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Two systems of hydrodynamic equations exist for a rotating superfluid liquid. In one the expan- 
sion is carried out in terms of all the gradients, including the components of the velocity curl 
corresponding to uniform rotation. In the other the expansion is only in terms of nonequilibrium 
gradients. Exact nonlinear equations for both cases, with allowance for the deformation energy of 
the vortex lattice, are derived from the conservation laws. The specific modes of the hydrodyna- 
mics of fast rotation are investigated. Some features of the thermodynamics of the isolated-vortex- 
filament oscillations caused by the fact that the vibrational quanta have an intrinsic angular 
momentum are also considered. 

A characteristic feature of a rotating superfluid liquid is 
that quantum vortex filaments are produced in it. The specif- 
ic hydrodynamics of such a system is the subject of many 
papers, both and r e ~ e n t . ~ - ~  Nonetheless, a host of 
important questions, even in the very formulation of the 
problem, remain unanswered. The point is that two ap- 
proaches are possible to a hydrodynamic description of ro- 
tating systems, i.e., to a description in which the quantities 
are assumed to vary slowly in space and in time and the 
expansions are in terms of gradients. In the first the initial 
state of the system is assumed to be at rest and the expansion 
is in all the gradients, including the components of the veloc- 
ity curl connected with the uniform rotation. Since uniform 
rotation is always in thermodynamic equilibrium, another 
approach is possible, in which the velocity curl that corre- 
sponds to the uniform rotation is not assumed small, and the 
expansion is only in terms of nonequilibrium gradients, in 
the gradients that show up above the uniform rotation (hy- 
drodynamics of fast rotations). 

This raises the question of the meaning and the range of 
validity of the equations discussed in the papers cited above. 
These equations, just as in hydrodynamics of a nonrotating 
superfluid liquid, contain the two independent velocities of 
the normal and superfluid motions. The interactions of the 
excitations that make up the normal part of the thermal exci- 
tation with the vortex filaments are taken into account as a 
mutual friction force proportional to the difference between 
the normal and superfluid velocities. For such a description 
to be valid it is necessary in any case that the excitation free 
path timer,, which is connected with their scattering by one 
another, be considerably shorter than the analogous time 7, 

due to the interaction of the excitation with the vortex fila- 
ments. Otherwise introduction of the velocity of the normal 
component as an independent thermodynamic variable is 
meaningless. But even if the condition r,>r, is satisfied, 
the usual equations are valid, given the angular velocity of 
the rotation, only at frequencies that are not too low. 

Let us clarify the situation, considering for the sake of 
argument, on the basis of the usual equations, the tempera- 
ture oscillations and the concomitant oscillations of the rela- 

tive velocity, perpendicular to the vortices, of the superfluid 
and normal components. In this case such oscillations are 
analogous in many respects to temperature oscillations in 
crystals under conditions of phonon hydrodynamics (see 
Ref. 7) with r, and r, playing the role of the times of 
phonon relaxation due to normal and umklapp processes, 
respectively. In both cases there are two oscillation modes, 
whose frequencies can be expressed as functions of the wave 
vectors in the form w = - iy (cik - ?)'I2, where c2 is 
the second-sound velocity and y = (l/r,) + cz k 2r,. In the 
case of a rotating superfluid liquid we have (see Ref. 1) 
T, - (BO )-', where O is the angular velocity of the rotation 
and B is one of the two parameters introduced by Hall and 
Vinen2 to define the mutual friction force. From the view- 
point of hydrodynamics of slow rotations; both modes are 
hydrodynamic, since both frequencies w tend to zero when k 
and tend simultaneously to zero. In fast-rotation hydrody- 
namics, however, i.e., as k-0 and at constant O, only one 
(heat-conduction) mode is hydrodynamic. 

The usual equations are thus hydrodynamic in the sense 
of slow rotations. Given O, however, their validity is re- 
stricted by the condition r, >T, . If, however, this condition 
is satisfied and the motion frequency w satisfies the inequa- 
lity wr, 4 1, we can replace the ordinary equations by the 
much simpler equations, derived in the present paper, of fast 
rotations, in exactly the same way that at r,)rN and 
wr,<l we can replace the phonon-hydrodynamics equa- 
tions by the usual equations of elasticity theory. 

