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The nonlinear dynamics of discotic liquid crystals (discotics) is investigated. It turns out that the 
reactive part of the hydrodynamic equations, which determines in particular the interaction 
vertices of the hydrodynamic modes, is subject to weak renormalization. However, allowance for 
fluctuational corrections leads to the appearance of a divergent contribution to the kinetic coeffi- 
cients. A distribution function is copstructed in which the weakly fluctuating variables not relat- 
ed to the order parameter are effectively excluded from consideration. The diagram technique for 
calculating the fluctuation effects is used to show that in the leading approximation of perturba- 
tion theory the imaginary part of the discotic mode spectrum behaves like 1 k for k ~ k ,  and 
like Iw I a fork - k, . Fluctuations of the order parameter also lead to strong renormalization of 
the attenuation of first sound, the long-wavelength behavior of which changes from k to ka . 

INTRODUCTION 

Discotic liquid crystals consist of filaments of mole- 
cules which are rigidly connected to each other. These fila- 
ments can slide against each other in the manner of a liquid, 
and in a plane perpendicular to the filaments they form a 
two-dimensional crystal lattice. The linear elasticity theory 
and the hydrodynamics of such systems are known.' In the 
present paper we consider nonlinear effects in the dynamics 
of discotics, which turn out to modify substantially the char- 
acter of the relaxation effects in these liquid crystals. 

When one considers the hydrodynamics of discotics, 
one must take into account, in addition to the variables char- 
acterizing isotropic liquids, a two-component vector u 
which describes the displacement of the filaments in a per- 
pendicular direction. We are thus get for u to a two-dimen- 
sional elasticity theory that has no elastic modulus for vari- 
ation of u along the filaments. This leads to anomalously 
large fluctuations of the vector u (Ref. 2) which do not affect 
the static properties of discotics. By this the situation differs 
from the case of smectics, where the fluctuations of the dis- 
placement vector u (which for smectics has only one compo- 
nent) lead to a logarithmic renormalization of the static elas- 
tic m ~ d u l i . ~ - ~  

When one studies the nonlinear properties of discotics it 
is more convenient to use in place of the displacement vector 
of the filaments two scalar functions: W ,  and W,, the mean- 
ing of which is that the pair of equations W, (t,r) = const 
defines the position of the filament. The energy density of the 
discotic can be represented as an expansion with respect to 
the gradients of W,.  For a crystal which is isotropic in a 
plane perpendicular to the filaments the leading terms of the 
expansion of the energy density have the form 

expression (1) will be valid for two-dimensional crystals hav- 
ing a sixfold axis. It is exactly this case of hexagonal symme- 
try which is characteristic for real discotics, so that the 
expression (1) is of a quite universal nature. 

To the minimal value of the energy density (1) corre- 
spond the equilibrium values Wl = x / l ,  W, = y/l ,  corre- 
sponding to alignment of the filaments of the discotic along 
the z axis, so that the filaments are defined by the equations 
x  = const, y = const. As can be seen from the structure of 
the equilibrium equations, the quantity 1  defines the distance 
between the filaments. For the description of the deforma- 
tion of the filaments one may introduce the vector u: 

w ( - u )  W,= (y-u,) 11. 

For small deviations from equilibrium u ,  and u,  coincide 
with the displacements of the filaments along the x  and y 
axes, respectively, in agreement with the standard notation 
of the linear theory.' Expanding Eq. (1) with respect to u, it is 
easy to find the harmonic part of the energy density 

E(Z'=1/21-2 [ ( P 2 f  P )  Z - 2 ( V a ~ a ) Z + $ ~ L - Z ( ~ a g V a ~ g )  ' + 1 ~  (V%a)'I. 

(3) 
Here f l  = P 1  + P2, V ,  is a vector with the components V, 
and V, , and the matrix E , ~  is: 

Thus, ,B corresponds to the longitudinal elastic modulus of 
the filaments, 0, corresponds to the transverse modulus, and 
x corresponds to the Frank bending modulus of the linear 
theory.' 

