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When two noncollinear magnetic fields with frequencies wl and w, are applied to a magnetic 
material, a constant moment arises in the direction perpendicular to the plane of these fields, and 
the magnetization oscillates at the frequencies w, + w, (there is no oscillation at the doubled 
frequency). These effects are determined in general by ternary dynamic spin correlations. An 
experimental study of these effects can reveal these correlations, which embody more information 
about the spin dynamics than does the dynamic susceptibility, which is the property customarily 
studied. There has been essentially no previous experimental or theoretical study of these correla- 
tions. The details of these effects are discussed for two strongly interacting systems: ferromagnets 
in the critical region above Tc and spin glasses. The type of information which can be extracted 
from the corresponding experiments is analyzed. 

1. INTRODUCTION Tc, but those experiments were carried out at a large mo- 
We use the word "isotropic" here to mean that the mag- 

netic materials under discussion have no preferred direction, 
e.g., a uniaxial anisotropy or a permanent magnetic moment, 
either spontaneous or induced by an external field. More 
specifically, we are interested in cubic ferromagnets in the 
critical region above the Curie point and in spin glasses. The 
customary approach in rf experiments on magnetic materi- 
als of this type is to measure their dynamic susceptibility 
x (w) = x '(w) + ixt'(w), which describes the linear response 
to an applied magnetic field (see, for example, Refs. 1 4  and 
the bibliographies there). There has been considerably less 
interest in the responses of higher order, which are propor- 
tional to odd powers of the applied field (see Refs. 4-6, for 
example). There has been essentially no discussion of sec- 
ond-order effects which are bilinear in the applied magnetic 
fields. In general, this is not a surprising situation, since the 
symmetry of the customary experimental conditions, with a 
linearly polarized magnetic field applied to the system, 
usually suppresses such effects (more on this below). 

It was shown experimentally as early as 1957, however, 
that a paramagnetic sample in a rotating magnetic field ac- 
quires a static magnetization which is directed along the ro- 
tation axis and whose magnitude is proportional to the 
squared amplitude of the rotating field1 (Ref. 7 and 8). 

In general, when two noncollinear fields with frequen- 
cies ol and w, are applied to a sample, oscillations of the 
magnetization at frequencies ol f w, should arise along the 
direction of the vector product of these fields. If w, = w,, 
however, there will be no oscillation at the doubled frequen- 
cy. We will show below that an experimental study of these 

mentum transfer, i.e., under conditions far from those dis- 
cussed in the present paper. It should also be noted that ter- 
nary correlations depend on two frequencies and thus 
contain more information than does the ordinary suscepti- 
bility. We will frequently run into situations in which the 
theoretical assertions can be regarded as at best more or less 
plausible suggestions. For this reason, experiments on these 
effects seem extremely promising. 

We begin with a theoretical description of these effects. 
If the relaxation time of the magnetization is long in com- 
parison with the characteristic time for the internal spin mo- 
tions, we can use the Bloch equation or one of its generaliza- 
tions (more on this below), as in Refs. 7 and 8. This method is 
clearly incorrect, however, if these times are comparable in 
magnitude, as they are, for example, in ferromagnets far 
from the Curie temperature. In this case the magnetization 
oscillation amplitude must be expressed in terms of the ter- 
nary dynamic spin correlation functions which were intro- 
duced in Ref. 11 and regarding which we can draw some 
definite conclusions based on some particular theory of the 
spin dynamics. 

It should be noted that it is also convenient to speak in 
terms of spin correlations in the case in which the Bloch 
equation is applicable, since we can thus immediately draw 
conclusions from the symmetry of the problem. The struc- 
ture and symmetry properties of the ternary dynamic corre- 
lations are analyzed in detail in Ref. 12. 

