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A number of topics of the theory of a multielectron dimple on the surface of liquid helium are 
discussed in the harmonic approximation. In this approximation it is possible to describe the 
structure of an elliptic-symmetry dimple. An interesting analogy is noted between the Hertz 
contact problem of elasticity theory and the theory of a multielectron dimple on a helium surface. 
Qualitative ideas concerning the problem of dimple-disintegration mechanism in a strong electric 
field are advanced. Solution of the last problem gives an ideal of the real scale of the critical 
density of the electrons at the center of the dimples and concerning methods of increasing this 
density. 

INTRODUCTION 

One of the essential features of a charged liquid-helium 
surface is its instability to small oscillation when the electron 
density exceeds a certain critical value. Various concrete 
consequences of this instability, such as singularities of the 
dispersion of small oscillations of the charged surface of the 
liquid, reconstruction of the charged helium surface, and the 
appearance of a dimple crystal or of individual multielectron 
dimples, have been by now investigated in detail both theore- 
tically'+ and e~perimentally.~-~ Obviously, the instability of 
a charged surface of bulk helium will continue to stimulate 
efforts to clarify details of this effect. Yet the upper bound 
imposed on the surface-electron density by the instability of 
the charged surface of liquid helium is a serious obstacle to 
the development of independent trends in the investigation 
of the two-dimensional electron system on the surface of liq- 
uid helium, and in particular to the problem of Wigner cry- 
stallization. In fact, the Coulomb crystallization observed by 
Grimes and Adams9 in the electron system on a helium sur- 
face, and the subsequent measurements of the phase diagram 
for this phase transition, observed so far only in a two-di- 
mensional charged system over h e l i ~ m , ' ~ - ' ~  were peformed 
only in a relatively narrow electron-density interval, - 10' 
~ m - ~ .  The real obstacle to an advance to higher density, 
which would be most interesting, e.g., from the viewpoint of 
the properties of the phase diagram of a Wigner crystal, is 
the capillary instability of a charged surface of helium. All 
the foregoing considerations lead to the problem of increas- 
ing the critical electron density over helium, a problem ap- 
proached at present from two directions. 

In the first it is proposed to use a thin helium film as the 
substrate for the electron system. The presence of additional 
van der Waals forces in such films increases drastically the 
capillary constant x of the helium, leading automatically to 
an increase of the critical density n,, of the electrons on the 
film compared with its bulk value. This idea was reinforced 
by  calculation^.'^-'^ The first experimental also 
suggests that this idea is reasonable. In this case, however, if 
we are dealing with Coulomb crystallization, we face in es- 
sence a new problem, inasmuch as on a thin helium film we 

have not a Coulomb but a dipole gas (the distance between 
the electrons on a thin helium film is comparable with the 
distance to the solid substrate, as a result of which each elec- 
tron interacts mainly with its image and not with neighbor- 
ing electrons). Progress in the solution of this problem is 
sati~factory,'~ but so far only from the theoretical viewpoint. 

The next possibility was indicated recently by th& ex- 
periments of Savignac and Leiderer19 and Volodin and Edel- 
'man." It was shown in the first of the cited papers that a 
multielectron dimple produced on the surface of solid heli- 
um in the range of critical parameters (in particular, of the 
critical electric field Elmin) corresponding to loss of stability 
of the charged surface of bulk helium, can exist in a range of 
electric fields that exceed noticeably (by about three or four 
times) the field ELmin at which such a dimple appears. Recog- 
nizing that the radius R of the charged core of a multielec- 
tron dimple in the region XR < 1 is inversely proportional to 
the square of E [this circumstance will be demonstrated be- 
low, see Eq. (13)], and that the scale of the electron density 
n(0) at the center of the dimple is n(0) a R -' cc EL4, it is easily 
seen that the density, which increases with field like EL4,  can 
substantially exceed the critical homogeneous density of the 
electrons above bulky helium. In other words, a multielec- 
tron dimple is a suitable object with which to produce on a 
helium surface electron densities that exceed the critical ho- 
mogeneous density. Ofcourse, this must be "paid for" by the 
onset of an electron-density inhomogeneity in the core of the 
multielectron dimple. This inhomogeneity, however, is rela- 
tively small relative to the corresponding period of the possi- 
ble electron crystal in the dimple, and hopefully is of no 
principal signficance from the viewpoint of observing Cou- 
lomb crystallization. 

