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We consider theoretically the action of a weak light wave on a nematic liquid crystal layer near the 
threshold of non-optical instability. If the unstable factor is a spatially-periodic perturbation in 
the plane of the layer, the susceptibility of the system becomes larger, when the threshold is 
approached from below, than for a periodic structure of the light intensity. It is easy to produce 
such a structure via interference of two or more coherent light waves. We consider the cases of 
electrohydrodynamic instability, convective Benard-type instability in a cell with a vertical tem- 
perature gradient, as well as roller instability of simple hydrodynamic flow. The possibility of 
controlling a global topological perturbation structure above threshold via weak light fields is 
discussed. 

1. INTRODUCTION 

When the parameters of a physical system approach the 
instability threshold, the rigidity of a definite mode tends to 
zero, and the corresponding susceptibility increases, in the 
self-consistent-field approximation, in accord with the Cu- 
rie-Weiss Law. For example, in the transition from the iso- 
tropic phase of a nematic liquid crystal (NLC) to the meso- 
phase, the orientational optical nonlinearity (i.e., the 
response of the molecule orientation to the intensity of the 
light field) increases in the isotropic phase like 

We emphasize that the cubic optical nonlinearity of 
cells with NLC is unusually large, so that even the beam 
from a low-power ( -  lop2  W) neon-helium cw laser is suffi- 
cient for its observation. 

We wish to discuss also the possibility of using light 
fields to produce initial perturbations capable, after passage 
through the instability threshold, of imparting to the system 
a specified global structure of the perturbations in a nonlin- 
ear stationary state. 

E~ a ( T  - T * ) - I  (see the theoretical and experimental parts 
of Ref. 1). Another example is a cell with an NLC in the 2. CUBIC OPTICAL NONLINEARITY NEAR 

mesophase, which is transformed by application of an exter- ELECTROHYDRODYNAMIC lNSTABILITY 

nal rf voltage Uinto a state near the threshold of the FrCeder- 
icksz transition; in this case, too, the orientational optical 
nonlinearity increases in accord with a Curie-Weiss-type law 
c2 a (U2 - U,,, 2 ) - 1  (see theory and experiment in Ref. 2). 

We consider in this paper various problems concerning 
cells with NLC in the mesophase, in which the system is 
unstable to spatially periodic (roller) perturbations. In these 
cases the system susceptibility has a Curie-Weiss growth 
only with respect to spatially periodic actions having a "res- 
onant" period. Usually resonant periods are spatial ones of 
the order of the cell length L, which equals under typical 
conditions from 5 to 1OOOpm. We wish to call attention to 
the fact that interference of two coherent light beams of 
wavelength A, propagating at an angle O between them, pro- 
duces a sinusoidal pattern of intensity modulation with a 
periodA -A /O, so that when visible-band lasers (A -0.5pm) 
are used it is easy to enter into spatial resonance by simply 
varying the angle in the range from 5 X lov4  to lo- '  rad. 

The mechanism whereby the light intensity acts on the 
system can be either orientational (rotation of the director by 
torque applied by the light wave) or trivially thermal (by 
light absorption). In turn, the system response (cubic optical 
nonlinearity) can be due to a change of the effective refrac- 
tive index both on account of the change of the local orienta- 
tion of the optical axis (the NLC director) and on account of 
temperature effects. 

We consider a planarly oriented (no = ex)  cell with an 
NLC that has a negative anisotropy of the dielectric constant 
at zero frequency E, = - E, < 0. Application of a moder- 
ate electric field in the direction of the z axis (along the nor- 
mal to the cell walls) only stabilizes the initial planar struc- 
ture. When the voltage difference between the walls is 5-10 
V, however, if account is taken of the anisotropic electric 
conductivity of the medium in the cell, it is known that an 
electrohydrodynamic (EHD) instability can set in and pro- 
duce Kapustin-Williams domains with a period of the order 
of the cell th ickne~s .~-~  We consider in this section the pre- 
threshold behavior of such a cell when illuminated by a beam 
whose intensity varies periodically in space. 