Using the standard methods, we can write the magneti- 
zation which arises in a system in second order in the applied 
external field H ( t  ) as 

effects can reveal genuinely novel and extremely detailed gCL 1 
m a ( t ) =  cm J d o ,  dar  e x p { - i ( o Z + w ~ ) t )  

information about the spin systems. Essentially all our - .  , 
knowledge is based on experiments on the dynamic suscepti- XF,,,(O,+OZ, 0 1 ~ 0 2 )  [ ~ P H P ( W )  1 [gCLHq(oz) 1 9  (1) 
bility, which is a binary spin correlation function. In this new 
approach, in contrast, it is possible to experimentally study & ( a ) =  5 dte"lhlp(t) ,  
ternary dynamic spin correlations, about which nearly noth- 
ing is known. An exceptional case is represented by some where v; ' is the concentration of magnetic atoms, and 
recent experiments on neutron scattering in iron9.10 above F,,(ol + o,, a , ,  u,) is an analytic continuation with the 
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discrete frequencies of a ternary spin Green's function, found from the properties of F by using Gap( - w) 
= GZp(w). 

1 ' j .drl d r 2  d r  If two sinusoidal external fields are applied to the sys- F a p e ( i 0 ,  i w l ,  i02)-60,01+0, =- 
T 2 tem, 

Xexp ( i o z - i o i z i - i o 2 z 2 )  ( T S ,  ( 7 )  S , (T , )S , (T~)  ). (2) H ~ = ~ / ~  (e-i"/thj+eim~thj.) ; j=l, 2, (6) 

Here S is the total spin of the system, which is related to its 
magnetic moment M by M = gpv, 'S. The function 3,, 
is discussed in detail in Ref. 12, so we will simply recall its 
basic properties here. 

1) the function 3,, ( - w,wl,02) is a symmetric func- 
tion of the pairs of arguments ( - o,a), ( a l ,  p), and (w,, p). 

2) Since the spin operators are t-odd, we have 

and, in particular, F,, (0,0,0) = 0. As expected, the effects 
in which we are interested here thus vanish in the static limit. 

then m(t ) goes into oscillation at the two frequencies 0, f w,, 
according to (1). For these oscillations we easily find the fol- 
lowing expression using (3)-(5): 

(*) ma ( t )  ='/,gp R e  {e-""l*"a'tzafi (ui* 0 2 )  

X [ M ,  ( u , ' ) X  M,(*o,) ] J ( a i f  wz+i6, a l+i6 ,  f w z + i 6 ) ) ,  (7 )  

where 

Mta ( m i )  =;a, ( m i )  hie 

is the magnetization induced in the sample by the field hi. In 
deriving these expressions we used the first symmetry prop- 
erty of 3, according to which we have 

w 1 = w 2 = 0 .  Because of this property we have r (2w,w,w) = 0, so that if 
3) Since S, is Hermitian we have a, = o, we have 2m'+'(t ) = 0. Furthermore, we have made 

Fa',,(o+i6, 0,+i6,  02+ i 6 )  use of a third property of F. In addition to the oscillations of 
m there is generally also a part which does not depend on the 

=Fap, ( -o+iS ,  --oi+i6,  - o z + i 6 ) .  time; this part is the sum of the contributions from the fields 

4) accordance with the general principles ofthe spin H1 and H,. A sufficient condition for the existence of this 

diagram technique13 we can write part is that there be a single rotating magnetic field H. In this 
case the expression for the constant magnetization is 

F a w ( u ,  mi,  0 2 )  

where the functions G are the spin Green's functions, de- (8) 
fined in the standard way,13 and r is the three-spin vertex In the static limit we would have r (0,0,0) = 0, so that mE) 
part. The Green's function is related to the magnetic suscep- would vanish in the limit w 4 ,  as expected. 
tibility i, which describes the reaction to an external mag- Ifx, y, andz are the principal axes of the ellipsoid, and if 
netic field, by the field is rotating around z, so that h = h, + ih,,, expres- - 

xGe(u)  = ( g ~ ) ~ v o - ' G a e ( u ) .  (4) sion (8) simplifies greatly, and we can write 

