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The Coulomb interaction of electrons localized on monoenergetic capture centers located on an 
interface is examined for nonzero temperatures. The free energy of an electron system with a 
Coulomb interaction is calculated. The result is used to derive the Fermi levelp, the correlation 
radius r,, and the heat capacity as functions of the temperature. When the impurity band is filled 
only slightly, a phase transition occurs as the temperature is changed; at a low temperature, a 
phase transition occurs as the band filling changes. At the transition, r, changes abruptly. There is 
a singularity in the dependence ofp on the temperature and the concentration at the transition. It 
has been predicted elsewhere thatp would be a nonmonotonic function of the density of charged 
centers at zero temperature because of the correlation in the positions of these centers. This 
nonmonotonic behavior gradually disappears as the temperature is raised. The state density in the 
impurity band is calculated. 

1. INTRODUCTION 

It is becoming progressively more obvious that at low 
temperatures the Coulomb interaction can play an impor- 
tant role in shaping the energy spectrum of an impurity band 
at the surface of a semiconductor. 

A correlation caused in the positions of charged centers 
by the Coulomb interaction gives rise to a Coulomb gap in 
the energy spectrum of localized In the limiting 
case of complete correlation, the system could become a 
Wigner crystal of charged centers. 

We have previously3 examined the consequences of a 
correlation among charged donor states at an insulator-se- 
miconductor interface at zero temperature. We showed that 
the Coulomb interaction causes the position of the Fermi 
level to be a nonmonotonic function of the degree of filling, 
with the further consequence that there is a negative effec- 
tive surface-state density. A Coulomb gap arises in the state 
density. 

Similar results have emerged from a numerical simula- 
tion by Bello et ~ 1 . ~  The agreement of the results derived in 
Refs. 3 and 4 lends support to the approximations adopted in 
Ref. 3 and to the approach of using the cell model to describe 
the many-particle Coulomb interaction. The reason for this 
circumstance is the small-scale nature of the two-dimension- 
al fluctuational potential.5s6 

We wish to emphasize that the approach taken in Ref. 3, 
of partitioning the surface into cells and averaging the poten- 
tial over each cell, makes it possible to describe the correla- 
tion of charged centers in a common way, by beginning from 
a complete correlation (a Wigner crystal), with an impurity 
band filled only slightly, and proceeding all the way to a 
complete absence of correlation (a random distribution of 
the charged centers over the surface), with a highly filled 
band. 

der in the system. We will thus examine the joint effects of a 
random distribution of impurity centers and a nonzero tem- 
perature on the correlation. 

Let us consider the interface between a semiconductor 
and an insulator. We assume that there are monoenergetic 
capture centers here with an energy - E, reckoned from the 
bottom of the conduction band of the semiconductor, and 
with a concentration a. If a center has not been filled, it is 
neutral; when a center captures an electron, the local state 
becomes negatively charged. 

We assume that the capture centers are distributed in a 
random fashion over the surface and have a Poisson distribu- 
tion 

which gives the probability for finding m centers in a circle of 
radius r if the average concentration of states is a. We 
showed in Ref. 3 that the correlation can be characterized by 
some correlation radius r,. We can find r, as a function of the 
filling of the capture centers at zero temperature by using 
simply the fact that the charges at the surface repel each 
other. This repulsion gives rise to an ordering of the charges, 
and in principle the preferred structure at the surface is a 
triangular lattice. A random distribution of local centers 
over the surface disrupts the order of this lattice, because 
some lattice sites may not have a center, and an electron will 
be forced to stay near this site, at the nearest local center. As 
the number of vacant positions decreases (as the degree of 
filling is increased), the ordering decreases. Nevertheless, 
the interface can be partitioned into cells of radius r, such 
that each cell contains only a single charged center if it has at 
least one center. The concentration of charged centers, a. , 
can then be written3 

In this paper we explain how a nonzero temperature 
affects the correlation of charged centers at a surface. A non- 

