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We report the results of measuring, by shooting through thin films, the characteristic-loss spec- 
trum of fast 25-keV electrons in the transition metal technetium. The experimental spectra ob- 
tained at zero momentum transfer are analyzed in detail. A characteristic feature of these spectra 
is that they contain several resonance peaks, the strongest being at 11 and 27 eV. A phenomenolo- 
gical theory is presented for longitudinal electron-density oscillations, offers at least a qualitative 
explanation of the observed spectra, and justifies the presence in them of several resonance lines. 

1. INTRODUCTION 

Study of the fast-electron (energies from 10 to 250 keV) 
characteristic-loss spectra in solids by the shooting through 
thin film has diligently continued in the last few years. In 
such experiments, the inelastically scattered electrons that 
carry information on the excitation spectrum of the investi- 
gated element are analyzed for the energy h lost by them in 
scattering through an angle B that serves a measure of the 
momentum transfer fiq. This procedure helped gather exten- 
sive experimental information on the characteristic elec- 
tron-energy losses in metals, semiconductors, and dielectrics 
(see the reviews by Schnatterlyl and Raether2). 

The doubly differential cross section for this scattering 
takes in the first Born approximation the form 

Here fik, and fik, are the momenta of the electrons before 
and after scattering, respectively; E, = fi2q2/2m; &k1 is the 
electron energy after scattering; dl2 ,, is the solid-angle ele- 
ment in which the scattered particles are recorded; 
fiq = fi(k, - k,) and #iu = E,, - E,, are the energy and mo- 
mentum transferred to the system in the scattering act; final- 
ly, S(q,w) is a function called the dynamic structure factor. 
This function is expressed in terms of the macroscopic di- 
electric constant E~ (q,w) of the system as follows: 

S ( q ,  o) = - [ n v ( q )  ( l - e -aw/kT)  I-' I m ( e M ( q ,  o )  )-',  (2) 
where v(q) = 4n-e2/q20,l2 is the volume of the system. 

The interpretation of electron inelastic-scattering spec- 
tra in crystals is based on theoretical premises concerning 
the properties of the dielectric constant (DC) of the system of 
interacting particles. The most understandable situation oc- 
curs in this case for simple metals, whose electron subsys- 
tems have properties similar to those of a homogeneous elec- 
tron gas of corresponding density. The dominant feature of 
the characteristic-loss spectrum in an ordinary metal is the 
strong plasma resonance corresponding to excitation of col- 
lective oscillations of the conduction-electron density. The 
position of this resonance peak is close enough to the fre- 
quency at which the dielectric constant ~(q ,w)  of a homogen- 
eous electron gas vanishes. The theoretical study of the di- 

electric constant of a homogeneous electron gas has a long 
history and by now this branch of theoretical physics has 
been fully explored in general outline (see the review of Gor- 
obchenko and Maksimov3). The presence of the crystal lat- 
tice exerts a definite influence the location and shape of the 
plasma resonance, and this influence is quite satisfactorily 
described for ordinary metals by perturbation theory in the 
electron-ion pseudopotential, as developed by Sturm (see his 
review4). 

The interpretation of the characteristic electron-energy 
loss spectra in transition metals that contain electrons with 
appreciable degree of localization near the ion-lattice sites is 
greatly hindered by the complexity of these spectra, which 
contain as a rule a large number of frequently overlapping 
resonance peaks5 The nature of the corresponding reso- 
nance excitations is not completely clear to this day (see 
Refs. 1 and 2 for details). Therefore, to interpret fully and 
correctly all the information these spectra contain, much 
theoretical and especially experimental work must be done 
to be able to systematize their features. 

We report here the results of an experimental investiga- 
tion of the characteristic-loss spectra in a transition metal, 
technetium, on which experiments of this kind have not been 
performed so far. We present also a phenomenological the- 
ory of the longitudinal oscillations of the electron density in 
transition metals; this theory explains at least qualitatively 
the observed characteristic-loss spectra in such systems. 