The theory of EHD instability is quite complicated5-' 
and the treatment is usually limited to a simplified variant in 
which the actually existing z-dependence of the perturbed 
variables is ignored, and the fact that the cell thickness L is 
finite is taken into account indirectly, by assigning to the 
perturbation a periodic structure of the form exp(iqx) with 
q = q,=.rr/L. This procedure is justified by the good agree- 
ment between its deductions with the results of exact nu- 
merical calculations (see, e.g., Refs. 6-8). 

The linearized NLC hydrodynamic equation for the ve- 
locity v[r,t ) can be assumed in the form 
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wherep is the unperturbed density and ski is the NLC stress 
tensor in the same linear approximation: 

We assume here that the NLC is incompressible, div 
v = dui/ dx,  = 0. Here n is the director unit vector, aLi the 
viscous-stress tensor, a,, ... ,a, are the Leslie coefficients 
(having the dimension of poise) and are conn5cted b~ the 
relation a, = a, + a, + a,, p is the pressure, 9 and t?? are 
the quasistatic induction and electric field, Pis  the free-ener- 
gy density: 

1 1 1 F= - Ki (div n )  '4- - K2 (n rot n)  - Ka (n rot n)  
2 2 2 

-- EE*. 
16n (7) 

In (7), H = e,H is the intensity of the quasistatic magnetic 
field, E is the complex amplitude of the light-wave field, 

Em,,=0.5[E ( r )  exp ( - i d )  tc.c.1, 

E ,  is the dielectric tensor at the optical frequency, El = n:, 
E ,  + E,  = ni, where rill and n, are the refractive indices of 
the uniaxial NLC, X, is the anisotropy of the magnetic sus- 
ceptibility, and Ki are the Frank constants. The electrodes 
mounted on the cell walls can inject into the NLC volume 
charges with density Q (r,t ), carrying injection conduction 
currents with density fi, so that 

where is the mobility tensor ( Q 4  is the conductivity 
tensor). CoGinuity equations apply to the charges and cur- 
rent, while 9 must satisfy the Poisson equation 

aQ/dt+div 2=0,  div 3 = 4 n ~ .  (9) 

The variation ofthe director n(r,t )in time and space obeys an 
equation that expresses the balance of the moments of the 
forces acting on a unit volume of the NLC: 

A derivation of the foregoing system of equations can be 

found in Ref. 9. 
The averaged unperturbed state is assumed in the sim- 

plified approach to the theory of the EHD instability in the 
form 

where U is the potential difference between the electrodes 
z = 0 and z = L. One should not fear the fact that Eqs. (9) 
have only order-of-magnitude accuracy for the quantities 
specified approximately by (12) (for details see Refs. 7 and 9). 

We assume that the perturbation of interest to us is 
caused by the spatially inhomogeneous term 

E, ( r ,  t )  Ek* ( r ,  t )  =aik e x p  (iqx+iQi) 

in the tensor EiE *, that describes the intensity distribution 
of the incident optical field. Such a term can be obtained in 
interference between two coherent waves having a frequency 
difference w, - w, = fl and an incidence-angle difference 
O,, - O,, = q/Z /237 (see Fig. 1). In this case, assuming 

4 4 

Q=Qo+Qi (x, t )  , 8=80+e&i  (x, t )  , n=e.+e,cp (x, t )  , 

we obtain a system of linearized equations 

dcp dv, e a U  U 
( a 3 - a , ) - + a ~ - - - - ( ~ i + - ~ )  

d  t  dx 4 n L  L  

FIG. 1. Two light waves that produce an interference pattern jE(x)I2 are 
incident at angles B,, and B,, on an NLC layer of thickness L and with an 
unperturbed director no = e,. The dashes show the direction of the direc- 
tor, and the arrows the directions of the hydrodynamic flows. 