~ i n c e i  depends on the shape of the object, G has the same m ~ o ) = g ~ h . h u ~ z  ( o ) ~ e [ k ( 0 ) x ~ *  ( u )  1 I m r ( 0 ,  m+i6, - u + i s ) .  

dependence. On the other hand, the perturbation-theory se- (9) 
ries for r is constructed in such a way that small distances 
are important in all the integrals, so that r may not depend 
on the shape of the sample (see Ref. 11 for some correspond- 
ing arguments). Since the vertex rap, is a pseudo-scalar, it is 
proportional to E,, and can be written conveniently as 

According to (1) and ( 5 ) ,  the vector m is thus directed 
along the vector product of the magnetizations induced by 
the field H, i.e., along 

[ M ( a i ) X M ( o z ) ] ,  nii,(a) = X a ~ ( 0 ) f f B ( ~ ) .  

We also recall that for an ellipsoid, in the coordinates of its 
principal axes, we have 

where Ni are the corresponding demagnetization coeffi- 
cients, and x (a) is the ordinary susceptibility. Finally, the 
properties of T as a function of the frequencies can easily be 

If the degmanetization is insignificant, and we have i z X ,  
the expression for mr)  becomes even simpler: 

(OJ- m, - g P h , h , ~ ( O )  I x ( o )  1 ' I m  r ( 0 ,  o S i 6 ,  -@+is) .  (10) 

In the opposite limit, of a pronounced demagnetization, 
i.e., 47rNix ) 1 we find from (9) 

It is also a simple matter to write expressions analogous 
to (9)-(11) for the mi*'(t ). 

It follows from (7)-(11) that by measuring m(t) and 
knowing the complex susceptibility x (w) we can determine 
the dynamic three-spin interaction described by the vertex 
part of T.  It is a particularly simple matter to determine 
r (0,w + is, - w + is). Making use of the first and third 
properties of F, we can easily show that 
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At this point we leave the general approach and take up some 
particular cases. 

2. FERROMAGNETS ABOVE THE CURIE POINT 

We have discussed only the case of cubic ferromagnets. 
Their state susceptibility, as we known, can be described 
near the Curie temperature T, by 

where x = a-'7'' is the reciprocal radius of the critical fluc- 
tuations, .r = ( T  - Tc)/Tc, Y =: 2/3 is the critical exponent of 
the correlation length, 7 is the Fisher exponent [which is 
small (7 < 0.1) and which will be ignored below], a is a dis- 
tance slightly shorter than the interatomic distance, and 
Z- 1. According to Ref. 14, in the critical region above T, 
there are two temperature regions with different types of 
critical dynamics: an exchange region with 4r,y0(1 and a 
dipole region with 4rx0) 1. 

We begin with the exchange region. In this region, the 
demagnetization effects associated with dipole forces are in- 
consequential, and we have i zX .  The characteristic energy 
of the critical fluctuations can be written15 

Qe (x) =To (xu) (5-9)'2=T,?13. 

Since the exchange forces conserve the total spin, the relaxa- 
tion of the homogeneous magnetization is caused primarily 
by the dipole forces, which can be treated by perturbation 
theory. As a result, the following expression has been de- 
rived16 for the reciprocal homogeneous-relaxation time: 

where y - 1, and q, is the dipole momentum which was intro- 
duced in Ref. 14 and defined by the condition that if 
4rx, = 1 then x = q,. For the dynamic susceptibility we 
have the Lorentz formula 

~ ( o )  =xoir0 (o+iro)  -'. (15) 

As was shown in Ref. 17, this expression is valid if w(fl,(?t); 
the asymptotic behavior o f x  (a) at w)fl,(x) was derived in 
the same paper. The corrections to x (o) at frequencies 
o(fl,(x) were studied in Ref. 18. 