1 " 1 
o- = pz Pm (rc)  = -[ 1-exp (-zr:o) 1. 

zero temperature is one more factor tending to cause disor- m-i nr,2 
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The exponential function on the right side of (1) gives the 
relative number of cells which have no centers. Denoting by 
q = u-/u the extent to which the impurity band is filled and 
by ,$ = T ~ U  the average number of centers per circle of radi- 
us r,, we can convert the expression for a- to the form 

from which we see that the order parameter is the quantity 

For a Wigner crystal, which would exist at a slight filling 
(q(l), we would have 8 = 1, while in the absence of correla- 
tions ( ,.$ = 0)  we would have 8 = 0. 

2. FREE ENERGY OF THE SYSTEM 

We now consider a system of surface centers at a non- 
zero temperature. We assume that on a surface of area S 
there are B = US centers at which there are N electrons. We 
assume that the first Bohr radius of a local state, a,, is much 
smaller than the average distance between centers. We can 
then ignore the overlap of the wave functions of the different 
centers and correspondingly treat the electrons at the sur- 
face as constituting a lattice gas without a kinetic energy. In 
this case the partition function Z is determined exclusively 
by its configurational part, which can be written in the pres- 
ent case as 

where U(r , , )  is the energy of the Coulomb interaction 
between the k thand I th electrons; aneutralizing background 
has been taken into account. The summation is over all the 
coordinates of the B centers at the surface for all N electrons. 

Although expression (2) for Z is rigorous, we cannot 
carry out exact calculations from it. We will accordingly try 
to simplify it. We first note that for a two-dimensional distri- 
bution of charges the potential fluctuations are due primar- 
ily to the small-scale In determining the poten- 
tial in a cell, we can thus average the random potential over 
the positions of the charges outside the cell of radius r, , as in 
Ref. 3. As a result we find the potential energy of an electron 
in a cell: 

where E* = ( E ~  + ~ , ) / 2  is half the sum of the dielectric con- 
stants of the insulator and the semiconductor, a- is the aver- 
age surface density of electrons, E ( y) is a complete elliptic 
integral of the second kind, r is the distance from the center 
of the cell, and the prime on the summation sign means that 
the summation is over all the electrons except that in the cell 
under consideration. At this point we replace E ( y) by the 
approximate expression E ( y) z t ~ ( 1  - y2). Furthermore, 
in partition function (2) we ignore configurations which al- 
low for the possibility of two or more electrons in a single 

cell. This step is justified by the appearance of an additional 
positive energy because of the Coulomb repulsion among the 
electrons. The model developed below is in the spirit of the 
hole theory of the liquid state."' There is a difference from 
that theory, in that here we are introducing a Poisson distri- 
bution of impurity centers, so that there are unfilled cells, 
not only because of thermal excitation but also because there 
are cells without impurity centers. 

We now group all the cells. Each cell in each group has 
m local states with coordinates [ ri j, where ri is the distance 
from the ith state to the center of the cell, with i running from 
1 to m. We denote the number of cells in a group by G,,, and 
we denote the number of electrons by N,, , where the vector 1 
is determined by the set of coordinates [r i  j. It is then a sim- 
ple matter to rewrite partition function (2) as 

where &(ri) is given by (3). The free energy of the system is 
then 

where nml = N,,/G,, is the filling function of a cell with 
configuration (m,l) The number of cells in the group G,, is 

where SP, (r , ) /ae  is the number of cells on the surface with 
m local states. The factor m(l  - $/e)"- 'd ($/$) is the 
probability for the appearance of a state in the ring between 
r, and r, + dr, under the condition that there is no state in 
the circle of radius r,. The factor de/(rf - <) is the prob- 
ability for the appearance of one of the m - 1 remaining 
states in the ring between ri and ri + dr,. Introducing V,, 
= 2q2(n-u)lt2~* and x = ? /e ,  we can rewrite ~ ( r )  as ~ ( r )  
= V,T{ lt2(1 - x/4) and determine the normalized recipro- 
cal temperature p = V,/kT. As a result, free energy (5) be- 
comes 