2. MEASUREMENT PROCEDURE AND EXPERIMENTAL 
RESULTS 

The measurements were performed with an electron 
spectrometer intended for an investigation of plasmon dis- 
persion in thin metallic films. In this spectrometer, an elec- 
tron beam from a gun is made monochromatic in energy by a 
hemispherical capacitor, is collimated by a pre-acceleration 
lens, passes through an accelerating capacitor in which the 
electron energy can be raised to 30 keV, and is incident on 
the sample. Electron discrimination by momentum transfer 
is with a pair of deflectors symmetric about the sample and 
imparting to the electrons a total transverse momentum 
- fiq. Thus, after scattering, only electrons that lost a mo- 

mentum fiq by scattering land on the axis of the electron- 
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optical system. The selected electrons pass through a decel- 
erating capacitor and are focused by a scanning lens on the 
entrance focal plane of a hemispherical analyzer. At the exit 
from the analyzer they are recorded by an electronic system 
based on a channel electron multiplier and a multichannel 
analyzer. The spectrometer permits operation in the energy- 
loss interval from 0 to 200 eV at a fixed value of the momen- 
tum transfer, which is varied from 0 to 3 A- '. More detailed 
information on the construction and characteristics of the 
spectrometer are published separately. 

The technetium sample was a film -500 A thick, 
sprayed in high vacuum on a polished rock-salt substrate by 
an ion-sputtering method developed by Golyanov and De- 
mi do^.^ The technetium film obtained in this manner was 
removed from the substrate by "floating in water" and fish- 
ing out by the fine-mesh screen of the sample holder. 

Figure 1 shows typical spectra of the characteristic 
losses of a beam of primary electrons of 25 keV energy pass- 
ing through a technetium sample. The spectra were plotted 
in energy-transfer ranges up to 40 and 80 eV at zero momen- 
tum transfer. The long arrows mark the positions of the 
peaks that correspond to elastically scattered electrons, and 
mark the zero of the energy scale. These peaks are well ap- 
proximated by a Gaussian distribution of width 0.5 eV at 
half-maximum. As seen from the figure, at energy transfers 
up to 40 eV the most noticeable details of the spectra occur at 
11 and 27 eV. We note in this connection that in Ref. 7, 
where the x-ray, electron, and conversion spectra of 99Tc in a 
metallic-technetium matrix are shown, weak satellites were 
observed, at distances 11 f 2 and 27 f 2 eV from the peaks 

of the conversion and x-ray-electron transitions. These weak 
peaks were attributed in Ref. 7 to losses to plasmon excita- 
tion. This conclusion is confirmed also by our results. 

Besides the peaks indicated, the figure shows also a 
number of other lines. To determine their parameters the 
experimental spectra were approximated by least squares as 
combinations of Lorentz peaks with a "background" given 
by a polynomial of second degree in energy. A fully satisfac- 
tory fit could be obtained by approximating the spectra by 
five lines with the parameters listed in Table I. The first row 
of this table indicates the position of the E peak, the second 
gives its width AE,,, at half maximum, and the third the 
intensity I referred to the intensity I,, of the peak at 27 eV. 

The number of resonances in the spectrum is undoubt- 
edly not restricted to these five lines. A computer analysis of 
the spectrum has shown, however, that introduction into the 
fitting spectrum of additional peaks besides the ones listed in 
Table I (even including the singularity observed in the spec- 
trum in the region of 7 eV) does not decreasex noticeably. 
This allows us to regard the resonances listed in Table I as 
the most intense spectral lines, whose superposition is a suf- 
ficiently good approximation of the experimental spectrum. 

The positions of the fourth and fifth peaks are close 
enough to double the values for the first and third peaks, 
respectively. Furthermore, a number of supplementary ex- 
periments have shown that the intensities of the fourth and 
fifth peaks increase with decreasing energy of the primary 
electron beam. This suggests that the indicated peaks are due 
to repeated creation of plasma excitations and are of no par- 
ticular interest. As for the fourth peak, it is not excluded that 
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FIG. 1. Characteristic-loss spectra of a beam of primary 25- 
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TABLE I. 

it may also be connected with excitation of a surface plas- 
mon, or at least contains a contribution from this process. A 
qualitative analysis of the remaining three peaks is given in 
the next section. 

We note in addition that the picture we obtained for the 
characteristic losses in technetium depends little on the mo- 
mentum transfer q. This, too, is a characteristic feature ob- 
served also by others5,' in transition metals. 