It follows from the condition r,(R,(x) that the magne- 
tization motion in a magnetic field at frequencies small in 
comparison with Re(%) can be described by the Boch equa- 
tion 

~ = ~ y  [MH] --I?, (M-xoH). (16) 

This equation was used in Ref. 7 to calculate mr'. In our case 
it is a simple matter to use this equation to derive 

I?(o+i6, oi+i6, 02+i6) = i / 2 i ( ~ i - 0 2 )  ( r o ~ o ) - ~ .  (17) 
As a result, for the amplitudes in (7)-(10) we have 

where H 2 =  / [ h l x h Z ] /  for I [ h , ~ h ? l I .  This expression is 
conveniently rewritten as 

where F(w) = To( - io + To)-'. The first factor here, 
gpv; '(xa)"2, is a quantity on the order of the magnetic mo- 
ment in the similarity theory; the expression in square brack- 
ets has a zero scaling dimensionality, since the dimensiona- 
lity of the field in the similarity theory is the same as Re  (x). 
The factor (fl,/r,)' is an enhancement factor which arises 
because the lifetime of the fluctuations of the homogeneous 
magnetization is much longer than the lifetime of the critical 
fluctuations of size x-  '. Finally, the product of the functions 
Fis  a dynamic form factor, equal to unity in the limit of zero 
frequency and falling off at frequencies above To. It follows 
from (16) that expression (19) holds if gpH(T,, i.e., under 
conditions more stringent than the ordinary condition of a 
weak field, gpH(fl,(k). In general, the effects of interest 
here reach their maximum at wi -To. Interestingly, in the 
case of a constant magnetization, with w2 = - o, ,  the quan- 
tity m has the ordinary scaling dimensionality at w ,)To, and 
it falls off as w; '. We also note that, if we ignore the dipole 
forces but assume the field momentum q to be nonzero, then 
by using the expression of Ref. 18 for the Green's function in 
a field we can determine the vertex part o f r .  The expression 
for m differs from (19) only in that r, is replaced by Dq2, 
where D is the spin diffusion coefficient and has the correct 
scaling dimensionality. We thus see again that the nonscal- 
ing dimensionality of (19) arises because we are dealing with 
relaxation processes which are related to a nonconservation 
of the total spin and which have characteristic times in the 
exchange region which are long in comparison with those of 
the dynamic similarity theory. These results are valid at fre- 
quencies low in comparison with Re(%). At high frequencies, 
the decrease in m with increasing frequency is much more 
pronounced. Since the effects of interest here are small in 
this case, however, we will not pursue this question further. 

We turn now to the dipole region, 4 1 - r ~ , )  1. In this re- 
gion, demagnetization effects are important, and we have 

#x. Furthermore, the reciprocal relaxation time of the ho- 
mogeneous magnetization is the same as the characteristic 
energy f ld(x)  of the critical  fluctuation^,'^ so that the Bloch 
equation, (16) can no longer be used. The following expres- 
sion has been derived for the energy 0, in the simplest case 
(Ref. 14; see also Ref. 19): 

( x )  =Qe (qo) (x/qo) 

(the "soft" version of the dynamics). The more detailed anal- 
ysis of Ref. 14, however, leads to the conclusion that the 
following equation holds at sufficiently small values of ?r: 

(the "hard" version). Since we have x(q, in the dipole re- 
gion, we have Rd(x))fl,(x) in both cases. 

Now all the characteristic times are of the same order of 
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magnitude, and the vertex part must be determined from the 
general properties of vertices in the theory of second-order 
phase transitions. The dimensionality of the vertex part of 
mth order is determined by (see Ref. 20, for example) 

wherep, is a function of the momenta and frequencies in r, , 
reduced to a zero dimensionality by means of x and R (x), 
respectively, where R (x) is the characteristic dynamic-simi- 
larity energy. In our case we have n = 3; using definition ( 5 ) ,  
we have" 

where p is a symmetric function of its arguments. It is natu- 
ral to assume p(0,O) = po- 1, although, strictly speaking, 
this result does not follow from our phenomenological the- 
ory. Interestingly, if we had used (17) in place of (2 I), replac- 
ing To by R,, we would have found a result smaller by a 
factor of R,(x)/R,(x). This would mean that the ternary 
vertices in the dynamic-similarity theory are negligibly 
small. From (21) we find the following expression for the 
amplitudes m: 