The subscript "av" on the square bracket denotes an average 
over all the configurations (m,l): 

OD m i 

e -  P-i ( - )  x J I .  (8) 
(m-l) ! 

m= i i-2 z, 

The extent to which the states are filled, 7 ,  is given by 

333 Sov. Phys. JETP 59 (2), February 1984 E. V. Chenskiland Yu. Ya. Tkach 333 



q= (nmJ cp. (9) 

To determine the Fermi level p, we introduce the ther- 
modynamic potential O: 

Q = F - P N .  (10) 

3. EQUATIONS OF STATE 

In the preceding section we derived expressions for the 
thermodynamic potentials and the extent to which the states 
are filled, as functions of the temperature, the cell filling 
functions n,,, and the correlation radius g. We find the Fer- 
mi level of the system by minimizing R with respect to n,,: 

6~Q/dnml=0, 

The result is 

where 

From Eq. (12) we find an expression for the cell filling 
function n,,: 

n.,= { I+ [ 2 exp (-Bq~'hxi/8) 
i= i 

I -' 

We see from (1 3) that the cell filling function is a Fermi func- 
tion which allows any of the states in the cell to be filled with 
a corresponding statistical weight. 

Expression (9) with (13) is an integral equation which 
determines the relationship between the Fermi level and the 
degree of filling 7 at a given temperature and at a given cor- 
relation radius f .  

The correlation radius is an internal parameter of the 
system and can be found by minimizing F for a given value of 
'7: 

a ~ / a g  1 ,=o. (14) 

The optimization with respect to f allows for possible 
changes in the arrangement of the charged centers. 

From (14) we find an additional equation which relates 
f ,  n,,, 7,  and B: 

To solve system of equations (9), (13), (15), we begin by ana- 
lyzing these equations. 

To show that the cell filling function n,, is a negligibly 
weak function of the particular configuration (m,l), we intro- 

duce the function n,,(xi), which gives the filling of the ith 
state in the cell. The filling of the ith state can be expressed in 
terms of the filling of the first state: 

nml (xi) =nml (xi) exp [-$qg'h (~ i -~ i ) iB ] .  (16) 
The cell filling function is equal to the sum of the filling 
functions of each of the states in the cell: 

Let us examine the filling n,, in the two limiting cases of low 
and high temperatures. It follows from expression (16) that 
at a low temperature (p7f 112/8)1) the filling of the ith 
centers (i = 2, ..., m) is negligible in comparison with the fill- 
ing of the first. Furthermore, since (as we will see below) the 
Fermi level is quite high in units of kT in comparison with 
the energy of the filled states, the filling of a cell depends 
exponentially weakly on the position of the first state also. 

At a high temperature the correlation radius tends to- 
ward zero, as we will see below, and the probability for the 
appearance of two or more states in such cells also tends 
toward zero. Consequently, again at high temperatures we 
need consider the filling of only the first state, and we may 
assume that the filling of a cell is independent of its position. 

We thus assume that the filling of a cell is independent 
of (m,l) over the entire temperature range, and we replace 
n,, by the average cell filling n. This is the approximation of 
a self-consistent field, in which all the cells which contain at 
least one state are assumed to be identical and are assumed to 
be in an identical average self-consistent potential. In expres- 
sion (7) for the free energy we thus replace n,, by n, and in 
taking the average in the last term we assume that the filling 
of m - 1 states is small in comparison with that of the first 
state. As a result we find 

The last term in the curly brackets is correct only at low 
temperatures. Although this term is small, it proves impor- 
tant in calculating the low-temperature specific heat; it 
should be ignored at high temperatures. 