In fast-rotation hydrodynamics one introduces for a su- 
perfluid liquid with a vortex-filament lattice only one inde- 
pendent velocity of macroscopic motion in directions per- 
pendicular to the vortices, i.e., the system behaves for these 
directions as an ordinary crystal. Since the longitudinal total 
momentum of the excitations is preserved by virtue of the 
homogeneity of the system in the filament direction, we in- 
troduce in this direction two velocities and the system be- 
haves as a superfluid liquid. Fast-rotation hydrodynamics is 
valid, given O,  at sufficiently low frequencies o<r, - ' and 
w(rN - ' no matter what the ratio of r, and r,. At tempera- 
tures on the order of 1 K in liquid He I1 the constant B of 
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Hall and Vinen is of the order of unity1 and the validity of 
fast-rotation hydrodynamics is restricted to frequencies low- 
er than f2. With decreasing temperature, however, the situa- 
tion changes because flexural oscillations of the vortex fila- 
ments begin to make a substantial contribution to the density 
of the normal component. This contribution 

p,- (TmZ/A2)  (mQ/A)  '" 1n-v b /a )  , 

where m is the mass of the liquid particles, b -  (WmR )'I2 is 
the distance between the vortex filaments, and a is the intera- 
tomic distance, exceeds the phonon contribution if f2- 1 
sec-' at temperatures lower than 0.1 K, and at even higher 
temperatures at larger f2. Since the flexural quasiparticles 
are localized on the vortex filaments and can move easily 
only along them, one can speak under these conditions only 
of fast-rotation hydrodynamics. A similar but even more 
clearly pronounced situation arises at low temperatures in 
solutions of 3He in He 11, owing to the absorption8 of impuri- 
ties on the vortex filaments. Finally, in superfluid 3He-B, in 
which, as in He 11, the orbital hydrodynamics is isotropic, 
the condition T ,  -r, begins to be satisfied at temperatures 
T 5  T, for D 5 1 sec- ' because of the rather large 7,. Higher 
angular velocities 3He-B should be described by fast-rotation 
hydrodynamics. 

The derivation of the hydrodynamic equations of a ro- 
tating superfluid is of interest in connection with the general 
problem of the hydrodynamic description of condensed me- 
dia with different types of ordering. We regard as the most 
convenient and general method for deriving these equations 
the method based on the differential form of the conserva- 
tion laws (see Ref. 9), which verifies, simultaneously with the 
derivation, also the uniqueness of the equations. As applied 
to the hydrodynamics of slow rotations of a superfluid liq- 
uid, this method was used by Bekarevich and Khalatnikov,' 
but they did not take into account the energy of the vortex- 
lattice deformation. Volovik and Dotsenko5 used for this 
purpose a Poisson-bracket method developed by Dzyalo- 
shinskii and Vol~vik , '~  but their derivation is not purely 
phenomenological and calls for the use of "microscopic" 
equations of motion of an isolated vortex filament. Later 
Baym and Chandler6 considered the slow-rotation equations 
only in a form linearized in the lattice deformation. Before 
proceeding to the fast-rotation equations, we present there- 
fore a general derivation of the equations of slow-rotation 
dynamics on the basis of the conservation laws. 

In the concluding section of the paper we consider very 
low angular velocities, such that in the equilibrium state 
there is only a single vortex filament along the center of the 
vessel. This case also lends itself readily to experimental in- 
vestigation." We shall show that owing to the presence of 
the finite rotation velocity the properties of a vortex filament 
differ substantially from those of an ordinary elastic fila- 
ment. The amplitude of the thermal oscillations of an ordi- 
nary filament are knownt2 to tend to infinity with increasing 
filament length. In the case of a vortex filament the angular 
velocity exerts a stabilizing action, so that when the length is 
increased the oscillation amplitude tends to a finite limit that 
depends on the angular velocity, and remains considerably 
smaller than the vessel radius. We shall calculate the contri- 

bution of the filament oscillations to the thermodynamic 
functions of the system. This contribution is also found to be 
substantially dependent on the angular velocity. We shall 
show, finally, that a unique effect should take place, wherein 
the angular momentum is transferred by the motion of the 
normal component along the vortex filaments. 