312 Sov. Phys. JETP 59 (2), February 1984 R. S. Akopyan and B. Ya. Zel'dovich 312 



Here T,I, = 0.5(a4 + a, - a,) is the Miesowicz coefficient, 

The EHD instability threshold means that at a fixed 
go = T/L and 0 = 0 the response of the system, according to 
Eqs. (1 3)-(16), becomes infinitely strong. From the vanishing 
of the determinant of the system (13)-(16) follows an equa- 
tion for the threshold voltage Uth, . We shall not write it out 
explicitly (see Ref. 9). We present the final expression for the 
Fourier component 

cp=cpl exp (iqxSiS2t) 4-C.C. 

of the inclination of the director 

Here 6 is the dimensionless degree of proximity to the EHD 
instability threshold and r is the relaxation constant: 

t=i-uz/u,",,, r=rog, (19) 

The quantity To characterizes the relaxation constant of the 
orientation in the cell in the absence of an electric field. At 
6 = + 1 expression (18) corresponds to the usual orienta- 
tional nonlinearity of NLC. We have left out from (1 8)-(20) a 
number of inessential factors that are quite close to unity. 
Their inclusion would be an exaggeration of the accuracy in 
view of the approximations made on going to the simplified 
model. 

In the exact approach Uth, should depend on the pa- 
rameter q, U,,, = Uth, (q), as should the physical threshold of 
the EHD instability Uo = U,,, (go), which is reached at a cer- - 
tain value q = go, so that 

Uth, ( q ) ~ U o [ ~ + b ( q - q ~ ) ~ / q o ~ I ~  (21 

where b is a coefficient of order unity. As a result, the Four- 
ier component of the nonlinearity is determined by expres- 
sions (1 8)-(20) with the substitution 6% + b (q - qo)2/qi. 
By the same token, the half-width of the Lorentz curve at 
half the maximum level (HWHM) of the nonlinearity con- 
stant with respect to the variable q is 

Aq=qo (Elb)'". 

This means that the resonance with respect to the variable q 
is quite broad, Aq a 6 ' I 2 .  

It is convenient to obtain the numerical estimates at 
6- 1 and q = T/L for light incident at an anglea -- 30" (in the 
medium), when 

an=az=1 EoI2 sin a cos aa0.41 EOl2, 

while H = 0 and L = lop2  cm. The perturbation pl of the 
director is then of the order of one radian at a power density 
on the order of 1.2 kW/cm2. This power can be easily obtain 
by focusing the beam of a cw (e.g., argon) laser. The ap- 
proach to the EHD instability threshold decreases by an- 
other factor 6 - ' the required light-power density needed to 
attain pl - 1 rad. At the same time the response of the system 

to the spatially homogeneous part of the intensity does not 
undergo a Curie-Weiss increase. 

Moreover, to record a spatially periodic director per- 
turbation p a a,exp(iqx) there is no need at all to reach 
- 1  The point is that a director modulation 
p (x) = 2plcosqx leads to a modulation 6$(x) of the phase of 
an e-type wave passing through the cell at an angle a ,  with 

T o o  
69(x) =2- c ~ ,  Lcp, sin u cos qx=$ cos qx. (22) 

It turns out (see Appendix 2) that it is easy to record 74, 
at a level - 1/30, which corresponds to pl z 6 X  lop5 rad at 
L =: lov2  cm, E,  = 0.7, and a = 30". Within the framework 
of the foregoing estimates, this permits another decrease of 
the power by a factor lo4, i.e., to a value - lo-' W/cm2. 

If the NLC absorbs the incident light, thermal effects 
can come into play. Namely, the inhomogeneous heating 
ST@) can cause a spatially inhomogeneous perturbation of 
the static dielectric constant 

This leads in turn to successive perturbations of the electric 
field, current, hydrodynamic flow, and director. A calcula- 
tion (not given here) shows that the contribution of this 
mechanism to the change of the director orientation p(x) is 
proportional to 

where x [cm- '1 is the light absorption coefficient. Assuming 
xL - 1 and&/dT- lop2 K-', the contribution of the ther- 
mal mechanism is of the same order as the direct orienting 
action of the light field at L-  cm and a = 30". The 
unique feature of the thermal mechanism that it works for 
waves of arbitrary (but equal) type of polarization, and also 
at normal incidence of the waves on the cell. One other ther- 
mal nonlinearity mechanism is based on the temperature de- 
pendence of the mobility and of the conductivity. Unfortu- 
nately, we have no data on this dependence for NLC. 