3. QUALITATIVE ANALYSIS OF THE RESULTS 

Technetium, which has in its atomic state an electron 
configuration 4d '5s2, crystallizes into an hcp lattice with pa- 
rameters a = 2.7407 A and c = 4.3980 A.9 If it is assumed 
that each technetium atom gives up to the conduction band 
all seven of its outer electrons, and calculate for this case the 
frequency of the collective plasma oscillations of all the con- 
duction electrons using the classical formula atom gives up 
to the conduction band all seven of its outer electrons, and 
calculate for this case the frequency of the collective plasma 
oscillations of all the conduction electrons using the classical 
formula 

up= ( 4 n n e 2 / m )  I h ,  (3) 

where n is the electron density and m is their mass, we obtain 
the value fio, = 25.98 eV, which agrees quite well with the 
energy of the third peak of Table I. 

A similar situation is observed also for a large number 
of other transition metals: the energy of one of the peaks in 
their characteristic-loss spectra correlates quite well with 
the plasmon energy calculated from Eq. (3), as if we were 
dealing with a homogeneous electron gas of corresponding 
density. This circumstance is reflected in Table 11. 

Here El and E2 are the positions of the most intense 
spectral lines, taken from Ref. 5. Owing to the sufficiently 
good agreement between E2 and fiw,, the interpretation of 
the nature of just this peak never raised any difficulties, and 
in all investigations of the characteristic-loss spectrum of a 
transition metal its presence was attributed to excitation of 
plasma oscillations of the conduction electrons. As for the 
identification of the other spectral lines-two or more in the 
case of technetium or one in the metals listed in Table 11, or 

even a larger number of peaks (up to five) in noble metals, 
difficulties are encountered here. 

To understand the appearance of these additional 
peaks, we consider the expression for the dielectric constant 
of a crystal in the self-consistent-field approximationlo: 

Here la,) is a Bloch state having a band index a and a 
quasiwave vector k, to which an energy Ea, corresponds, 
while fa, is the Fermi filling function of the single-electron 
states. We confine ourselves for simplicity to the case of zero 
momentum transfer. Separating in (4) the contribution from 
the virtual intraband transitions with a = a' and recogniz- 
ing that as 9-0 and at a #a' we have 

where $ = fiV/i is the momentum operator, we obtain for 
E(O,W) in the case of a polycrystalline sample 

8 n A 2 e 2  f a r - f a r r  I (a'kl'plak) l 2  
--- 3m ' a + a r , k  ( E . . - E . , ~ ) ~  f i o - ~ ~ , k + ~ ~ ~ + i d '  

15) 

In this expression 

E, is the Fermi energy, and 

is the average velocity of an electron in a Bloch state Iak). 
The third term in the right-hand side of (5) is the contribu- 
tion made to E(O,W) by the interband transitions. 

Were we to deal with a system of free electrons with one 
parabolic band, the integral over the Fermi surface in (7) 

TABLE 11. 
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15,71 
19.55 
22.86 
25.63 

Y 
Zr 
Nb 
Mo 

4.0 
8.0 
9.5 
9.9 

12.4 
15.6 
19.6 
22.8 

15.9 
19.6 
23.6 
26 

Hf 
Ta 
W 
Re 

11.21 
15.40 
19.60 
23,06 

7,7 
9.4 

10.3 
10.3 , 



could be calculated in explicit form and Zii would turn out to 
equal w;, i.e., to the square of the classical plasma frequency 
of the electrons (3). For real metals it is customary to express 
the quantity (6) in the following two equivalent forms: 

where mop, is called the optical mass of the electrons on the 
Fermi surface and n,, is the effective number of the conduc- 
tion electrons. In metals, mop, and n,, differ substantially 
from the free-electron mass and from the total conduction- 
electron density, respectively. The greatest difference is ob- 
served precisely in the case of transition metals where, e.g., 
mop, can reach values - (1&20)m. 