Anomalously large fluctuations in discotics manifest 
themselves in the dynamics of these systems. A considera- 
tion of the fluctuations of the discotic variable leads to the 
avvearance of a contribution to the kinetic coefficients 

A A 

where P I ,  P,, and x are the elastic moduli, and summation which diverges for low frequencies. This contribution can be 
over the Greek indices is understood from 1 to 2. We note calculated with the help of the diagram technique for the 
that in the approximation in which terms of second and interaction of long-wavelength fluctuations developed in 
fourth order in V W, appear (and only these terms are essen- Refs. 6 and 7. In many respects this discussion resembles the 
tial in the consideration of nonlinear effects) the same investigation of the dynamics of smectic liquid crystals, 
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which was carried out by the present authors in Refs. 8 and 
9. In particular, we shall make use of the representation for 
the effective action given in Ref. 9, as well as the procedure 
described there for the elimination of weakly fluctuating 
variables. 

THE EFFECTIVE ACTION FOR THE ORDER PARAMETER OF 
DISCOTICS 

Taking account of all the hydrodynamic variables of the 
discotic, the energy density E is a function of the following 
variables: 

Herep is the mass density, a is the specific entropy, j is the 
momentum density, and Wa is the discotic variable intro- 
duced in the Introduction. The thermodynamic identity for 
the energy density has the form 

wherep is the chemical potential, v is the velocity, T is the 
temperature, and $ai and qaik are the variables which are 
thermodynamic conjugates to V i  Wa and Vi  Vk  Wa . The 
pressure P is defined as follows: 

P=pp+vj-E. (6) 

Finally, the nondissipative nonlinear equations for discotics 
(cf., e.g., Ref. 10) have the following form: 

Here the stress tensor is 

Tsk= [P+ Vrn ($amnVnWa) ] 6i~+~~i~h+$ahViWa- Vi$aknVnWa. 

(8) 
We now consider the expression for the energy density 

of a discotic corresponding to the expansion (1) 

where E ( W )  is given by Eq. (I), and thequantities~,P,,P,, I, 7t 
are functions ofp and u. Calculating the pressure according 
to Eq. (6), we find 

Here the discotic part of the pressure is 

In Eq. (1 1) we have introduced the notation: 

y= (a In z/a In p) .. (12) 

The discotic contribution to the stress tensor is 

Before going on to nonlinear effects we note that in the 
linear approximation1 the equations (7) describe three modes 
of the acoustic type. The first of these is related to oscilla- 
tions of the density and represents ordinary longitudinal 
sound, the velocity c of which is determined by the com- 
pressibility c2 = pC32~/C3p2. The remaining two modes are re- 
lated to the deformation of the lattice of filaments and have 
the following frequency spectrum: 

Here 

k and k,  are respectively the components of the wave vector 
along the filaments and in a plane perpendicular to them. 
The first expression (14) corresponds to a longitudinal wave 
in which the displacement vector u is parallel to k,, and the 
second one corresponds to a transverse wave in which u is 
perpendicular to k,. Note that the relations (14) have been 
obtained taking into account the smallness of the ratios a, /c2 
and a,/c2, for which the following estimate holds 

The estimate (15) shows that the spontaneous symmetry 
breaking in discotics is weak. 

As was shown in Refs. 6 and 7, the generating func- 
tional for the (equal-time) correlators of the hydrodynamic 
quantitites q,, (among which for discotics are comprised p, 
a, j, W,) with the fluctuations taken into account, can be 
written in the form9: 

Z(S ,  g) = 5 DqDp exp dt d3r d20 exp (i08) 

( L a  ] . (1 6) 

The expression (1 6) contains 
- 

ga=y.+ iOva, S,=m,+iV.0, 

Here 0, 8 are Grassmann (anticommuting) variables for 
which the Berezin integral is defined so that 

The functional expansion of Z defined in Eq. (16) with re- 
spect to the variables y, m, v, i; yields6*' the correlators of the 
quantities q,, p, $, $. 