where the factorsR = x; lXi reflect the demagnetization. If 
the demagnetization is pronounced, then we would have Fi 
= (4rNixO)-' (1. The first two factors are analogous to cor- 
responding factors in (19). At the boundary between the di- 
pole and exchange regions, where go - x, expressions (1 9) 
and (22) are of the same order of magnitude. Working from 
dynamic-similarity considerations, we can determine the 
asymptotic behavior fo r in (21) at w,,, )R,(x). This is done 
in the Appendix. Using the results derived there, we can 
easily determine the behavior of the amplitudes (22) as func- 
tions ofw,,, and T at high frequencies. We should emphasize 
here that none of these results, particularly in the dipole 
region, can be regarded as really rigorous. This caveat ap- 
plies to both the asymptotic behavior of the various proper- 
ties and the more important assertion about the scaling di- 
mensionality of the ternary vertex which follows forom (20). 
Consequently, it would be extremely desirable to see an ex- 
perimental study of these effects, particularly at low fre- 
quencies, o(n,(x), since there are experimental indications 
(see Ref. 4 and the citations there) that the susceptibility be- 
haves anomalously at low frequencies in the dipole region. 

We turn now to some questions associated with the pos- 
sibility of observing second-order effects. Since these effects 
vanish in the limit w = 0, we need to work at frequencies at 
which the ratio w/R (x) is not to small. According to experi- 
mental data (see Refs. 1 and 4, for example), the characteris- 
tic frequencies of the critical fluctuations in ferromagnets lie 
in the range 10'-lo9 Hz. We can expect the effects of interest 
to reach their maximum in the same frequency range. Fur- 

thermore, the third-order effects--or, more precisely, the 
third harmonic of the applied field-are comparatively easy 
to observe e~perimentally.~.~ At frequencies o 5 0  (x) we 
easily find the following estimate of the amplitude of this 
harmonic, working from (20): 

where H is the amplitude of the applied external field, and N 
is the demagnetizing factor along the field direction. This 
expression is obviously correct in the dipole region, but it 
also holds in the exchange region, since in this particular 
case there is no rotation of the induced moment around the 
field which would intensify the second-order effects in com- 
parison with the normal scaling e~t imate .~  It follows from 
(22) and (23) that at o-R,(x) the third-order effects would 
seem at first glance to be small in comparison with the sec- 
ond-order effects because of the factor gpH/R,(x). How- 
ever, this is not quite the case, because of the demagnetiza- 
tion: In the case of the third harmonic we can use an 
experimental geometry such that F(0)  z 1, while the second- 
order effects two of the three factors F i n  (22) are unavoida- 
bly small. In the exchange region we obviously do not have 
to deal with these complexities, and the second-order effects 
are larger than the third-order effects except at very low 
frequencies. 

3. SPIN GLASSES 

At present we have nothing approaching satisfactory 
theory for the dynamic phenomena in spin glasses. Extensive 
experiments on both electron spin resonances and magneti- 
zation at low frequencies have drawn a crude picture of the 
events. We will describe this picture and then make use of it. 
An experimental study of these effects would make it possi- 
ble to test the validity of this picture for describing more- 
complicated phenomena and (also to determine the param- 
eters ofthe theory). The primary interaction in spin glasses is 
usually a sign-changing exchange. It creates correlated mo- 
tions of the spins in spatial regions small in comparison with 
the dimensions of the sample. The effects in which we are 
interested, which are linked with the dynamics of the homo- 
geneous magnetization, occur because of interactions which 
are weak in comparison with the exchange interactions but 
which violate total-spin conservation: Dipole forces and the 
local Dzyaloshinskii-Moriya interaction, for example, are 
usually discussed (see Ref. 21, for example). When we also 
note that the susceptibility of spin glasses is usually small 
( 4 q 0 (  I), we are led to expect that the dynamics of homo- 
geneous magnetization would be described by phenomeno- 
logical equations of the Bloch type. Furthermore, it follows 
from experimental data that the homogeneous relaxation oc- 
curs in different ways in the ESR region (see Ref. 22, for 
example) and in the low-frequency These two re- 
gions are separated by some frequency R, which is not yet 
known but which can be bracketed: lo3-lo4 s-' < R  O < lo8 
s- I .  We first consider the low-frequency region, w < 0,. For 
this region it has been shown e ~ p e r i m e n t a l l y ~ ~ . ~ ~  that the 
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magnetization increases in accordance with Mo + M, lnt 
after the imposition of a weak static field, where t is the ob- 
servation time. This behavior prevails for times measured in 
hours. Furthermore, the experimental data on the real and 
imaginary parts of the susceptibility satisfy dx '/a l m  
= - (2/a)x " quite a c ~ u r a t e l ~ . ~ . ' ~  In an attempt to describe 