3. THERMAL AND ORIENTING ACTION OF LIGHT ON AN NLC 
LAYER NEAR THE THRESHOLD OF THE BENARD 
CONVECTIVE INSTABILITY 

Convective instability in a layer of liquid with negative 
vertical temperature gradient, situated in a gravitational 
field, is well known back from the times of Benadr and Ray- 
leigh (see, e.g., Refs. 10 and 11). Convective instability of an 
NLC layer in a gravitational field in the presence of a tem- 
perature gradientl2.l3 corresponds to softening of the slow 
nematic mode that is absent in isotropic liquids. The numeri- 
cal value of the vertical temperature gradient To(L )needed to 
obtain convective instability turns out to be about an order of 
magnitude lower for typical NLC than for typical isotropic 
liquids. 

We consider in this section the problem of thermal con- 
vection excited by inhomogeneous heat release following ab- 
sorption of radiation from other interfering light waves. We 
assume that the gravitational force is directed along the z 
axis (g = - e g ,  g = lo3 cm2 sec-') in a direction normal to 
the cell walls, and that the initial director orientation is 
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planar, no = ex. It is then necessary to set the static electric 
field, the charge density, and the current in the system (1)- 
(1 1) equal to zero and supplement the system by the linear- 
ized heat-conduction equation 

wherepc, is the specific heat per unit volume and rik is the 
thermal diffusivity tensor. In addition, the Navier-Stokes 
equation must be modified to take into account the force of 
gravity 

Herepis the bulk coefficient of thermal expansion and T (r,t ) 
is the temperature variation. 

Assume that an external heat source maintains the ini- 
tial vertical temperature gradient T (z) = - T&L; such a 
profile is the stationary solution of the heat-conduction 
equation without the right-hand side. Of very great impor- 
tant to us is also the case when there is no gradient in the 
initial state, To = 0, and the light field produces forced ther- 
mal convection in pure form. 

We consider the solution of the linearized system (2), (3), 
(9), (lo), (23), (24), a solution stimulated by the spatially inho- 
mogeneous part a exp(iqx) of the absorbed power and by the 
moment of the forces due to the direct action of the light 
field. In the same model-based approach, i.e., when the z- 
dependence of the perturbations is ignored, we have 

. sin 2a-i a2ncngg I cPr)2rllq3 

Here, as in the preceding section, the dimensionless param- 
eter is a measure of the degree of proximity of the system 
parameters to the threshold, or in our case the proximity of 
the temperature gradient to its critical value: 

To TaC.C. E=I-- -= r11q"z 
T,C.'. ' L pgp [It (r,,-r,) q2/Fi] ' (26) 

The true threshold of convective instability in a cell with an 
NLC of finite thickness L is obtained with good accuracy 
from (25) by the substitution q z a / L  (see Ref. 12). In the 
absence of an external magnetic field k a H  = 0) we find 
from (25) that when the parameter q decreases the director 
orientation q, is increased like q-2 by action of the light field 
and like q-5 as a result of thermal convection. The consid- 
ered simplified model does not "work" for q 5 a/L. A more 
accurate calculation shows that with further decrease of q 
the term q, a S, stabilizes at a level q, a L 2, while the term 
q, a x begins to decrease like q, a x-LqL 5 .  

At a value q z a/L the response of the orientation to the 
convective-thermal mechanism is a maximum. In the pres- 
ence of a slight inclination of the director by an angle q, (x) the 
nonlinear phase shift (22) of a light wave propagating at an 
angle a ,i 1 to thez axis increases like 84 a L (see Ref. 14) on 

account of the giant nonlinearity, and like L 5 . ( ~ L  ) on ac- 
count of thermal convection. 