The reactive part of the Lagrange density L is defined 
by the nondissipative hydrodynamic equations Jq,, / 
at + Fa (q, ) = 0 (for discotics these are the equations (7)) and 
has the form9 
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The dissipative part of the Lagrange density is determined 
by the kinetic terms in the hydrodynamic equations and has 
the form 

The self-energy operator 2 and the polarization operator IT 
are related by an equation of the type of the fluctuation- 
dissipation the~rem.~"  

In the system considered here the discotic variable Wa 
fluctuates strongly and the other hydrodynamic variablesp, 
a, j are weakly fluctuating. Therefore one can integrate ex- 
plicitly with respect to the latter in Eq. (16), retaining in the 
exponential only the quadratic part in the weakly fluctuating 
variables. As a result in Eq. (16) there remain only the inte- 
grations with respect to the variables ja and Fa, with the 
integrand preserving its structure; the exponential contains 
now the following Lagrange density9: 

L=~adWaldt+i~aXapW6+'/zi~aHap~e 
-i (p-'Pa V t W a + % i )  Bik-'  ( F h + g h )  . (20) 

Here Fk ( W) = V n  T Ly', and the differential operator Bik will 
be described below. In the derivation of (20) we have ignored 
the (unrenormalized) dissipative part (19) of the Lagrange 
density, which is related to weakly fluctuating variables, 
since for low frequencies the kinetic terms in the hydrody- 
namic equations are much smaller than the reactive terms. 

The differential operator Bik which occurs in Eq. (20) 
has the following definition: 

The last term in B, is exsressed in terms of the differential 
operator Qi defined as follows: 

Making use of the explicit expression (13) we obtain for the 
leading terms (terms that do not vanish at equilibrium): 

THE EFFECTIVE ACTION FOR THE DISCOTIC VARIABLE 

Before starting any concrete calculations we give an es- 
timate for the characteristic wave vector k corresponding to 
the discotic mode. The real part of its oscillation spectrum is 
determined by the relations (14) from which for a given fre- 
quency w we obtain for the components of a characteristic 
wave vector the estimates 

This implies that for low frequencies the following inequa- 
lity is true: 

k,, k,. (24) 

Thus, in the intermediate integration over the discotic vari- 
able one may set k e k  . 

We now consider the expression (21) for the discotic 
intermediate frequency. The inequaltiy a/c2<1, Eq. (15), 
guarantees that the last term in (21) is small compared to the 
second term, and on account of the estimate (23) the same 
inequality guarantees the smallness of the first term in Eq. 
(21) compared to the second term. In this situation we find 
for the inverse of the operator B,  the Fourier representation 

Thus, for intermediate discotic frequencies the operator 
B ,, ' becomes an orthogonal projector. In this situation one 
may omit from the quantity Fk ( W) = A n  TLy' the last term 
in (13). To leading order one may neglect the derivatives of 
A ,  Fa,  which occur in Eq. (20), and carry out the substitu- 
tion 

As a result of all this we obtain the following Lagrange den- 
sity for the discotic variable: 

Here 

&'= (65p-VaVeVL-Z) Fp,. (27) 
The unrenormalized values of the self-energy function 

XaB and of the polarization operator 17,8 in Eq. (26), which 
have their origin in the traditional kinetic terms of the hy- 
drodynamic  equation^,^,' exhibit the following frequency 
dependence: 

However, even the first correction to .Za8 and ITa8, necessi- 
tated the interaction of the fluctuations carries a lower pow- 
er of the frequency than the unrenormalized quantities, i.e., 
this correction exceeds the unrenormalized terms at hydro- 
dynamic frequencies. Thus, for the discotic variable the do- 
main of applicability of traditional hydrodynamics disap- 
pears, and the expressions for Za8 and must be derived 
from an equation which takes account of the self-interaction 
of the discotic mode to leading order of perturbation theory. 
As a result one obtains 
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Here g and 7 are constants for which an expression will be 
derived below. 