1. HYDRODYNAMICS OF SLOW ROTATIONS 

The state of a vortex lattice whose parameters vary 
slowly in space and in time can be described by specifying the 
vectors e, (r,t ), a = 1,2, which are equal to the local values of 
the elementary vectors of lattice-translation in a plane per- 
pendicular to the vortex direction. From these we can deter- 
mine the corresponding reciprocal-lattice vectors 

ea=- (11s) cab [v X eb] , 

where s is the area of the unit cell of the direct lattice, 
€1' = - = 1, = E" = 0, v = (l/s)e, Xe2 is a unit vec- 
tor along the axis of the vortices. 

The following obvious equalities hold: 

We introduce the metric tensor g,, and its inverse f b  ; 
they satisfy the relations 

gab=eoeb, g""eaeb, gacgcb=6,b. (2) 

Let v, (r,t ) be the local vortex-filament velocity perpen- 
dicular to the vortex axis: v, .v = 0. If v, is known and the 
functions e" (r) at the initial instant of time are specified, we 
can determine e" at a nearby instant of time, i.e., the deriva- 
tives de" /at. To establish this connection we note that the 
unit vector n = el/el is the normal to the corresponding 
crystallographic plane, and d = l/e' is proportional to the 
local value of the interplanar distance. From simple geomet- 
ric considerations we get 

where Y = v, -n is the normal velocity of the considered 
crystallographic plane. From (3)  we obtain 

t ? + ~  (e lv , )  =V [ n  x rot e i ]  . (4) 

A similar relation holds also for e2. 
We express a physically infinitely small (i.e., large com- 

pared with the lattice period but small compared with the 
distance over which the vortex configuration varies) differ- 
ential of the coordinates in the form 

dr=e ,dP .  ( 5 )  

The quantities dN" for two lattice points separated by a dis- 
tance dr  are the two projections of dr  measured in units of 
the corresponding lattices. These quantities, obviously, are 
not altered by an arbitrary elastic deformation (in the ab- 
sence of dislocations). From (5) we get 

dNa=eadr=eoadro, (6)  

where e," and dr, are respectively the periods of the recipro- 
cal lattice and the difference between the coordinates of the 
considered points in the undeformed state; we see therefore 
that 
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en= VN", (7) 

and therefore the specified functions Na (r , t  ) determine com- 
pletely the configuration of the vortex filaments. Moreover, 
with the aid of (4) we can express in terms of N" also the 
velocity v, . Since curl ea = 0 by virtue of (7), we have 

so that 

vL=-e.P. 

Variables analogous to Na were considered fqr the descrip- 
tion of a vortex lattice by Volovik and Dot, ;nko5. 

In macroscopic hydrodynamics of a rotating superfluid 
liquid one introduces the averaged velocity vs of the super- 
fluid component, whose curl is determined by the direction 
and density of the vortex filaments, as well as the circulation 
quantum 2 d i / m .  Since the unit-cell area s is equal to g1I2, 
whereg is the determinant of the metric tensor gab, we have 

By differentiating (10) with respect to time and using (8)  
we obtain the conservation condition for the vortex fila- 
ments 

In accord with the general method of deriving the hy- 
drodynamics equations from the conservation laws,9 we in- 
troduce in the case of slow rotations, besides the velocity v, , 
the velocity v ,  of the normal component and seek equations 
in the form of conservation laws 

p+div j=o, djj/dt+8IIik/8xh=U, 

(12) 

~ + d i v  {Sv,+q/l') =RIT, ",= [v, x rot v.] + Vcp. 

Here p, S, and j are the mass, entropy and momentum per 
unit volume, while IT,, , q, R > 0 ,  and q, are quantities to be 
determined. We must also find the connection between the 
velocities v,, v ,  , and v, . The criterion is the requirement 
that the energy-conservation equation be automatically ob- 
tained from Eqs. (12). 

The Galileo transformation formulas 

connect the energy E per unit volume and the momentum j 
with their values Eo and j, in a system where v, = 0. The 
energy E, can be regarded as a function of S, p, j,, and the 
metric tensor gb , SO that 

dEo=TdS+pdp+ (v,-v., dj,) +'12habdgd. (14) 

Equations ( 12)-(14) differ from the corresponding equa- 
tions of Bekarevich and Khalatnikov2 in that the vortex- 
conservation condition ( 1  1 )  is taken into account in (12) in 
the equation of the superfluid motion, and also in that the 
dependence of the energy on the deformation of the vortex 
lattice is fully taken into account in the identity (14). 