We obtain numerical estimates for a planar cell with 
MBBA at q z a / L .  Putting 7tL = 0.5, a2 = - 0.8 P, q2 = 1 
P, Ea = 0.7,P = deg- ', rll  z lop4 cm2.sec- ' (see Ref. 
12) andpc, = lJ.~m-~.deg-' ,  we obtain 

G$ ( convect ) L 
6% ( direct ) = 15' ( 100 p m  )' . 

Thus, even for cells 100pm thick and at a - 1 rad the orien- 
tational-convective-thermal mechanism yields a nonlinear- 
ity 150 times stronger than the "giant" orientational nonlin- 
earity of Ref. 14. In particular, even in the absence of an 
initial temperature gradient (To = 0, 4 = 1) the stimulated 
thermal convection yields a director inclination q, - 1 rad at 
an incident-light-wave power on the order of 10 W/cm2. 
When the vertical temperature gradient is excluded, the 
nonlinearity increases by another factor l - '  as the Benard 
instability threshold is approached. 

If the task is not to produce a modulation of q, - 1 rad, 
but to record the effect, the required incident-light power 
density can be decreased by approximately four orders more 
(see the preceding section and the Appendices). 

We note that under the conditions indicated above the 
nonlinearity due to the change SS, = (aE,/aT)ST of the 
tensor 2, due directly to the change of the temperature turns 
out to be of the same order as the giant value from Ref. 14 at 
2-'(dS/dT) - deg- '. The mechanism due to aS/b'T 
yields by itself for S$ the functional relation S$-L 2 . ( ~ L  ). 

An inhomogeneous temperature profile sets in within a 
time (rll q2)-', or approximately 0.1 sec at q = n-/L and 
L = 100 pm. The velocity changes with temperature with 
practically no time delay. This is followed by a director reor- 
ientation after an orientational diffusion time 7' - (K3q2/ 
la21)-', or numerically r'- 10 sec at L = 100pm. 

An interesting feature of the orientationally convective 
nonlinearity is the possibility of recording perturbations (ho- 
lograms) by o-type waves; an e-wave is needed only to read 
these perturbations. We note also the factor i = exp(ia/2) in 
the convective term for q,(x). This phase shift of the response 
relative to the action EIE *,exp(iqx) is typical of processes of 
the type of stimulated light scattering due to absorption (cf. 
Ref. 22). It is curious that a phase shift occurs in this case 
even when waves of equal frequency interact. 

In our opinion, it is of considerable interest to use the 
considered nonlinearity for four-wave reversal of the wave- 
front of light, using a cell with NLC as a thin-layer holo- 
gram. It is very important that at q 5 L -' the convective 
nonlinearity decreases; this means that no self-focusing dis- 
tortions of the reference waves will occur. 

4. ACTION OF LIGHT ON AN NLC LAYER IN ROLLER 
HYDRODYNAMIC INSTABILITY 

We consider in this section a number of problems con- 
cerning inhomogeneous hydrodynamic flow of an NLC. 
Couette flow is produced between two parallel surfaces that 
move tangentially relative to each other. In the unperturbed 
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state we have here vo(z) = eyu,,z/L, i.e., the velocity gradient 
is constant and equal to uo/L. Poiseuille flow between two 
immobile planes corresponds to an unperturbed velocity dis- 
tribution 

v o  ( z )  =e,,vo .4z ( L - z )  IL?, 

where the flux is 
L 

Q [  cm2/sec]=j v 0 ( z )  l &=2voL/3=- (dpo/dy)  L3/12ql ,  
0 

and dpo/dy is the pressure gradient. Finally gravity flow 
(IPF) over a plane inclined at an angle Y, with a free upper 
boundary, corresponds to a velocity distribution 

vo ( z )  =eupgz ( 2 L - z )  sin v12q3. 