An independent result, but conceptually close to that of 
Ref. 19, was obtained by Volodin and Edel'man." They have 
shown that by using for the helium film a special furrowed 
substrate with groove depth h on the order of the capillary 
constant of the helium and with a characteristic period no- 
ticeably smaller than this constant it is possible to increase 
drastically the critical instability field, but preserve at the 
same time on the helium film the electron mobility typical of 
the bulk situation. It must be noted that the idea of artificial- 
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ly suppressing the capillary instability of the charged surface 
of bulk helium with the aid of boundary conditions that 
hinder the development of oscillation of the charged surface 
of a liquid with small wave numbers (of the order of the 
capillary constant) is contained in the review by William~.~' 
We are thus dealing with a useful idea and its successful 
realization. It is also obvious that the results of Refs. 19 and 
20, notwithstanding their apparent difference, indicate that 
multielectron dimples, especially artificial ones, are promis- 
ing objects having an increased critical electron density. 

In the description of the structure of a multicharged 
dimple in sufficiently strong clamping fields, when the ine- 
quality 7tR < 1 holds (R is the radius of the charged core of the 
dimple, 7t is the capillary constant of the liquid helium), it 
becomes possible to determine independently the radius R 
and the deformation of the helium surface at distances from 
the dipole center that are large compared with R. To per- 
form concrete calculations under these conditions it is con- 
venient and legitimate to use a harmonic approximation in 
which the deformation f (r) of the helium surface in the vicin- 
ity of the dimple surface is approximated by a Taylor series 
with accuracy up to quadratic or higher powers of the dis- 
tance r to the center of the dimple. The use of this device 
yields a self-consistent description not only of cylindrically 
symmetric but also of elliptic dimples. The latter circum- 
stance is of considerable interest, since there are a number of 
physical reasons for the appearance of elliptic dimples, but 
there is still no appropriate theory. 

In view of foregoing, the plan of our exposition is the 
following. In the first part we present a linear theory for an 
arbitrary multielectron dimple in the harmonic approxima- 
tion. The cause of the ellipticity is assumed to be anisotropy 
of the surface tension of the helium substrate; this is possible 
when the dimple is produced on the interface between liquid 
and solid helium. In the limiting case of zero anisotropy, the 
results of this theory can be compared with those already 
known for a dimple with cylindrical symmetry. It turns out 
that, apart from numerical factors, the results of the "har- 
monic" theory agree with those previously obtained for a 
cylindrical dimple. This raises hope that a generalized har- 
monic approximation is qualitatively correct for the descrip- 
tion of nonlinear effects that occur in the behavior of a mul- 
tielectron dimple in the presence of a strong electric field. 
The second section of the paper is an exposition of the results 
of the generalized theory for a dimple. The actual calcula- 
tions could be carried though to conclusion only in the cylin- 
drically symmetric case. It became clear that besides the 
minimum electric field E y  starting with which the exis- 
tence of a dimple becomes energywise favored, the theory 
admits of another characteristic electric field E,""" that 
bounds from above the region of existence of dimples. The 
field E,""" is defined by Eq. (35). In contrast to Elm'", the 
quantity Elmax is an essential function of the total charge Q 
of the dimple. Another interesting end result of this section is 
the definition (34) of the radius R of the charged-region spot 
at the center of the dimple. The dependence of R on the 
problem parameters El and Q has a regular asymptotic be- 
havior in the region of moderate fields E y < El < E y and 
a nontrivial behavior as El comes close to E y. 

1. ELLIPTIC DIMPLES IN THE HARMONIC APPROXIMATION 

The problem of elliptic multielectron dimples arises, for 
example, in the investigation of the instability of a charged 
interface between liquid and solid helium (photographs of 
anisotropic multicharged dimples on such an interface are 
given in Ref. 19). A similar situation can occur in the investi- 
gation of the properties of an electron system in a trough 
between vertical plates immer!ed in liquid helium (a variant 
of the problem of Volodin and ~del'rnan*'). Finally, a dimple 
becomes elliptic in the presence of a magnetic field parallel to 
the liquid-helium surface. The corresponding possibilities of 
the theory will be demonstrated below, mainly in the frame- 
work of the so-called harmonic approximation that permits 
the use of an analogy with the Hertz contact problem in 
elasticity theory.22 A brief indication of this analogy is con- 
tained in Ref. 23. 