Differentiating with respect to time the first equation of 
(13), we obtain by using (13) and (14), after some transforma- 
tions, 

B+div{Qn+q+vnknki+$ (j-pv,) + vLkhabe?ekb) 

+$ div(j-pv,) $ {vL-vn, [rot ~e X j-p~nl +eO div 1 1  

(15) 
where 

Qa= (p+v8'/2) j+TS~7,,+v~ (jovn), 

fla=nik-P6ik-v,ijk-vnkj~i-habeiaegb, 

I+=- ( y + ~ , ~ / 2 + ~ ) ,  P=-Eo+TS+yp+(v,-v,, j,) . 

In the derivation of (15) we used also the equality 

1 1 8gab - + , vnihab - =-div{habea (v~-vn, eb) 
2 2 dxi 

-- (h,eiaekb) + {vL-v,. en div (h.beb) 1. 
dxk 

which is easily obtained from the second equation of (2)  and 
from (8).  

The form of (15) enables us to determine the energy-flux 
vector 

Q=Qo+qf ~&nkif $ (j-fwn) +VLhhabe?eRb 

and the dissipation function 

B=-qX-nilaU", -$div(j-pv,,) 
T ax, 

From the condition that R be positive it follows that the 
unknown quantities q, rik, $, and v, - v,, (the symbol 1 
means that we are dealing with the projection of the corre- 
sponding vector on a plan perpendicular to v )  can be written 
in the general case as linear combinations of all the conjuc- 
tated variables V T ,  dvn i /dxk ,  etc., contained in (16). We 
shall not write out the unwieldy general formulas and con- 
fine ourselves, as usual, to the mutual friction effects de- 
scribed by the last term of (16). We have 

mg" 
j,-pv.,+ -[eQ x v] div (h,aeb 

2nh 

where a and ,B are certain coefficients, with p> 0.  Since at 
T = 0 there is no normal part, so that v,  should be indepen- 
dent of v, , it follows that the constant a should equal - l / p .  
Ifwe put a = - ( l / p s  ) + 0 ', the constants,Band,B ' will van- 
ish as T+O. They coincide with the mutual friction coeffi- 
cients introduced by Bekarevich and Khalatnikov2 and dif- 
fer from the constants of Hall and Vinenl by a factor p, /2p 
Ps . 

At zero temperature we obtain from (17) 
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which is a generalization of a known relation13*14 to the case 
of arbitrary and not small deformations of the vortex lattice. 

When expanding the equations in powers of the defor- 
mation it is convenient to put Na = N t - ua , where N t 
= eg .r, and introduce the variable u = e,, ua , which has the 
meaning of a two-dimensional displacement vector perpen- 
dicular to the axes of the undeformed vortices. We represent 
the elastic energy Eel per unit lattice volume in the form Eel 
= El  + E,, where 

E,= (np,/2) (film) 'n ln (2!na2) 

is the elastic energy with the dependence on the shape of the 
unit cell neglected (n = l/s = g-'I2) and E, is the shear en- 
ergy. Accordingly, 

h,=2d~,,/d~"~=h,,(bf' +h::'. 

Differentiating El with respect to f b  with allowance for the 
identity dg = - gga,dfb and linearizing the result in the 
deviation Sfb of the metric tensor from its value gab(') in an 
undeformed triangular lattice, we obtain 

where f l  = (d/m)g; ' I2 is the angular velocity the rotation 
and 

( 0 )  ( 0 )  6gab=g., gb, 6gcd, 6gcc=gLi' 6gcd. 

The constant term appears in (1 9) because at equilibrium the 
energy that has a minimum is the one in the rotating coordi- 
nate frame. We express the shear part h $! of ha, in the form 

( 0 )  hdt' =p. (6gab-'l2gab (20) 

where p, = p, .Zin /4m is the shear modulus calculated by 
Tkachenko15 for a triangular lattice. 