In all three problems the z axis is aligned with the normal to 
the boundary of a layer of thickness L, and in the last prob- 
lem the free-fall acceleration is assumed in the form 
g = g( - e,cos Y + ey sin Y); q3 = a4/2, while the unper- 
turbed director distribution is assumed planar: no = e x .  

In all three problems instabilities set in with increasing 
velocity or flux: first instabilities to perturbations that or 
homogeneous in the (x,y) plane, and at large fluxes roller 
instabilities with perturbations of the form exp(iqx), where 
q z r / L .  All these instabilities were considered in Refs. 15 
and 16. 

We consider the action of a spatially periodic light-in- 
tensity pattern a elqx on NLC for the three indicated prob- 
lems, both as a result of direct action of the moment of the 
forces applied by the light field, and on account of thermal 
effect in the light-absorbing NLC. The unperturbed state 
will be chosen to be below the threshold of all the instabili- 
ties. 

The linearized system of stationary-nematodynamics 
equations is obtained from the system (1)-(11) and takes for 
these problems the form 

Here6v = v - v, = (v,; vy; v,) and& = n  -no = (O;n,; n,) 
are the perturbations of the hydrodynamic velocity and of 
the director of the liquid crystal, s = dlv,J/dz is the velocity 
gradient in the corresponding unperturbed problem, while 
6q3 describes the change of the Miesowicz viscosity coeffi- 
cient q3 by the energy of the absorbed light. In particular, for 
the thermal mechanism of the change of q3, we have 

Everywhere in this model approximation we replace s(z) and 
its gradient s' = ds/dz by the mean values s(z) = uo/L and 

st = 0 (Couette flow), 

s (2) +2Q1L2=-L (dp0ldy) /6q3~ sl= (dpoldy) lq3 

(Poiseuille flow), and 

(IPF), and seek the z-independent perturbed solution cc ex- 
p(iqx). 

We present the final results for the director perturba- 
tions: 

S 
nu=-az$[$~.ss in  

EFiEtE2. e,qr 

* 8nK3q2 , (33) 

1 1 dq3 ss' 
n.= [? I . ( K ~ ~ ' )  -' sin Pa+ i ---- 

"en I I l 3  dl* st,, ~cPrll9~ 
E-'E4E2' 

eiqx 

8n (34) 

Here[ = 1 - S~/S:~, is the degree of proximity of the velocity 
gradient to the threshold in the initial perturbed problem 
with respect to roller instability with q z r / L .  Within the 
framework of the considered procedure with z-averaging, 
this threshold has the same parameters for all types of flow 

a2 
s,, =K3q2 { a 2 a 3 X  [I - - (u2+u3)  

2a3q2 
I}-%. (35) 

For Couette flow this result was obtained earlier in Ref. 17; 
for Poiseuille flow and IPF this result is presented here ap- 
parently for the first time. In the presence of a magnetic field 
H = e2H it is necessary to make in (33)-(35) the substitution 
K3q2-+K3q2 + X a H  2. For IPF at H = 0 the roller instability 
of the unperturbed flow corresponds to a threshold flux 

For IPF in MBBA, for example, Q , , , ~ 1 . 2 ~ 1 0 - ~  
cm2.sec-I, or approximately one order higher than the in- 
stability threshold for perturbations that are homogeneous 
in the (x,y) plane. l 6  

The direct orienting action of the light field on the di- 
rector (giant optical nonlinearity) is enhanced by a factor 
{ compared with the case of an NLC at rest. The thermal 
action on the orientation corresponds at q ~ n - / L  to the rela- 
tion 

i.e., it vanishes at { = 1 for an immobile NLC. Since direct 
action corresponds to the relation /an1 a L 2f -'a, wherea is 
the refraction angle, thermal effects are found to be stronger 
at small L and small a .  Assuming dq3/dT-q3 lop2 K-' we 
find for MBBA at a-45" and xL-0.5 that temperature- 
orientational effects become comparable with direct action 
at a thickness L =: 1000 pm. 
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5. CONCLUSION 