For the dielectric constant (4) we can easily prove the 
followingf-sum rule: 

n j Im c (1.0) = - up2, 
2 (9) 

which can be rewritten in the 9-0 limit in the equivalent 
form 

a#a ' . k  

This sum rule means, in particular, that at frequencies w 
higher than all the characteristic energies E, of the inter- 
band transitions the asymptotic form of ~(0 ,w)  is, exactly as 
for a homogeneous electron gas, of the form 

Generally speaking, in solids the selection rules can allow 
interband transitions with arbitrarily large values of the en- 
ergy. Theoretical calculations and experimental data1' indi- 
cate, however, that the oscillator strengths of such transi- 
tions decrease with increasing transition energy. This 
circumstance is qualitatively seen from Eq. (5). In particular, 
in ordinary metals the most significant interband transitions 
have energies E, not larger than several eV. In transition 
metals, however, the corresponding values of E, are consid- 
erably higher. It is important here, however, that both in 
ordinary and in many transition metals the quantity h,, 
which corresponds to the energy of the collective oscillations 
of the density of all the valence electrons, turns out to be 
larger than the energies of all the interband transitions that 
have appreciable oscillator strengths. In this situation the 
correct estimate for the dielectric constant is (1 I), and this 
explains in final analysis the existence, in the characteristic- 
loss spectra of both ordinary and transition metals, of a reso- 
nance peak with energy close to that of the classical plasma 
oscillations of all the valence electrons. 

As for the remaining peaks, it must be noted first that 
for many transition metals the energy of one of them is quite 
close to the value GP given by Eq. (6). Thus, for niobium this 
value is 7.2 eV (Ref. 11) while the peak energy, as seen from 
Table 11, is equal to 9.5 eV. This circumstance can be qualita- 
tively explained by assuming that at frequencies close to i3, 
the contribution from the virtual interband transitions in (5) 
can be neglected. We then have 

which means that plasma oscillations with frequency 
w = i3, are present in the system. It is also easy to under- 
stand the difference between the energy of the corresponding 
peak and the value of GP . To this end we must consider the 
following circumstance. 

A distinction is usually made in transition metals 
between two groups with substantially different interband- 
transition energies. The first is concentrated near the Fermi 
surface and is characterized by transition energies from sev- 
eral tenths to several electron volts, i.e., by energies as a rule 
considerably lower than GP . The second group corresponds 
to much higher transition energies, in the interval 
GP < E, < GP . In accord with the selection rules for the 
matrix elements of the operator 3 in d-metals, the transitions 
of the second group stem from atomic d-f transitions, couple 
the d and f bands, and have at the same time large oscillator 
strengths. One can introduce the concept of the effective 
density n,, (w) of the electrons responsible for the transition 
in the frequency range from 0 tow by using the rule of partial 
f-sums1': 

The experimental show that at w -i3, the value of 
(12) in transition metals is less than or close to one electron 
per atom, meaning that the bulk of the effective electron 
density is concentrated in the d-f transition region. 

Taking this circumstance into account we can represent 
expression (5) for ~ (0 ,w)  at frequencies on the order of Zp in 
the form 

where 

We have subdivided here the virtual interband transitions 
into two groups having (E,, , - E,, ) respectively smaller 
and larger than h. For the former we have neglected the 
quantity E,, , - E,, , and for the latter the quantity h. It 
can be seen from (13) that a resonance peak is expected to 
appear at the frequency Ep /E:". 

Thus, at least two types of plasma oscillations occur in 
transition metals by virtue of their distinctive electronic 
structure and high intensity of the virtual interbandd-f tran- 
sitions. One has a frequency practically equal to that of clas- 
sical plasma oscillations of all the conduction electrons. The 
other has a lower frequency and is involved effectively only 
in electronic states near the Fermi surface. 

To explain the presence of three (or more) peaks in the 
energy-loss spectrum, as in the case of technetium, we need a 
more accurate analysis of the role of virtual interband transi- 
tions than the one presented above. A microscopic analysis 
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of the quantity E(O,W) using the real band structure and the 
wave functions of the Bloch electrons is a rather difficult 
computational problem, and was carried out only for a few 
transition metals (see, e.g., Ref. 14). No such calculations 
were performed so far for technetium. We shall therefore use 
for E(O,W) in the analysis of the experimental data a simple 
model in which the two most intense interband transitions 
are taken into account besides the intraband ones: 

The quantities oi and A, in (16) should be regarded as pheno- 
menological parameters. Within the framework of this mod- 
el we have in accord with (I)  and (2) 

where I is the proportionality factor. The argument of the S 
function in (17), as can be easily seen graphically, vanishes at 
three values of the frequency which we denote by a , ,  a , ,  and 
a,. If we assume for the sake of argument that A, <A,, the 
values of A, satisfy the condition 

Qi<At<Qz<A2<Q;23. 