The quantities6fb and ea can be easily expanded in the 
displacement u by using Eqs. (2) and (7). As a result we get 
the following expressions for the elastic terms that enter in 
the equations: 

F=ea div (h,beb) 

a 
--(h,,e,"e,b) =-p,2RhV div uf F, 
2 x h  

where A = (fi/2m)ln(b /a ) .  The first term in the right-hand 
side of the second equation of (21) can be left out upon nor- 
malization of the pressure P-+P - p, 2flA div u and simulta- 
neous replacement of p in the equation for the superfluid 
motion by the chemical potential of the liquid without 
allowance for elasticity. Indeed, in the linear approximation 
we have 

S 1 1 
=- - d T  - - j,d (v,,-v,) + - d (P-p,2Qh div u) . 

P P P 

When the first equation of (21) is substituted in it, Eq. (18) 
becomes the customarily employed expression. l3.l4 

We express also v, in terms of u, using relation (9). For 
this purpose it suffices to note that e; = VN; are the vectors 
of an undeformed but uniformly rotating lattice. Therefore 
eg = fl X eg and 

I\joa= [Q X eon] r=-voeoa, 

where v, = flxr. Linearization of (9) yields 

v,=v0+u+ (voV ) u- [P X u] -vo 

where v, is a unit vector along the equilibrium direction of 
the vortices, the latter chosen to be the z axis. 

2. HYDRODYNAMICS OF FAST ROTATIONS 

In fast-rotation hydrodynamics we must introduce one 
velocity in a direction perpendicular to the vortices and two 
independent velocities in the longitudinal direction. Under 
these conditions it is not convenient to use as the hydrody- 
namic variable the true superfluid velocity of Eq. (10) and 
designated by us V, in this section. We introduce in its place 
a single perpendicular velocity v(v.v = 0) defined by the 
equality v = j, /p, where j, is the exact value of the perpen- 
dicular momentum. Motion in the longitudinal direction 
will be described by two velocities, vnI l  and vsil , with 
vSil = V;v. We put 

We emphasize once more that the velocity v, introduced by 
us does not coincide, generally speaking, with the true super- 
fluid velocity V, . Nonetheless Eqs. (1 3) and (14) for the new 
velocities v, and v, remain in force. Indeed, by virtue of (22), 
(12) and the definition of v, the relative velocity v, - v, and 
j, have only longitudinal components, and the third term of 
(14) can be written in the form (vnll - vSli )djol , which corre- 
sponds precisely to the correct expression for a system that is 
superfluid only in the longitudinal direction. We emphasize 
that the one-dimensional densities of the normal @,) and 
superfluid @, = p - p, ) components, defined by the for- 
mula jo = pn (vnll - vsll ), differ substantially, generally 
speaking, from the corresponding "microscopic" three-di- 
mensional quantities in expressions (19)-(21) for the elastic 
moduli of a vortex lattice. All the definitions connected with 
the kinematics of a vortex lattice, particularly expression (9) 
for v, , remain the same as before. Since the number of inde- 
pendent velocity components is two less than in slow-rota- 
tion hydrodynamics, the number of equations should be cor- 
respondingly less than in (12). In lieu of the last equation of 
(12) (the three-component equation of the superfluid motion) 
we need one scalar equation. We derive it by using the for- 
mula 

v*v=V*v (23) 

and relation (1 I), which in the notation of the present section 
can be written in the form 

v8+vcp= [vLxrot  V.] , (24) 

where p is a certain scalar. Differentiating (23) with respect 
to time, and taking into account (24) and that v = curl V, / 
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1 curl V, 1, we obtain 

v;.=-vvq-v (V.-v,) . 

An expression for v can be easily derived from (24): 

;+ ( v , ~ ) v =  (vv)vL-v (v, (vV)VL). (26) 

Substituting it in (25) we obtain after simple transformations 

where 

It is convenient to choose Eq. (26) with the as yet undeter- 
mined scalar +h as the sought scalar equation that makes up 
together with the first three equations of (12) the complete 
system. 

Differentiating, as usual, the first equation of (13) with 
respect to time and using the aforementioned complete sys- 
tem, we reduce the equation for E to the form 

qVT I?=-div(Qo+q+vnknkif ULkhabeiae;-k (j-pv,) $I) -kR + - 
T 

where the expresssions for Q, and P, formally coincide with 
those given in the preceding section after Eq. (1 5). From this 
we find the dissipation function 

- {vL-v, F+ (j-pv,, v )  [rot V .X  v]). 