From the foregoing analysis and numerical estimates it 
follows that noticeable director perturbations ((Snl - 1) re- 
quire quite moderate (easily obtainable) power densities of 
the interfering light beams. By the same token we are able to 
stipulate initial perturbations right away over the entire 
plane occupied by the NLC layer. If the system is transferred 
next to a state above the roller-instability threshold then, 
apparently, the roller perturbations at each point go over to a 
stationary nonlinear state, and only later does the period of 
the pattern adjust itself to the optimal period for the given 
linear stage. A very interesting possibility of producing roll- 
er structures with dislocations is provided by the pattern of 
interference of a plane light wave with another wave having a 
wavefront dislocation (see Refs. 18-21). Annular roller 
structures can be obtained by interference of a plane light 
wave with a wave having a conical front. Interference of 
three, four, and more waves permits assembly of cells with 
hexagonal, cubic, and other structures; it is also possible to 
introduce purposefully defects in such structures. In addi- 
tion, there are grounds for expecting an optical interference 
pattern to impose, at a slight excess above threshold, its peri- 
od and phase on the established picture of rollers or cells. 
From our viewpoint such a possibility of controlling spatial 
structures is of interest not only for liquid crystals, but for 
any system having an instability with a finite wave vector 
1 5 go 5 lo5 cm-' in the transverse plane. 

It is also of interest to use the considered optical nonlin- 
earities for four-wave reversal of the wavefront of light on 
thin dynamic holograms. 

The authors thank L. M. Blinov, I. E. Kats, N. V. Tabir- 
yan, A. V. Sukhov, Yu. S. Chilingaryan, and V. V. Shkunov 
for valuable discussions. 

APPENDIX 1 

Exact solution of the problem of stimulated convection in a 
layer with special boundary conditions 

To illustrate the complexities that arise in the exact so- 
lution (in contrast to the model-based one without z-depen- 
dence) we present here a solution of the problem of stimulat- 
ed thermal convection of an NLC in a planar cell without an 
initial temperature gradient. We succeeded in obtaining this 
solution for the following boundary conditions: 

T ( x ,  z=O) =T ( x ,  z=L)  =0,  

i.e., the boundaries maintain the zero values of the perturba- 
tions of the temperature T, of the director inclination angle 
p=n,, and of the z component of the velocity v,.  On the 
contrary, the zero value of the derivative with respect to z is 
maintained for the x-component of the velocity. The system 
of linearized equations (2), (3), (9), (lo), (23), and (24) with 
boundary conditions (A. 1.1) can be solved in the following 
manner. The spatially inhomogeneous term 

Ei(r,t )E :(r,t ) = aikeCqx in the tensor EiE :, which character- 
izes the light-field intensity distribution, causes stationary 
perturbations 

. nz . nz 
T (x ,  Z )  =Tie'qX sin - , cp ( x ,  z )  =cpte'qx sin - , 

L L 
(A. 1.2) 

. n z  . nz 
v x ( x ,  Z )  = ~ , ~ e ' ~ ~  cos - , vZ (2 ,  Z )  =vire'qx 

L 
sin L, 

which satisfy the boundary conditions on the free boundar- 
ies z = 0 and z = L. We obtain for the amplitudes of these 
perturbations 

xcn 
T t  = - (r,,q2+rLqo"> -'EiEz', 

2nZpcp 
(A. 1.3) 

vix=iqfipgTi(qtqo3+ 2 q q ~ q ~ + q z q ' ~ 0 - ' ) - ' ,  (A.1.4) 

cpi=vix (usgo-,a2q2q-'1 (K,qO"xaH2+K3q2) - I r  (A. 1.5) 

vi ,=- iq~qv, , .  (A. 1.6) 

Here qo=.rr/L, ~ ~ ~ 0 . 5  (a, + a, + a,) is the Miesowicz vis- 
cosity coefficient, and p 0 . 5 ( a 1  + a, + a, - a,). From 
(A.1.5) it can be seen that at q = q,(~r,/a2)"* the viscous 
torques acting on the director cancel one another and there is 
no reorientation as a result, although convection does deve- 
lop. 