these properties, Lundgren et have suggested that a spin 
glass is characterized by a wide range of relaxation times T 

and that the low-frequency susceptibility is an average over 
these times: 

where 7;; -a0,  rmax is the maximum possible relaxation 
time (on the order of hours or longer), x,(T) and g, are slowly 
varying functions of In T and may be assumed essentially 
constant, and, finally, X, is the part fo the susceptibility 
which is constant at o < a o .  These properties follow immedi- 
ately from (24) in the time (or frequency) interval T,, 

< t  =w-'<r,,,, and 

Adopting this picture, we would naturally suggest that for 
each relaxation time T there is a corresponding Bloch equa- 
tion in which M is replaced by m = M - x,H: 

[ m H ]  - (rn-xoH) / T .  (26) 

The final result for an observable quantity is found by taking 
an average of the solutions of this equation over all the T 

values with weight factors g,r-'. Since the T spectrum is 
broad, we can always find values of T-' which are on the 
order of gpH. We thus cannot seek a solution of Eq. (26) in 
the form of a series in gpH. An analysis of Eq. (26) in the 
general case in which two oscillating fields are imposed, and 
we have g p H 2  T- ', is difficult and goes beyond the scope of 
the present paper. We will restrict the discussion here to 
some simple cases. 

We assume a single rotating field with a circular polar- 
ization. Equation (26) can then be solved exactly, and the 
magnetization is found to be7 

m, = 
(xoh) 

0 2 f  T-'+ ( g p h )  ' ' 

where h is the amplitude of the rotating field.4 Taking an 
average of this expression over T under the condition 
ridX (0, gph<r,inl, we find 

where, according to (25), x " = x0 g,. At the maximum, 
which occurs at o = gph we have 

Because of the large logarithm, the value of the magnetiza- 
tion at the maximum is considerably higher than the contri- 
bution to the oscillation of the magnetization in the approxi- 
mation linear in-h, which stem from the imaginary part of the 

susceptibility. It is difficult, however, to measure the con- 
stant magnetization. Accordingly, in the Appendix we ana- 
lyze the question of oscillations of the magnetization in the 
case in which two rotating fields, H, and Hz, with frequen- 
cies w, and w, which are not greatly different are imposed 
w,zw,zw andAw = Iw, - 0214w. It turnsout that theef- 
fect is maximized when h, = h, = h and gph = w. In this 
case we find the following expressions for the constant com- 
ponent of the magnetization and for the first two harmonics, 
with logarithmic accuracy: 

g p h }  cos ( A o t ) .  (30) 2  ln(t,,,Ao) + (3.2'"-2) In - 
A  o 

In contrast with the real part of the susceptibility, (25), these 
expressions depend on the maximum relaxation time T,,,, 
as do (28) and (29). An experimental test of these results 
would reveal whether the concept of a broad spectrum of 
relaxation times has a profound physical meaning or is use- 
ful only for a phenomenological description of the relation- 
ship betweenx ' andx ", as in Refs. 3 and 23. Furthermore, it 
becomes possible to directly determine T,,, and to study its 
behavior as a function of the external parameters, in particu- 
lar, a static external field. Indications that there is such a 
dependence were found in Ref. 23. A weak static field would 
evidently not interfere with the existence of the magnetiza- 
tion oscillations in question. 