The initial system of equations for the description, e.g., 
of an elliptic multicharged dimple on an anisotropic solid- 
helium substrate is, according to Refs. 3 and 4, of the form 

Heref (x, y) is the self-consistent deformation of the interface 
between the liquid and solid helium in the vicinity of the 
charged dimple, n(x, y) is the local charge density in the dim- 
ple, El is the clamping field, Ap is the difference between the 
densities of the liquid and solid helium, g is the free-fall ac- 
celeration, andil is a Lagrange multiplier that appears in the 
problem because ofthe normalization of n(x, y) to N [Eq. (4)], 
where N is the total number of charges in the dimple. The 
physical meaning of the multiplieril will be discussed below. 
In Eq. (2) it is assumed that the x and y axes are chosen along 
two mutually perpendicular crystallographic axes of the sol- 
id-helium surface, and a ,  and a, are the corresponding sur- 
face-tension components. 

The main task in the solution of the system (1)-(4) is the 
inversion of Eq. (1) relative to n(x, y). In the general case of 
arbitrary f (x, y) this problem can be solved only in the one- 
dimensional variant.24 As for the two-dimensional situation, 
a simple enough solution exists here in the harmonic approx- 
imation, when the deformation f (x, y) in the vicinity of the 
origin can be represented in the form 

E (x, z/) =go+ '/&" (0) x Z f  '/&" (0) yZ+ . . . 

Equation (1) withf (x, y) expanded as in (5) coincides with the 
basic equation of the Hertz contact problem in elasticity the- 
~ r y . ~ ~  Using this analogy, we have directly from (1) and (5) 
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Expression (6) determines the charge distribution in the cen- 
ter of the elliptic multicharged dimple, while Eqs. (7) and (8) 
give two connections between the four unknown constants 
A, B, a, and b (a and b are the semiaxes of the charged ellipse); 
relation (9), finally, determines the value of the chemical po- 
tential il in this problem. In principle, the instant at which 
the constant il vanishes sets the conditions starting with 
which the multicharged dimple becomes energywise fa- 
vored. 

To obtain additional relations between the constants A, 
B, a, and b we must use the equation of mechanical equilibri- 
um with appropriate boundary conditions. We consider in 
this connection several concrete cases. 

A. Cylindrically symmetric situation. In this variant, 
when a, = a, = a ,  the semiaxes of the ellipse are equal, 
a = b = R, and the mechanical-equilibrium equation takes 
the form 

Assuming that xR( 1, we have from (2a) the relation 

As for the definitions (7) and (8), they agree with each other 
and reduce inthe cylindrical-symmetry case to the equality 

go"=3nQ/4ELRS, Q=eN. (12) 

From (1 1) and (12) follows the definition 

R=n'a/ELs. (13) 

The result (13) for R is equal, apart from a number, to the 
definition of R in Ref. 3 in the limit xR( 1. 

Relation (9) with allowance for the definition of the self- 
consistent deformation of the helium surface in the vicinity 
of the dimple, and in particular of the dimple depth 6 (O), 
takes the form 

The condition for il to vanish in this case is 

The correct criterion obtained in Refs. 3 and 4 using more 
accurate algebra, yields ( E p ) 2  = 16.52xa. The definition 
(10) of n(r) coincides with the first term of the corresponding 
expansion of n(r) in Ref. 4. 

It is worthy of note that the formalism developed in Ref. 
4 to describe the structure of a cylindrically symmetric dim- 
ple makes it possible, in principle, to take into account also 

higher powers of the expansion (5) of6 (r). Claiming only that 
xR(1, the corresponding calculations can be carried out 
analytically, dealing ultimately with a finite system of alge- 
braic equations. The details of this calculation are given in 
Appendix 1. As a result, the definition of n(r) accurate to 
terms K r4 in the expansion (5) of 6 (r) takes the form 

n ( r )  = - 
n'a (104 

R90.82  - NI+Na=N, Na-- 
ELZ ' 0.09Ni. 

Thus, the next term of the expansion of n(r) in polynomials of 
the form (1 - ?/R 2)s+ are numerically small. 

In their original paper4 the authors were interested in 
the general situation of arbitrary xR. The corresponding sys- 
tem of algebraic equations was therefore of high order and 
was investigated by numerical methods. 

B. Anisotropic substrate. The equation (2) for mechani- 
cal equilibrium at the center of the charged core of the dim- 
ple takes the form 

2alA+2azB=eE,n (0). (16) 

This can be used as one of the additional relations between 
the sought coefficients A, B, a,  and b. 