In this self-consistent field approximation, expression 
(9) becomes 

and the order parameter 8 is 

B=n(I-e-&). (20) 

The quantity in parentheses in (19) and (20) is the relative 
number of cells which contain at least one state, and n is the 
probability for the filling of these cells. Comparing (1) and 
(19) we see that an additional randomization occurs at a non- 
zero temperature in the system because of the thermal exci- 
tation of cells (n < 1). 

In the self-consistent field approximation, Eq. (1 5) re- 
duces to an equation which describes the relationship 
between the temperature and f a t  various values of 7: 
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FIG. 1 .  Temperature dependence o f  the order parameter f3 for various 
degrees o f  filling q .  1-17 = 0.02; 2 - 4 . 1 ;  3 4 . 2 ;  4 - 0 . 5 .  

From (19) and (2 1) we have 

from which we see that in the limit T-+O expression (19) 
reduces to (I), which was derived for a zero temperature. 

Working from (21), we can calculate the temperature 
dependence of the order paramater 8 for various fillings 7 
(Fig. 1) and also the 7 dependence of 8 at various tempera- 
tures (Fig. 2). We see from Fig. 1 that at 7 > 0.12 the order 
parameter 8 falls off monotonically with increasing tem- 
perature. At 7 < 0.12 we see an S-shaped 8 ( T )  dependence, 
which corresponds to a first-order phase transition from an 
ordered state to a disordered state. At 7 = 0.12 the differ- 
ence between the ordered and disordered phases disappears; 
i.e., this is a critical value of 7. As 7 is reduced from 0.12, the 
jump in the order parameter at the phase transition, AB, 
increases, and in the limit 7-0 we find A8-1. 

It follows from Fig. 2 that at a low temperature, T <  Tcr 
(kTc, = V,/25), there is an S-shaped dependence of 8 on the 
degree of filling; a first-order phase transition occurs as the 
filling is varied, and the order parameter changes abruptly. 
At T >  T,, the order parameter changes continuously with 
"7. 

FIG. 2. The order parameter B vs the degree of  filling q for various tem- 
peratures. I-kT = u,/100; 2-KT= V,/25; 3-kT= V,/5.  

What is the physical meaning of these phase transi- 
tions? The ordering factor in this system is the mutual Cou- 
lomb repulsion of the charges; the interaction intensifies 
with increasing concentration of charged centers. With in- 
creasing filling of the impurity band, on the other hand, the 
system becomes more random because of the random posi- 
tions of the local centers on the surface. 

The temperature is also a randomizing factor, having its 
greatest effect at a slight filling. The presence of these three 
competing factors thus gives rise to phase transitions as ei- 
ther the temperature or the filling is varied. The joint effects 
of the temperature and the filling on the randomization of 
the system lead to a critical point on the (7, T )  phase diagram, 
where the difference between the ordered and disordered 
phases disappears (Fig. 4). 

The transition temperature at 7( 1 can be determined 
by comparing the free energies of the ordered and disordered 
states. The free energy for the ordered state is determined 
primarily by the interaction energy, 

while that for the disordered state is determined by the en- 
tropy term, 

Equating these expressions, we find the transition tempera- 
ture T,: 

FIG. 3. Position o f  the Fermi level, p, vs the degree o f  filling 
at various temperatures. a: 1-T = O; 2-kT = V,/2O; 3- 
k T =  V,/5; &kT= V,.  b: 1-T= O; 2-kT= Vo/lOO, 
3-kT = V,/55; 4--kT = V,/40, 5-kT = V,  25. 
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have for a monoenergetic level in the absence of a Coulomb 
interaction: 

FIG. 4. The (q,T) phase diagram. I: Ordered state (Wigner glass). 11: Dis- 
ordered state (gas). 1-Critical point (qc, = 0.12, kT,, = V,/25); 2-iso- 
lated singularity corresponding to a Wigner crystal; horizontal arrow- 
phase transition as the temperature is varied; vertical arrow-phase tran- 
sition as the filling is varied. 

