLUSON 

From the theorem proved in $3 it follows that in the 
single-electron approximation a correlation exists between 

the presence of gaps in the density of states of the system and 
the presence of a certain fraction of delocalized states on the 
Landau levels. It was found in experiment9 that the fraction 
of the delocalized states is =: 3% of their total number on the 
Landau level. The presence of so small a fraction of deloca- 
lized states is apparently, even in the single-electron approx- 
imation, not an exception but the rule. It can be easily seen, 
for example, that in the model of sparse impurity centers5 the 
greater part of the single-electron states is localized. The 
situation is similar also for a slow p~ ten t i a l ,~  where the delo- 
calized states correspond to only a narrow energy region 
near the center of the Landau level. In both models, an ap- 
preciable fraction of the localized states should have a low 
binding energy. This can explain in principle the very low 
characteristic temperatures ( T S  0.1 K) at which wide steps 
appear in the QHE.7-9 Another possible explanation of these 
facts, namely of the large fraction of localized states and the 
low temperatures at which the effects are observed, is the 
existence of multielectron 

We note that in a strong magnetic field B- 100 kOe the 
electron binding energy at an individual Coulomb center, e2/ 
xil, is - 100 K (x - 10 is the average dielectric constant of 
the medium). We can therefore hope to expand the range of 
temperatures in which the QHE can be observed, by special 
preparation of samples with high density of strongly split-off 
localized states. It would be possible to separate in this man- 
ner the contribution of multielectron correlations, which 
should be substantial only a low temperatures. In addition, 
such studies would be of interest in connection with the con- 
cept of effective conductivity of a quasi-two-dimensional 
system, developed in Ref. 18. Consider a sample in the form 
of a long narrow rectangle L, )Ly , and let the current across 
the sample be jy = 0. The current and the field along the 
sample are then connected by the condition 

where the second equality defines the effective conductivity 
of a quasi-two-dimensional electron system. The energy-dis- 
sipation density in the system is expressed in terms of this 
quantity. It is easily seen that in experiment1 a,, executes 
giant oscillations when the carrier density or the magnetic 
field is varied. If the Fermi level lies in the region of deloca- 
lized states near the maximum of the state density of one of 
the broadened Landau levels, the components of the system 
conductivity tensor are of the same order: a,, -axy. If, how- 
ever, the Fermi level lands in the region of localized states on 
the tail of the Landau level, the component a,, is finite but 
the component ux, has an activation character and de- 
creases exponentially with decreasing temperature. In this 
case ueff can reach anomalously large values. In an experi- 
ment,I9 the effective relaxation time T,, = aeffm*/ne2 esti- 
mated in terms of a,, was - sec at T = 1.2 K. By pro- 
ducing samples with a sufficient number of strongly split-out 
localized states, there is hope of increasing the activation 
energy of the dissipative component a,,, so that the tem- 
perature region in which the effective conductivity of the 
system is anomalously large can be expanded. 
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