The last of the sought relations 

2uiA=eE,n (0) 6/  ( y + 6 ) ,  y2--az/a,, 6=b/a, (17) 

was obtained by solving Eq. (2) and then calculating 6 E(0) 
(see Appendix 2). The expression used for the distribution 
n(x ,  y) was then 

The justification for this simplification is the simplicity of 
(17). The corresponding calculations for the distribution 
n(x, y) [Eq. (6)] leads to an integral connection between the 
coefficients of interest to us rather than to (17). 

The system (7), (8), (16), and (17) can be reduced to a 
single relation between y and S: 

OD 

76-F (6) , F (6) = J dr l  ( i + s )  [ ( i + s )  (6'+s) s l h  / 
0 

Thus, to each value of the parameter y corresponds a definite 
value of the parameter 8. In the limit as y-1, naturally, 
6-1. 

The integrals in (1 8) can be expressed in terms of elliptic 
ones. The resultant equations, however, are quite unwieldy. 
It is therefore sensible to make do with an analytic relation 
between y and S in the limits of either small or large ellipti- 
city. 

Assuming with this in mind 

we have from (1 8) 

In the opposite limiting case 8) 1 we have from (1 8) 
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y= (a2 /a,)vz 

FIG. 1. 

The relation between y and S is shown for the general case in 
Fig. 1. 

A variant close to the above treatment of an elliptic 
dimple is obtained if the source of the ellipticity is a one- 
dimensional external potential that clamps the dimple in one 
of the directions. If, for the sake of argument, this additional 
action is directed along the x  axis and is given by 

V ( x )  =v0+cxa+ . . . , C=' /2v / f  ( 0 )  , (21) 

the definition (6) of n(x, y) and relations (8) and (9) remain 
unchanged, but the definitions (7), (16), and (17) become 

As a result, the analog of (1 8) is now 

where F(6)  is the right-hand side of (18). 

2. DISINTEGRATION OF DIMPLE IN A STRONG ELECTRIC 
FIELD 

The existing theory of a multielectron dimple on the 
surface of liquid h e l i ~ m ~ . ~  is valid if the following inequal- 
ities hold: 

The first of these inequalities allows us to linearize the sur- 
face-tension term in the mechanical-equilibrium equation. 
The second is needed for the dimple to be electrostatically 
stable (it is necessary that the external clamping field exceed 
the intrinsic field of the charged core of the dimple). Neither 
inequality is automatically satisfied. Thus, if we use for n(0) 
the definitions that follow from (10) and (13), the second ine- 
quality of (24) is replaced by 

3EISQ/a'a2<1, Q=eN, (244 

which, given Q, is a restriction on the value of El. A similar 
inequality can be obtained on the basis of the requirement 

Vg < 1 by using for V{ the explicit expression for the gradi- 
ent in the region r-R, where V{ is a maximum. This raises 
the question: what happens to the dimple when inequalities 
(24) become uncertain or even wrong? 

A. To shed light on the features of this problem it is 
useful to discuss first an auxiliary one-dimensional problem 
that can, in principle, be also of interest as the limiting case 
of a strongly elongated elliptic dimple. The general mechani- 
cal-equilibrium equation for a one-dimensional multielec- 
tron dimple is 

n(x)>O at -R<x<+R and n ( x )  =O at Ixl>R; 

Nis the total number of electrons per unit length of the dim- 
ple. 

Taking into account the inequality xR(1, which is as- 
sumed to be satisfied, it is convenient to rewrite (25) in homo- 
geneous form with appropriate boundary conditions 

To obtain the boundary condition (28) we must integrate (25) 
in the vicinity of small x (at - R<x< + R ) and take into 
account the requirement 

(z) dz=eE,N. 
- R  

It is also obvious that 

x 2 f i ( z ) & ~ 2 x z E o R ,  
-R 

where go is the depth of the dimple. 
The first integral of (26) is 

(1+ ( i f ) ' )  - '"=Ao- ' /2x2~z .  (29) 

From the condition (27) at infinity it is clear tht the constant 
A ,  = 1. Using now the integral (29) at distances x - R from 
the dimple center and recognizing that V( is a maximum in 
this region, we easily see that under conditions when g,,, 
becomes large enough ( 6 ' > 1) the maximum value of go 
tends to 6 i,, +2ll2x-I. This estimate of { La, leads to the 
conclusion that the right-hand side of (28) can be simplified 
by virtue of the inequality 

eE,Na-'B2x2EoR=2"xR. 
In fact, in sufficiently strong fields the combination 

eE, Nap '  can take on values larger than 1. As for the param- 
eter xR, it is by definition less than unity and decreases with 
increasing clamping field. Thus, the boundary condition (28) 
for g ; takes the form 

eRf [1+ ( g R t )  ' 1  -Ih=eELN/2a (30) 
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Obviously, this boundary condition is meaningful only in the 
region 

x i .  (31) 

The inequality (3 1) is the sought upper bound of E, at fixed 
N. 