At high frequencies, o)~,: -ao,  the slowly relaxing 
contribution to the susceptibility [the second term in (24)] is 
negligibly small, but on the other hand we need to consider 
the dispersion of the first term. The simplest assumption is 
that in this region we have a Bloch equation with a single 
relaxation time r0 < rmi,. The expressions for the effects of 
interest then turn out to be the same as those derived above 
for the exchange critical region in ferromagnets-(17) and 
(1 8) with To replaced by T; ' and x0 replaced by x,. Experi- 
ments on ESR in metals,22 however, have shown that the 
spins "sense" the local directions of the anisotropy axes, so 
that in describing the dynamics of the homogeneous magne- 
tization we must take into account not only its rotation 
around the magnetic field but also the rotation of the spins 
from their original position. We do not rule out the possibil- 
ity that a similar situation prevails in insulating spin glasses. 
Correspoonding phenomenological equations have been for- 

For the case of interest here, in which the 
angle ($) through which the magnetization rotates is small, 
these equations can be written 

M=gp [ M X H ]  - T ~ - ' ( M - X ~ H )  -gpKq,  

(31) 
q=gp (Mxi-I-H) --cl-'q, 

where the vector $ is directed perpendicular to the plane of 
the rotation and has a modulus $. From these equations we 
find the following expression for the susceptibility: 
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where wf(gp)'Kx; '. If we ignore the terms T,,' in (31), we 
find that there is a resonance at the frequency mi. The same 
resonant frequency can be found from the results of Refs. 2 1 
and 22 if the constant field is zero. According to the data of 
Ref. 22, for the alloy CuMn the frequency wi corresponds to 
a field of several kilogauss. The physical reason for the exis- 
tence of a resonance is that it is not favorable from the energy 
standpoint for the spins to depart from their local equilibri- 
um positions. The terms containing r,,' in the denominator 
in (32) give the resonance a finite width. Working from (32), 
we can write an expression for the amplitudes (7)-(10) which 
is analogous to (1 8): 

These effects evidently reach a maximum when one of the 
frequencies is equal to the resonant frequency. There is no 
point in discussing this expression in more detail until we 
have some experimental data to look at. 

I wish to thank J. Kotzler for the discussions of ques- 
tions of the critical dynamics of ferromagnets which inspired 
this study. I also wish to thank B. P. Toperverg for many 
discussions and useful comments. 

APPENDIX 

1. Asymptotic behavior of a ternary vertex 

Let us determine the asymptotic properties of a ternary 
vertex in the dipole region under the condition w ,,, 0, (K); for 
simplicity we restrict the discusssion to frequencies below 
the limiting dipole frequency 

Q d  (qo) =Qe ( g o )  =Tc (qoa) " l ' .  

In this frequency range, according to Ref. 17, the susceptibil- 
ity has the standard Lorentzian form with a width of order 
R,(x) = a,( qo)(x/qo)2 in the "soft" version of the dynamics. 
In the "hard" version, the asymptotic behavior of the sus- 
ceptibility is described by1' 

whereR - 1, and a is the heat-capacity exponent. We consid- 
er two cases of the asymptotic behavior of the vertex part. In 
the first case, all three frequencies are large, while in the 
second we have o1 z - w, zw >ad (%) ,  but a small frequen- 
cy difference, 10, + w21 = Aw<w. We consider the first case 
first. We find the asymptotic behavior from the standard 
requirement of similarity theory, according to which the de- 
pendence on x or, in other words, on T should disappear in 
the high-frequency limit. It then follows from (2 1) that 