Expression (17) can then be transformed into 

where the intensities Ii of the peaks are given by 

In accord with (18), the scattering cross section is a superpo- 
sition of resonant peaks at energies which must be deter- 
mined from experiment. It is natural to set the intensities Ii 
in correspondence with the areas under the experimentally 
observed peaks. Equations (19) enable us then to determine 
the parameters A, and A,, which correspond to the average 
energies of the most intense interband transitions. This is 
done with the aid of the formulas 

At2AZ2=c [It ( Q Z Q 3 )  3+Iz(Q3Q1) 3+13 (QiQ2) 3 ] ,  (20) 

where 

As for the parameters i3,, w,, and w,, they are determined 
from the equations 

BpAtAz=QiQ2Q3, 

6p2+oi2+022+AiZ+Az2=Qt2+6222+ Q3', (21) 
6,' (Ai2+A22) + W ~ ' A ~ ' + U ? ~ A ~ ~ + A ~ ~ A ~ '  

=Qt2Qz2+Q22Q32+Q32Q12. 

Using the data of Table I and Eqs. (20) and (21) we arrive at 
the following values of the parameters of our model: 

We note that the difference A, - A, = 4.6 f 0.4 correlates 
well with the distance between the outer peaks in the density 
of the electronic states for the technetium d-band under the 
Fermi surface. According to c a l ~ u l a t i o n s ~ ~ ~ ~ ~  this distance is 
approximately 5 eV. We can therefore assume that the vir- 
tual interband transitions with average energies A, and A, 
correspond to transitions from these two sections of the d 
band into the empty f band. 

Using (22), we can calculate (Z, + 012 + w , ~ ) ' / ~ ,  
which turns out to equal 23.2 eV. This is close enough to the 
plasma frequency iim, = 26 eV for technetium and does not 
contradict the f-sum rule. In addition, using the value of the 
parameter a, from (22) we can estimate from (6) the average 
velocity of the conduction electrons on the Fermi surface in 
technetium. Assuming that the density of the electronic 
states on the Fermi surface is 1.24 eV-' per atom,'' we ob- 
tain the estimate v, =: 1.15 x 10' cm/sec, which turns out to 
be of the same order as for most other transition metals. This 
circumstance can confirm that we have used a reasonable 
model for the dielectric constant of technetium. 

One might ask whether the resonance peaks observed in 
the spectrum for technetium can be called plasma peaks, i.e,. 
connected with collective oscillations of the electron density. 
To answer this question in some manner, we consider the 
classical picture of collective motion of interacting carriers 
in the case when there are two such carrier types (e.g., s and d 
electrons). Assume that for some reason all the s electrons 
were displaced a distance us, and the d electrons a distance 
u,. This produces in the system an electric field 

that will tend to return the electrons to their initial positions. 
The result is their collective oscillatory motion described by 
the system of equations 

Here n, and n, are the densities of the s and d electrons, 
while m, and m, are their effective masses. A similar quali- 
tative treatment of the collective behavior of conduction 
electrons was used also by Ruvalds in his analysis of the 
problem of acoustic plasmons. ls Our approach differs in that 
we have added to the equation of motion of the d-type elec- 
trons an elastic force ku,,  so as to simulate to some degree 
the fact that the d electrons preserve a definite degree of 
localization near the lattice atoms. For the system (23) we are 
interested in solutions in the form 
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which correspond to the collective oscillations of the carriers 
of both types at the same frequency w. Substitution of (24) in 
(23) leads to the system of algebraic equations 

where we use the notation 

Equating the determinant of the system (25) to zero, we ar- 
rive at an equation for the natural frequencies of the collec- 
tive oscillations, which we represent in the form 

It can be qualitatively seen from (2) that when the condition 
ws2 + wd2,A is satisfied in the classical case the carrier 
system will resonate at a frequency -(a, + w, 2)"2 that 
corresponds by virtue of (25) and (26) to collective in-phase 
motion of all the electrons. In the case of technetium such a 
resonance might correspond to the peak observed at 27 eV. 
The second low-frequency solution of (27) is realized at a 
frequency close to ws /(1 + wd '/A 2)"2 under the condition 
that this quantity is much less than A. Such a solution corre- 
sponds to collective oscillatory motion mainly of s electrons 
with a frequency w, renormalized on account of the d-elec- 
tron oscillation that is in counterphase and has a much 
smaller amplitude. 