From the foregoing analysis we can draw two qualita- 
tive conclusions: 

1. Just as in the region of relatively weak electric fields, 
mechanical equilibrium at the center of a charged dimple is 
ensured mainly by the competition between the electron 
pressure and the surface-tension forces (the discussion that 
follows Eq. (29) shows the gravitational term to be negligi- 
ble). 

2. In the linear region, where the denominator of the 
surface term becomes influential, it becomes impossible for 
the electron pressure to be offset by the surface tension 
forces. These qualitative conclusions should hold also in the 
cylindrical-symmetry problem. 

B. In the more general, two-dimensional, case the aver- 
age curvature of the dimple surface is defined by 

(32) 
The structure of this definition is quite complicated and does 
not admit of calculations similar to the one-dimensional 
ones. In the presence of cylindrical symmetry, however, and 
if the harmonic approximation (5) is used for f (x, y), the situ- 
ation is simpler, for in the vicinity of the origin the average 
curvature takes the form 

Proceeding now in analogy with the one-dimensional 
case, i.e., integrating the general mechanical-equilibrium 
equation with the Laplace term from (32a) over the region 
r<R and neglecting the gravitational term (this is more justi- 
fied in the cylindrical-symmetry case than in the one-dimen- 
sional one), a relation reminiscent of (28) can be obtained: 

e.,"Ra [1+ (go")2R2] -'1*=ELQ/2n.a, Q=eN. (33) 

We note also that the definition (33) is a generalization of (1 1) 
to include the case of arbitrary f :. Assuming now that the 
connection (12) between f: and R which follows from the 
solution of Eq. (I), retains its meaning, and using it jointly 
with (33), we arrive at the following definition of R: 

(R,IR) 2='/,n-"1- (1-4A2) 'I1), 

Eo"=R,21R3, A=EL3Q/3nSa2, RC2=3nQ/4E,. (34) 

In the limiting case A ('1 the structure of R is similar to that 
of (13) 

R=3n2a/2E12. (344 

The difference between the numerical coefficients in the 
definitions of R from (1 3) and (34a) is a measure of the accu- 
racy of the harmonic approximation in its various modifica- 
tions.' 

If, however, A becomes comparable with unity, the situ- 
ation changes. According to (34) the real expression for R 
holds only under the conditions 

A<l/, or E,<E,"", E,"" = (3n2a2/2Q)". (35) 

The inequality (35) is analogous in character to inequality 
(3 1) for the one-dimensional problem, and defines the scale 
of the limiting electric field in which equilibrium between 
the surface-tension forces and the electron pressure is possi- 
ble at the dimple center for fixed Q. 

The corresponding minimum radius of the charged spot 
at the dimple center is, obviously, given by 

~ : , , , = ~ , 2 = 3 n ~ / 4 ~ , .  (36) 

The fact that the minimum radius R,,, is finite means 
that under conditions when a multielectron dimple disinte- 
grate the quantity f :, which is connected with R,,, by rela- 
tion (33) or (12), remains finite. This, in turn, allows us to 
conclude that the critical value of f k ,  estimated at f i  
= l:R, remains finite (in contrast to the one-dimensional 

case, where f k became infinite at the critical point corre- 
sponding to disintegration of the dimple). According to (34) 
and (35), the numerical value off k is z 2. It is useful to note 
here that the second of the inequalities (24) discussed at the 
beginning of the present section, E, > 2n-en(O), is not violated 
all the way to the critical field value. In fact, this inequality, 
with account taken of the definition (0) = N/n-R and of 
R 2, (36), is transformed into the numerical inequality 
1 > 8 / 3 ~  which is satisfied, albeit weakly, in the required 
direction. 

Concluding the discussion of the results of the present 
section, let us track the behavior of the electron density in 
the dimple in the critical region. Using for this purpose the 
definition n(0) = N/n-R and expressing with the aid of (35) 
the critical field E I;"" in terms of the total charge Q of the 
dimple, we obtain on the basis of (36) the following definition 
of the critical electron density at the dimple center: 

The critical density increases thus with decreasing total 
charge of the dimple. This circumstance must be borne in 
mind when searching for possibilities of increasing the criti- 
cal density of the electrons on a helium surface. The numeri- 
cal value of nm(0) for N- lo5 is of the order of - 10" cmP2. 