where x = 3/4 and 3/2 in the soft and hard versions, respec- 
tively, and the function f l  is on the order of unity. This func- 
tion is constructed in such a manner that it leads to all the 
symmetry properties of the vertex which were formulated at 
the beginning ofthis paper. In the second case, we work from 
the following arguments (for which we claim nothing ap- 
proaching a rigorous basis): If one of the momenta q going 
into an n-particle vertex is large in comparison with x and 
the other momenta in the static limit, then the dependence 
on this momentum can be singled out as a factor ql'v- ' - 
zq1I2. This is a consequence of the Polyakov-Kadanoff op- 
erator algebra," which has recently found experimental 
  up port.^ If we assume that an analogous factorization, with 
the same scaling dimensionality, can be carried out when one 
of the frequencies is high, then we find the following expres: 
sion by working from (12): 

We would naturally expect to have f2(0) = const. If this 
asymptotic behavior does actually occur, then the constant 
magnetization and the oscillations of the magnetization at 
the frequency A0<Od would have a temperature dependence 
x i L  = (0) by virtue of (22). 

2. Solution of the Bloch equation 

From Eq. (26) we find an integral equation for the mag- 
netization along the z axis for the case of fields H I  and Hz 
with frequencies w, and w,, which are circularly polarized in 
the (x, y) plane: 

0. 

m ( t )  =m,(t) -'i/z(gp)2 J dt ,dt ,~( t- t i )  ~ ( t , - t , )  
- rn 

where G (w) = ( - iw + T- I)-'. A solution of this equation is 

m ( t )  =mo+ mnein(w~-m~)i, m-.=mn*. 
nfO 

(A.6) 

The coefficients m, satisfy the system of equations 
( 1 )  mn=mn fln,nmnfln,n-imn-i+ln,n+imn+i, (-4.7) 

where them!' are given by (A.5). For the coefficients I,,,, we 
have 

l n , n=~-~ , -n=- '~z (~p )  'G (oz in)  
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IfAw = lwzl I (T-' the coefficients I , , ,  are independent of n 
up ton - (AwT)-' = no. At n(no the amplitudes m, can evi- 
dently be determined from Eqs. (A.7) with coefficients l,,, in 
which the quantity w2,n in (A.8) is replaced by zero. The 
corresponding expressions are 

where 
A = ( h i 2 + h Z 2 ) a ,  H=h,hza;  ~ a = ( g y ~ ) ~ [ I + ( o t ) ~ j - ~ .  

This expression is correct for 0 < n (n,. If (Aw.r)-'4 1, on the 
other hand, then Eqs. (A.7) can be solved by perturbation 
theory, with this quantity used as a small parameter. In the 
lowest order, mo and m, are determined from (AS). In tak- 
ing the average over T for the first few harmonics we must 
clearly use expression (A.9) if A ~ T  < 1, and we must ue per- 
turbation theory if AWT> 1; in either limiting case, m, is 
independent of Aw. In the region A ~ T -  1 there is a smooth 
transition from one solution to the other. Since the integrals 
over T ae logarithmic in both of the asympotitic regions, the 
quantity Aw effectively enters only the argument of the loga- 
rithm. Working from these results, we can easily write an 
expression for m, in these regions for abitrary h,, ,  and for 
w - g ~ h , , ~ .  We will not reproduce these lengthy expressions 
here. The values of m, at the maximum are given in the main 
text of this paper. 

"I  wish to thank V. N. Fomichev for bringing this point to my attention. 
2)Strictly speaking, for m'+' to betqual to zero when the frequencies are 

equal we do not need this property of T,  since even before we use it the 
difference r ( w l  + o,,ol,02) - T(ol + 02,0,,wl) enters the expression 
form(+). 

'I If there are three non~arallel fields with different freauencies. there will 
be oscillations of m at combinational frequencies with a gain analogous 
to that in (19). As the frequencies approach zero, these oscillations disap- 
pear. 

4'Interestingly, in the case of an elliptical polarization oscillations of m, 
appear at the doubled frequency with an amplitude proportional to h 
- h at low fields. 
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