It follows from the structure of the Lagrange function 
(27) that the following pair correlators referring to the disco- 
tic variable are non-zero: 

Expanding (27) to second order we find that the pair correla- 
tors decompose into a longitudinal and a transverse part, so 
that in the Fourier representation we have 

In these relations 

I ku  Il+c 
Dl, t (o, k)=Gl ,  t (o, k)? 

o2 
51,  tGl, t (-- o3 - k) .  

(34) 
For the longitudinal correlators G, and Dl one should sub- 
stitute <, = k i k  - 2 ,  and for the transverse correlators one 
should substitute <, = 1. 

We note that the expressions (33) and (34) imply the 
relation 

Making use of this relation and of the fact that the function 
G(o )  is holomorphic in the upper half-plane, it is easy to 
calculate the integral (a similar calculation holds for the 
transverse mode) 

This integral yields the equal-time correlator 
( W, (k) W, ( - k)). On the other hand, this correlator could 
be computed starting from Eq. (3). Comparing the two ex- 
pressions we find the ratio 

If one takes into account the explicit expressions (28)-(34), 
the relation (36) guarantees the validity of a fluctuation-dis- 
sipation theorem for the discotic variable. 

FLUCTUATION CONTRIBUTIONS TO THE OSCILLATION 
SPECTRUM OF DISCOTICS 

As already mentioned, the unrenormalized values of 
the polarization operator ZIaD and of the self-energy func- 
tion ZaD are unimportant. Thus, for ZIaD and EaB one needs 
to take into account only the expressions given by the dia- 
grams represented in Figs. l and 2, where the dashed line 

FIG. 1. 

corresponds to the D function and the solid line to the G 
function. The triple interaction vertices which occur in these 
diagrams can be obtained by expanding the expression (26) 
with respect to the deviation of Wa from its equilibrium val- 
ue. Important for us will be the singular contribution to KO 
andzap coming from denominators which appear when the 
lines on the diagrams of Fig. 1 and 2 are either both longitu- 
dinal or both transverse. In this situation the expression for 
the leading part of the interaction vertex has the form (the 
expression corresponds to the definitions of Ref. 6 and 7) 

Here the subscript 1 refers to the variable Pa and the sub- 
scripts 2 and 3 to the variables S W, ; the indexa in Va should 
be contracted with the index of the external variable of the 
diagram; for the longitudinal lines a = a,, for the transverse 
lines a = a,.  

We now substitute Va into the diagrams of Figs. 1 and 2 
and obtain in the leading approximation the following ex- 
pressions: 

1 
X-[aL2G1 (v ,  q) Dl (o -v ,  k-q) +a,ZGt (v, q )  D i ( o - v ,  k-q) I .  

v 
(38) 

Making use of the explicit expressions (33) and (34) as well as 
of the symmetry properties of the integrand in (38) one can 
show that the following relation holds for the integrals (37) 
and (38) 

The real part R d a D  gives a small correction to the real 
part of the spectrum and is unimportant for us. Thus every- 
thing reduces to an analysis of the integral (37); this analysis 
is relegated to the Appendix. As a result we obtain for ITaD 
an expression having the structure of Eq. (29), and for the 

FIG. 2. 
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determination of the constant r we obtain an equation which 
together with Eq. (36) yields 

The quantity 7 is easily determined from Eq. (36). 
We now consider the contribution of the fluctuations to 

the spectrum of the weakly fluctuating quantities. Such a 
contribution appears only in the spectrum of acoustic oscil- 
lations which are determined by the poles of the Green's 
function G, (a), where 

~ ; ~ ( t , ' - t ~ ,  rl-r2) = - ( j i  (ti, r l )  pk(t2, r2)  ). (41) 
The expression for this function, as well as the expression for 
the pair correlator 

can be obtained by expanding Eq. (16) with respect to the 
variables yi and mi. The corresponding Lagrange density is 
given by Eq. (20). It follows from this expression that the 
unrenormalized value of G, is determined by the function 
B , I ,  whereas the fluctuation corrections are collected into 
the self-energy function 2, : 