It is interesting to note that the relation n," a Q - ' I 3  can 
be obtained under the assumption that in the critical region 
the central part of the dimple recalls a multielectron bubble 
having a charge Q. In this case the bubble radius R a Q '/a 
(Ref. 25), and for the density n: we get the estimate 

1 
nom-Q/RZ = - (a2 /Q)  "', 

e 

which correlates with n," from (37). The reasoning indicated 
is given in Ref. 4. 

CONCLUSION 

We have discussed a number of questions in the theory 
of a multielectron dimple on a helium surface in the harmon- 
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ic approximation. This approximation makes possible a de- 
scription of the.structure of an elliptically symmetric dim- 
ple, points out an interesting analogy between the Hertz 
contact problem of elasticity theory and the theory of mul- 
tielectron dimples on a helium surface, and gives a qualita- 
tive interpretation of dimple disintegration in a strong elec- 
tric field. Solution of the last problems gives an idea of the 
real scale of the density of the electrons at the center of a 
multielectron dimple and of methods for in~reasing it. In 
particular, the experiments of Volodin and Edel'man20 on 
retaining electrons on a helium surface in small-radius artifi- 
cial dimples are from this viewpoint quite promising. 

APPENDIX 1 

As noted in Ref. 4, if the distribution n(r) is represented 
by the series 

,m 

2s+i rZ 8-'b 

n, (r) = - 
2nRz ( - F )  

and the relation 

n.(ri) d2r, 1 2k =-r, c.. (+) 1 j r - r  R 
h-0 

is used (r (x) is the gamma function), the integral term of Eq. 
(1) of the main text is transformed in the cylindrically sym- 
metric case into a polynomial of order m in powers of 12. 
Expanding next the displacement f (r) in powers of ?k and 
gathering coefficients of like powers of 3k, we can reduce Eq. 
(1) to a system of equations in terms of the coefficients N, and 
a" //aflo. Thus, retaining two terms in expansion (1.1) and 
following the procedure indicated, we get 

Two additional connections between the coefficients 
N,, N,, R, 5 6, and f 6" follow from the mechanical equilibri- 
um equation (2) of the main text: 

The first relation (1.4) follows directly from Eq. (2) written at 

r = 0, neglecting the gravitational term. The second is ob- 
tained by differentiating Eq. (2) twice. Those terms of this 
expansion which diverge as r-+O are mutually cancelled out. 
We note also that determination of the constant il in (1.3) 
calls for a complete solution of the mechanical-equilibrium 
condition with account taken of the gravitational term, after 
which 6 0 can be obtained in terms of the electron pressure. 
We shall not consider this last problem. 

Combining Eqs. (1.3b)-(1.3d) and (1.4)- we can reduce 
this system to the equations 

Solving the last equation for N2 and using the information on 
cSk ,  we get 

N,= (-0,30*0.21) N,.  (1.6) 

The uncertainty of the sign in this relation should be re- 
solved in favor of +, for otherwise expression (1.5) for R 
becomes negative. Taking the foregoing into account, we ob- 
tain the following final expressions for n(r) and R: 

The results (1.7) were used in the main text. 

APPENDIX 2 

The equation 

a,$"Saz&"+ApgE=eE~n (x ,  Y) , 
where the distribution 

is normalized to N, can be solved by using Fourier transfor- 
mation with respect to both variables x and y. The quantity 
6 :(O) of interest to us is then 

In expression (2.2) for f :(O) we left out of the denomina- 
tor of the integrand the gravitational term; this does not af- 
fect adversely the convergence of the integrals at small k and 
q (in contrast to the expression for f (O), where such a simplifi- 
cation is impossible). 

After integrating in (2.2) with respect to k we have 

where @ (x) is the error function and 9 = a,/a,. 
The integration with respect to q is also carried out in 

explicit form. As a result, 
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or, recognizing that N / T  ab = n(O), we arrive at the defini- 
tion of :' used in the main text. 

'In the calculation ofR (13) we used the local characteristics ofthe dimple, 
and in particular the local value of the density n(0). As the definition (34a) 
of R, we averaged here the mechanical-equilibrium equation over a re- 
gion r(R. 
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