(27) 
Confining ourselves, as in the preceding section, to consider- 
ation of only the last term in (27), we write down the expres- 
sion for the relative velocity of the vortices and of the matter 
in the following general form: 

(vL-v) a=-BagGg, 

where 

G=F+ (j-pv,, v )  [rot v,x v]  , 

a and p are two-dimensional spatial indices in 2 plane per- 
pendicular to v. The matrix of the coefficients Bap satisfies 
the Onsager relations 

&(v) ( - 4 .  

Therefore 

h 

where BaB is the symmetric part of g a p ,  
BaB ( T  = 0) = B '(T = 0) = 0. For an arbitrarily deformed 
lattice BaB is an arbitrary symmetric tensor. We point out 
that the second term in the expression for G,  in contrast to 
the analogous term in the slow-rotation hydrodynamics, is 
of second order in the deviations from the state of uniform 
rotation. Therefore Bap has in fast-rotation hydrodynamics 
the meaning of the diffusion coefficient of the vortices. The 

coefficient B ' describes an effect of the Hall type in diffusion. 
In an undeformed triangular lattice the tensor B reduces to a 
scalar. 

We recall that the complete system of equations con- 
sists of the first three equations of (12) and of Eq. (26). 

By linearizing the equations near the uniform rotation 
we obtain the following set of equations that describes the 
oscillations of the temperature and the associated oscilla- 
tions of the relative velocity Sw = Sun - Sv, along the vorti- 
ces: 

TSp ,  div q 
( V O V ) ~ T  + - ( ~ o v ) ~ w  CpZ +-= 0, 

PC ,. (29) 

where C is the heat capacity per unit mass and the liquid is 
assumed incompressible: p, Sv, + p, Sv, = 0. 

Equations (29) are reduced to equations with constant 
coefficients by transforming to a rotating coordinate frame. 
This corresponds to the substitutions d / d t 4 / d t  - (v,V) for 
scalars and d/dt-td/dt - (v,Y) - fl X for vectors. The heat 
flux in (29) can be set equal to q = x, V, T, since the equa- 
tions contain other considerably larger terms with d /dz. As a 
result we get the dependence of the frequency in the rotating 
system on the wave vector: 

where ci = TS 2p, /Cp2p, . The oscillations of the tempera- 
ture propagate in the form of second sound only along the 
axis of the vortices, while in perpendicular directions they 
are ordinary damped thermal waves (the second root corre- 
sponds at small k, to ST-0 and Sw = const). 

By way of another application of the derived equation 
we consider the oscillations of the transverse component Sv, 
of the velocity and of the displacement u in a state with si- 
multaneous uniform rotation and a uniform heat flux 
Q = TSv, along the vortex lines. This problem is of interest 
because a substantial role is played in it by the second term of 
the expression for G.  Confining ourselves for simplicity to 
the case of low temperaturesp, gp and neglecting in (28) the 
terms with B and B ', we rewrite this equation in the rotating 
frame in the form 

(30) 
where F is defined in (21). The second equation that connects 
u with v, is obtained by projecting on the (xy) plane the 
second equation of (12) and excluding from it the pressure 
using the incompressibility condition div v, = 0. We have 

If k is small enough, Eqs. (30) and (3 1) describe in the princi- 
ple approximation the independent oscillations of sv, and u. 
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The former have a frequency 

a= (2Qk) l k ,  

and are the known inertial waves of ordinary hydrodyna- 
mics in a rotating liquid. 

The second mode constitutes oscillations of the dis- 
placement vector u and are peculiar to fast-rotation hydro- 
dynamics. The frequency of this mode is w = v, k,. It must 
be emphasized that this mode exists only at finite tempera- 
tures. It vanishes at T = 0, i.e., in total absence of the normal 
component. It is here that the essential difference between 
fast-rotation hydrodynamics at finite temperatures differs 
from slow-rotation hydrodynamics. In the latter, in contrast 
to the former, the velocity v, and the displacement u are not 
independent variables but are connected by the additional 
condition (10). In fast-rotation hydrodynamics the same 
takes place at T = 0, when the difference between v, and V, 
vanishes. The presence of the root w = 0 means here simply 
compatibility of the hydrodynamic equations with the sup- 
plementary condition (10). 