In2, one must first of all take into account the contribution 
coming from the term (22). In addition in G, there appears a 
contribution related to the diagrams with intermediate sin- 
gle'' Gap lines. Such diagrams appear in the expansion of Z 
taking account of Eq. (20) in the pairing of the factorpa with 
the factor V W, from Fk . Retaining in the corresponding 
expression the part which does not vanish at equilibrium and 
joining it to (22), we obtain 

The expression (44) yields a correction to the real part of the 
sound oscillation spectrum which is simply due to the pres- 
ence of the discotic part of the stress tensor TIr)  in the equa- 
tion for j, . Therefore Re2, is not fluctuational in origin. 

The fluctuations determine the imaginary part of 8,. 
This imaginary part is due to loop diagrams of the type rep- 
resented in Fig. 1. First, such diagrams appear in pairings of 
W, from Eq. (22) and pa with a pair of W, from Fk [see Eq. 
(20)l. Second, one must take into account a loop in the dia- 
grams of the type mentioned above with a single intermedi- 
ate G, line (in this case the single Gap line enters into the 
diagram of Fig. 1 from the right). As a result of this (taking 
account of footnote 1) we obtain the following expression 

In addition to the mentioned diagrams we also consider 
diagrams for the pair correlator (42) which can be collected 
into the following expression: 

The diagram for the polarization operator ff,, is analogous 
to the one in Fig. 2, and is due to the pairing of two pairs of W 
from Fk [see Eq. (20)l. We obtain in the leading approxima- 
tion 

Taking account of the explicit expressions (33), (34), the rela- 
tion (36), and the symmetry of the integrand in (45) one can 
derive 

Recalling the structure of (43) and (46) we see that the rela- 
tion (48) is a fluctuation-dissipation theorem. The analysis of 
the integral which occurs in Eq. (47) is carried out in the 
Appendix. 

CONCLUSION 

We have thus shown that a consideration of the fluctu- 
ation corrections radically changes our notions about the 
spectrum of discotics. As far as the discotic longitudinal and 
transverse modes are concerned, their dispersion laws are 
defined by the poles of the Green's function (33) and have the 
form 

w, t=--igSl, t I kll I '+fT- [ % I ,  , (al, ,kL2+bk4) ] I h .  (49) 

The damping decrement of these modes which is determined 
by the first term in Eq. (49) manifestly exceeds the unrenor- 
malized value for characteristic wave vectors. 

The case k - k ,  requires a separate discussion. In this 
situation the damping decrement (49) becomes smaller than 
the unrenormalized value which is proportional to k :. The 
leading contributions of the fluctuations to 2 and 17 can 
again be obtained respectively from diagrams of the type of 
Fig. 1 and 2, in which one must take into account terms 
proportional to k t .  We obtain for the longitudinal and 
transverse parts of the polarization operator 

The explicit form of the integral I, can be found in the Ap- 
pendix [Eq. (A7)]. In this limit the expression f o r 2  is related 
to (50) in the same manner as the expression (38) is related to 
(37), and consequently the fluctuation-dissipation theorem 
(39) holds. The analysis of the integral which occurs in Eq. 
(50) given in the Appendix shows that in the case k ,  - k w 
and k, are cutoff factors in the integral, so that one must use 
the expression (A10) for the integral (A7). As a result of this 
we obtain for 8 and 17 the estimate 
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Thus, Z7- Iwla - 2  diverges for small frequencies and ex- 
ceeds the unrenormalized 17 = const, so that in the case 
k ,  - k ll too the attenuation of discotic modes I m 2 -  I w la is 
of fluctuational origin. 

The sound spectrum is determined by the poles of the 
Green's function (43). The real part of the discotic contribu- 
tion to the sound spectrum (44) yields an anisotropic contri- 
bution to the velocity of sound: 

which on account of Eq. (15) is small. The attenuation of 
sound is determined by the imaginary part of the self-energy 
function 2, which can be determined from Eqs. (47) and 
(48). For sound w = ck, and therefore on account of the esti- 
mates the cutoff factor in the integral (47) is the frequency o ,  
so that we can make use of the expression (A1 1) for the inte- 
gral (A7). As a result we obtain for the longitudinal part of 
the self-energy function 

The expression (53) determines directly the damping decre- 
ment of the sound waves. 