At q(qo(a,/a2)112 the response begins to fall off like 

cP im ( w o - ' )  qq,-5. 

With increasing q the inclination increases and reaches at 
qz0.05 go (for MBBA) its first maximum. At the point 
q = qo(a,/a,)112-0.1q0 (for MBBA) its phase changes by n- 
and at q--,0.6qo its amplitude reaches its second maximum. 
The latter corresponds to the transverse period of the Benard 
instability at a constant vertical temperature gradient. At 
q)0.6qO the reorientation decreases like pl a q-*(xq0- ')go. 

APPENDIX 2 

Self-diffraction of a pair of light waves by a thin layer of a 
nonlinear medium 

We consider the incidence of two plane light waves 

Edecr(x, Z )  =EO exp [iqQx+iz (k2-yo" "'1 (A.2.1) 

+El exp [ i q , ~ + i z  (k2-q i2)  '"1 
on a layer of a nonlinear medium. We assume that the layer is 
thin, so that its action consists of multiplying the incident 
wave by a complex transmission coefficient t (x ) ,  making the 
transmitted-wave amplitude at the section z = 0 equal to 

E,,,,, (x) =t ( x )  Ede,,(x) =t ( x )  [Eoeiq@+E,eQP"l . (A.2.2) 

We assume that the layer modulates the phase of the trans- 
mitted light as follows: 

t ( I )  =ei@('), $ ( I )  =$O+pEo*E,eiqx+p*EoEi*e-iqx. (A.2.3) 

Here q = q l  - q o , ~ o = p o ( ~ E o ~ 2  + \Ell2), and the coeffi- 
cients pO, p ,  and p *  describe the properties of the nonlinear 
response of the layer. We use the transformation 

pEQ'E,ei~+p*EoEi'e-im=a cos ( q x + 6 ) ,  
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where a=2 (~,o/c~L,l') Lqi sin a, (A.2.11) 

6=arg (pE0E, ' ) ,  a = 2  I pE,'E, 1, (A.2.4) we get at a z 5 x 1OzPl at w / c  = 2r//Z,,, z lo5 cm-' and P, 
= 0.7. This means that by the self-diffraction method one 

as well as the relation known from the theory of Bessel funs- can record values of on the order of lP,, - rad. 
tions 

The amplitude of the transmitted wave can then be repre- 
sented as a sum of waves diffracted in mth order: 

m--" 

~m=qo+mq--qo+m(qi- -qo) ,  (A.2.7) 
=i(m-ll 

rn exp [i (m-1) 61 [E,Jm.-I (a) 4-iEoJm (a) e"1. (A.2.8) 

The zeroth order (m = 0) corresponds to the initial direction 
of the wave Eo, the + 1 order (m = + 1 )  to the initial direc- 
tion of the wave E,, and all the remaining orders correspond 
to the new waves that result from the self-diffraction. 

If the amplitude of wave El is very small, so that a( 1, 
the intensities in all the higher orders will be small. A nontri- 
vial diffraction effect manifests itself in the appearance of the 
- 1 order of diffraction, with intensity 

and the intensity of the transmitted signal is equal to 

1 C+l 1 '=I  Ei 1 1 l + i p  1 Eo 1 '  1 '. (A.2.10) 

Expressions (A.2.9) and (A.2.10) could be obtained, of 
coursed also directly by perturbation theory, bypassing the 
expansion (A.2.8). Under typical conditions it is easy to re- 
cord the intensity of the new wave I C -  , I 2  at a level - of 
the incident waves 1 Eo 1 - I El 1 '. This corresponds to modu- 
lation of the phase +(x)  - +, = a cos qx with a parameter 
a -  1/30. Since a is connected with the inclination of the 
director 

6q=2rpi cos (qx) sin (nzlL) 

and with the refraction angle a by the relation 
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