A remark is in order also with respect to (32). Although 
the mode (32) has zero gap, its frequency, generally speaking, 
does not tend to zero as k+O. This highlights the distinction 
of fast-rotation hydrodynamics, for the validity of which the 
condition k-4 is generally speaking not sufficient and one 
more condition is required. To determine this condition we 
note that the frequency in a rotating coordinate system can 
be regarded as an eigenvalue of the operator 

where J, = L, + S, , L, = - r X iV, is the orbital angular 
momentum, and S, = - i ~ , , ~  is the spin of the vector field 
Sv, . The derivatives dw/dfl, as can be seen from (33) is equal 
to - (J, ). For the frequencies of all the modes in fast-rota- 
tion hydrodynamics to tend to zero we must satisfy besides 
the condition k-0 also ( J ,  )-to. The latter is equivalent for 
the spectrum (32) to the condition k, /k-0. 

3. OSCILLATIONS OF A VORTEX FILAMENT 

We consider one vortex filament aligned with the axis of 
a cylindrical vessel of radius R. It is known that such a state 
corresponds to thermodynamic equilibrium at f l  - (fi/ 
mR 2)ln(R /a). As shown by Ha11,16 the equation that de- 
scribes the filament oscillations is reduced to a Schrodinger 
equation with mass m* = m/ln(fi/pa) ( p  is the momentum 
of the oscillation) by introducing the wave function 
$ = const(u, + iu, ), where u is the two-dimensional vector 
of filament displacement in a plane perpendicular to the ro- 
tation axis. If we choose const = ( ~ p , / m ) " ~ ,  the energy of 
the oscillations also becomes identical with the Schrodinger 
expression 

Rotation about the z axis through an angle e, is in this 
case simultaneously the wave-function gauge transforma- 
tion $-$eip . The generator of the gauge transformation is 
the operator - fiN, where Nis the particle-number operator 

and is expressed in the usual manner through the second- 
quantized operator $. It coincides therefore in this case with 
the operator J, of the z-component of the angular momen- 
tum, J, = - W. The filament-oscillation quanta have thus, 
independently of their momentum, an angular momentum 
equal to - fi. l6  

Since the equilibrium statistical distribution depends 
on the energy in the rotating system, the oscillations have an 
equilibrium Planck distribution function with argument 

The presence of the energy gap %X2 causes the spectrum (35) 
to satisfy the Landau superfluidity criterion. The critical ve- 
locity is 

For the same reason, the divergences at small momenta, 
which are customary for one-dimensional systems, are ab- 
sent in this case. Indeed, let us calculate the mean squared 
fluctuation displacement of the filament from the equilibri- 
um position, assuming satisfaction of the condition B W l :  

where no is the equilibrium distribution function which we 
can set equal in this case to T/E. We have 

<u2) =mTlnhpSuc. (37) 

The ratio of this quantity to the square of the vessel radius is 
of the order of 

The contribution of the filament oscillations to the one-di- 
mensional density of the normal component is calculated in 
similar fashion: 

With decreasing f l  the density p, varies in proportion to 
f l  -'I2. We write down also an expression for the heat capac- 
ity C, per unit filament length at constant rotation velocity: 

C,=C, ( T )  +2S2/vC, (39) 

where 

In contrast to (37) and (38), in the case of the heat capacity 
only the second correction term in (39) depends on the rota- 
tion frequency at %fin. 

The thermal oscillations delocalize the filament. As a 
result, the average velocity curl differs from a S function and 
is determined by the probability distribution of the values of 
the distance r of the filament from the vessel axis. Since this 
distribution is obviously Gaussian at -.fin, we have in ac- 
cord with (37) 
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The fact that the filament oscillations have an intrinsic 
angular momentum produces a unique effect of angular-mo- 
mentum transport by the heat flux the absence of matter 
flux. The angular-momentum flux is 

where Q = TSV, is the heat flux. 
The torque carried by the heat flux between solid sur- 

faces perpendicular to the rotation axis is at u, -v, of the 
order of M T ,  where JV is the total number of vortex fila- 
ments. At T- 1 K the torque in dyn-cm is of the order of 
10-12L! [sec-']So [cm2], where So is the area of the solid 
surface. Although this is a small quantity, it seems to be 
experimentally observable. 

We thank I. E. Dzyaloshinskii, Ya. B. Zel'dovich, and 
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