Comparison with (16) and (17) shows that Eq. (27) can 
be regarded as a particular case of the model used above with 
the parameter values A, = A, = A and ad2 = wI2 + wZ2. 
This suggests that the resonance peaks described by (17) cor- 
respond apparently to collective oscillations of the conduc- 
tion-electron density. The peak observed at 27 eV is due 
most likely to plasma oscillations of all the technetium va- 
lence electrons, while the peak corresponding to 11 eV is 
connected with the plasma oscillations of the s electrons 
screened by the d-electron oscillations. The role of the pa- 
rameter E~ [see (15)] that characterizes the degree of screen- 
ing in the classical case is played here by the quantity 
(1 + wd 2/A 2)1'2.A~ for the peak with energy 15.1 eV, which 
exceeds somewhat the value 14.0 [see (22)] of the effective 
energy of the interband transition, its existence is quite read- 
ily understood within the framework of the simplified model 
(16). In fact, at energies somewhat higher than A, the inter- 
band contribution to the dielectric constant is negative, and 
owing to the divergence of this contribution at w = A, there 
is always a solution of the equation ~ (0 ,w)  = 0 near A ,. 

The possibility of existence of specific longitudinal os- 
cillations in electron systems near interband-transition ener- 
gies was discussed already long ago, and even a special desig- 
nation, collective band mode, was proposed for them.I9 In 
experiment excitations of this type are observed usually only 
in transition and noble metals. In ordinary metals the peaks 
connected with these modes manifest themselves only in ex- 

periments on single crystalsz0 and their intensities are in this 
case quite small compared with that of the basic plasma reso- 
nance. The physical reason is that actually there occurs an 
electron-excitation damping not accounted for in the simpli- 
fied model ( 16) and preventing Re(0,w) from ever becoming 
infinite at energies slightly higher than the energy of some 
interband transition. The contribution to Re(0 ,o)  from the 
interband transitions that have weak oscillator strengths 
turns out to be negative, but small in absolute value, com- 
pared with unity. As a result ~ (0 ,w)  can no longer vanish. A 
similar situation is typical of most interband transitions in 
ordinary metals also for low-energy transitions in d metals. 
Only collective band modes whose interband-transitions 
have a large enough oscillator strength can appear in experi- 
ment. It is this which explains why the experimental spectra 
have a finite number of peaks connected with excitations of 
this kind. 

4. CONCLUSION 

Of course, a more detailed description of the form of the 
characteristic-loss spectrum calls for a consistent quantum- 
mechanical calculation of the function ~(q,w). Unfortunate- 
ly, such calculations are extremely complicated for transi- 
tion metals and have not yet been performed. Recent papers 
on the optical properties of transition metals (see, e.g., Refs. 
11 and 14) contain microscopic calculations of the function 
E(O,W), based on Eq. (4) for the dielectric constant of an elec- 
tron system. We note immediately that this equation itself is 
quite approximate, since it neglects completely the local- 
field effects due to the difference between the effective field 
acting on the electrons and the average macroscopic field 
(see, e.g., the review by Dolgov and Maksimov2'). One of the 
methods of taking into account the corresponding effects in 
the calculation of the dielectric constant of a crystal was 
proposed by some of us.'' Of importance here is only the 
following: the phenomenological dielectric-constant model 
proposed in the preceding section for the description of the 
characteristic-loss spectrum in technetium at k = 0 is qual- 
itatively in full agreement with the microscopic approach. 
Of course, the resonance energies A, and the oscillator 
strengths, which are proportional to wz, are not at all deter- 
mined solely by the properties of the single-particle spec- 
trum, as might follow from Eq. (5) for E(O,W), but must be 
calculated with due allowance for the effects of the local 
field. It is also clear that an exact analysis, in contrast to the 
simple approximation (16), will lead to the appearance of a 
finite width of the corresponding resonances. All these cir- 
cumstances, however, do not change at all the qualitative 
results of the present paper. 

In conclusion, the authors thank 0. V. Dolgov, D. A. 
Kirzhnits, and Yu. A. Uspenskii for a discussion of the re- 
sults, and M. N. Mikheeva and M. B. Tsetlin for supplying 
the technetium sample. 
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