As was shown in Ref. 4, there should be no long-range 
order in the electron structure in a random lattice of local- 
ized states, even at a slight filling. The order parameter 0 
which we have derived is a measure of the short-range order 
in the system, and we are actually dealing with a Wigner 
glass-gas transition. Long-range order arises only asymp- 
totically in the limit 7 4 ,  T 4  in a wigner'crystal; i.e., on 
the (q,T) phase diagram the Wigner crystal is an isolated 
singularity at the origin (Fig. 4). 

Now working from the equation ,u = aF/dq and 
expression (18) for F (this expression was derived in the self- 
consistent-field approximation), we find the position of the 
Fermi level as a function of the filling and the temperature: 

Let us consider some limiting cases. At a low temperature we 
find from system (21), (22) 

p=-3/&voq'12, qK1; 

p=V,/2[2(1-q)]'", I-qK1. 
(23) 

At a high temperature (k- V, q& ' I 2 )  we find from (21), (22) 
the ordinary behavior of the Fermi level, which we would 

FIG. 5. Density of states and density of excitations in a system with a 
Coulomb gap for a slight filling and a low temperature. 1 (hatched re- 
gion)-Filled states; 2-unfilled states; 3-gap-free density of excitations; 
vertical arrow-excitations across the Coulomb gap; inclined arrow- 
excitations without a gap. 

System (21), (22) thus describes the known limiting transi- 
tions for the low-temperature case, for both slight and pro- 
nounced filling,3v4 and also for the high-temperature case. 

Figure 3 shows the filling dependence of the position of 
the Fermi level at various temperatures. Figure 3a shows 
p( q )  at T = 0 and at T > T,, . At low temperatures, the func- 
t i o n ~ (  q)  is nonmonotonic. At k T  = V,/5 it becomes mono- 
tonic, and at k-  V, we find the usualp(q) dependence [see 
(24)l. Figure 3b shows p(q)  for T < T,, in the region q < qcr . 
Structural features appear on the p(q)  curve because of the 
phase transition as the filling is varied. 

If the impurity band of interest is at a semiconductor- 
insulator interface in a metal-insulator-semiconductor 
structure, then the phase transitions which occur as the fill- 
ing or the temperature is changed will be seen as an un- 
bounded increase in the capacitance of the metal-insulator 
semiconductor structure and as abrupt changes in the 
charge in the impurity band and at the gate. 

We can now calculate the heat ca~acity of the system, 
C, which is defined by 

Substituting Eq. (21), which relates T and 6, along with F 
from (1 8) into (25), we find the heat capacity as a function of 
the temperature. The results of numerical calculations show 
that at q > q,, the heat capacity has a slight maximum; at 
q = qcr, at the critical point, C diverges; and at q < qo, the 
behavior of C ( T )  is the same as that at a first-order phase 
transition. 

At low temperatures (far from the phase transition) and 
at q(1 the heat capacity is given by 

It follows from this expression that there are two types of 
excitations: zero-gap excitations and excitations across a 
gap. The zero-gap excitations, which are described by the 
first term in (26), are related to transitions within a cell and 
dominate the heat capacity at low temperatures. The density 
of excitations in a cell was calculated in Ref. 3. It can also be 
found from (26), by comparing the first term there with the 
known expression for the heat capacity of a degenerate elec- 
tron gas, which depends on the state density at the Fermi 
level. 

As the temperature is raised, excitation across a gap 
becomes important and is responsible for structural changes 
(changes in the correlation radius); in particular, it deter- 
mines the phase transition. The excitations across a gap de- 
pend exponentially on the temperature, so that the distance 
from the Fermi level to the position of the unfilled states can 
be determined from the argument of the exponential func- 
tion. It follows from (26) that this distance is V, 77"'/4 if the 
filling is slight and the temperature is low. As we saw earlier, 
the distance from the Fermi level to the level of the filled 
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states is also equal to V, 77'12/4. It follows that the size of the 
Coulomb gap is V, 77lI2/2. Figure 5 is an energy diagram of 
the density of states and the density of excitations. 
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