We see that the fluctuation contribution (53) to sound 
attenuation behaves proportionally to wa , i.e., decreases 
slower than the unrenormalized contribution, which is pro- 
portional to w'. Thus, for small frequencies, the fluctuation 
contribution to the attenuation of sound manifestly exceeds 
the unrenormalized one. However, the expression (53) con- 
tains both a numerical smallness, as well as a smallness relat- 
ed to the fact that the thermal energy is much smaller than 
the sound energy pc21 3. Therefore, for realistic frequencies 
such as the ones used in experiments, both contributions 
may compete, fact which should be taken into account in 
treating experimental data. 

Noteadded inproof (26 December 1983): Recently there 
has appeared a short note by S. Ramaswamy and J. Toner 
[Phys. Rev. A28, 3159 (1983)l devoted to the dynamics of 
discotics. These authors have taken into account only the 
first correction of perturbation theory and therefore have 
obtained an incorrect result for the contribution of fluctu- 
ations to the kinetic coefficients: -w- ' I2  in place of wa -'. 
APPENDIX 

Consider the integral which occurs in Eq. (38) 

It is more convenient to carry out the integration with re- 
spect to v by shifting the integration path into the upper half- 
plane, after which the integration reduces to taking the resi- 
dues of the integrand (it is convenient to make use of the 
representation (35)). It will be seen below that 

where q is a characteristic wave vectcr in Eq. (Al). Therefore 
the dependence on k and w in the integral so obtained should 
be retained only in the singular denominators, which have 
the form 

G-' (v, q) -G-' (-O-V, -k-9). 

In the imaginary part of this difference one may neglect the 
dependence on k and w, and in the real part one must take 
into account only the dependence on k as the main cutoff 
factor. As a result we obtain 

Here 

qZ=aqL2+ bql14. (A41 
Changing over to thecoordinatesx = b 1/4qil ( = 771a, 
we find 

The integral with respect to 5 is easily done if one represents 
it as an integral over a contour which surrounds the positive 
half-axis. Deforming this contour, we find that the integral 
reduces to residues at points and a divergent integral over an 
infinite contour which has to be thrown away, correspond- 
ing to the subtraction from (Al)  a constant which diverges 
but does not depend on w and on k. After the integration 
with respect to x, we obtain, finally, 

i fi b(fy-l)/2 1 kll 1 fT-i 
1, (kll) = 

4na2 cos (n .1-Z/2) gE 

We also consider the integral which occurs in Eq. (47): 

dv d3q 
Zzi,t = - q4~, , t (v ,  q) Di,t(w-v, k-q) 

(2n) 
The integral with respect to the frequency v in (A7) is calcu- 
lated similar to (Al).  The inequality (A2) holds again, so that 
the dependence on w, k need be retained only in singular 
denominators. Omitting in (A7) the dependence on k ll and 
expanding to first order in k, and w, we obtain as a result of 
integration over the frequency v: 

a 
o 

(A81 

We make the change of variables: 

- 
fiql12=q cos Q, laqL=q sin g. (A91 

The integration in (A8) with respect to the variables 7 and $ 
can be done explicitly, yielding 
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- ~ i +  hcos81fi-lsgn(l+ hcos0)-1 
fZ -  I I - 

(A101 
Here h = ~ " ~ k ,  /a. In the case k, the integration with re- 
spect to 9 in (A10) is trivial and we obtain for the integral I, 

I% = (fZ-1)22 la l f i -~  
64 2 v r n  sin (a 1/z /2)  gl+vGb ' (A1 1 )  

"These lines have the frequency o-ck and therefore on account of the 
inequality (15) we can neglect in Eq. (33) the terms with the wave vector, 
so that on intermediate lines G a p ~ S , / w .  
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