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The effect of electron correlations on the high-frequency conductivity of liquid metals is ana- 
lyzed. A general expression derived for the effective rate of electron-ion collisions reflects both 
ion-ion and electron-electron correlations when the interaction between the electron and ion 
subsystems of the metal is weak. Comparison of the theoretical results with experimental data on 
liquid sodium confirms that the conductivity is increased by electron correlations. In the two- 
component approach it is possible to pursue the analogy between the high-frequency properties of 
metals and those of a moderately dense plasma. 

1. The optical properties of liquid metals in the infrared 
region can be described quite well in a qualitative sense by 
the classical Drude-Lorentz theory. In the optical and ultra- 
violet parts of the spectrum, in contrast, the theoretical a(w) 
curve differs substantially from the experimental data. l s 2  In 
these parts of the spectrum it is no longer valid to assume a 
static collision rate. 

Faber3 has reported a first attempt to determine how a 
high-frequency field affects collision events in metals for fre- 
quencies fiv 5 f i o ( ~ ~ .  Helman and Baltensperger4-' derived 
an expression for the high-frequency conductivity for arbir- 
ary frequencies w)v,, but for a statically screened electron- 
ion potential and in the random phase approximation (RPA) 
for the electrons. The approximation of a static screening is 
not justified at high frequencies; in particular, it cannot ex- 
plain the absorption increase due to the excitation of plasma 
waves at o 2 up (Ref. 6) .  Petchick7 derived an expression for 
Rw(w) for frequencies w -up in the first approximation in 
the pseudopotential in the adiabatic approximation for the 
ions. This expression for Rea(w) was subsequently studied 
numerically8 in the RPA for electrons. 

It should be noted that the description of the absorption 
is not completely satisfactory even at relatively low frequen- 
cies, because of the well-known uncertainties regarding the 
parameters of the pseudopotential and the way to allow for 
correlations in the electron fluid. 

In this paper we derive an expression for the high-fre- 
quency conductivity of liquid metals, working from a two- 
component plasma model. This approach has been pursued 
actively in recent years in research on the static properties of 
metal plasmas and dense gaseous  plasma^.^,'^ It has the in- 
disputable advantage of allowing a common description of 
the properties of a system of charged particles with an in- 
creasing "nonideality" (the ratio of the Coulomb interaction 
energy of a charged particle to its kinetic energy) and with an 
arbitrary degree of degeneracy. The expression derived for 
a(w) incorporates strong ion-ion and electron-electron cor- 
relations and is valid for an arbitrary degree of degeneracy 
and for arbitrary relations among fio, T, E,, and fiop under 
the condition w ) ~ .  Working in the adiabatic approximation, 
we derive an expression for the frequency-dependent effec- 
tive mass of the electrons. Calculations carried out for liquid 
sodium demonstrate that electron-electron correlations 

must be taken into account in order to reach good agreement 
with experiment at high frequencies. 

2. In the linear-response theory the complex electron 
conductivity is given by the expression 

a (0) =inez/mo+@ (a) 13, (1) 

where 

E = + 0 turns the field on adiabatically, 8 (t ) is the unit step 
function, n is the electron number density, Vis the volume of 

the system, j ( t  ) = drj(t,r), and the operator j(t,r), repre- I 
sents the electron current density. Integrating @ (w) by parts 
twice, we find 

We then use an equation of motion for J ( t  ): 

where H is the Hamiltonian of the system in the absence of 
an external field. We should point out here that in our two- 
component model of the plasma the Hamiltonian is written 

lQ=Be.+P,i+E?ii, (6) 

where hei is the local pseudopotential of the electron-ion 
interaction. It can then be shown that 

where the operator li, (r,t ) is the number density of the parti- 
cles of species a. Substituting (7) into (4), we find 
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where SA = A - n is a fluctuation in the number density of 
the particles. In deriving (8) we replaced the commutator of 
the densities by the commutator of their fluctuations, with- 
out changing the value of the integral in (8): 

In this manner, the problem reduces to one of determining a 
four-particle correlation function. 

Examining the diagram representation of the four-den- 
sity Green's function corresponding to this correlation func- 
tion, we easily see that for an arbitrary electron-ion interac- 
tion we can write 

(6ne ( 1 )  ŝ ni (2) sk, (3)  sni ( 4 ) ) o  

Here J is the irreducible part, which has no uncoupled con- 
tributions. In the frequency range of interest here, w>v, and 
for a relatively weak electron-ion interaction, it is sufficient 
to consider only the uncoupled contributions in (10). In this 
case the correlation functions (SA, 6Ab ), are generally point 
correlation functions in a two-component electron system. 
Do we need to consider the two-component nature of the 
correlation functions in (10) if at the same time we are dis- 
carding J, which is of order V:i? It might seem that retaining 
the two-component functions (SA, SA, ), would be equiva- 
lent to seeking an accuracy not possible in this approxima- 
tion, but we must note that, while the potential Vei is small in 
the integral sense, at small values of k it is purely Coulomb 
and thus not small. It is for this reason that the terms propor- 
tional to Vei prove important in calculations of the structure 
factors in a two-component system: Their behavior changes 
at small values of the momentum transfer. ' ' 

The coupled part of J contains the potential Vei only in 
the integrand and in this sense is small from the integral 
standpoint, comparable in magnitude to Vei, so that we can 
ignore it under the conditions assumed here. 

We can thus write the complex electron conductivity as 

where 

S, (k, a) a J d* J diefaL" (6% ( 1 )  6 6  (2) )&I I-h-2s r-r1-rz 

is a dynamic structure factor. We define the effective rate at 
which electrons collide with ions by an expression analogous 
to the expression ordinarily used for a hot plasma1': 

From (1 1) we find an expression for v(w): 

sS,, (k, 0,) S.. ( k .  -01) X S  276' 

Taking the formal limit w-+O in (12), we find the collision 
rate derived previously by Boercker et a1.13 for the static 
conductivity. 

In a classical plasma, this static collision rate, v(O), in 
turn converts into the collision rate corresponding to the 
Lenard-Balescu kinetic equation, as was'shown by Boercker 
et al.13 In a degenerate metal plasma, it converts into the 
collision rate corresponding to a metallic conductivity incor- 
porating strong ion-ion correlations. 

3. At frequencies w,wi, where wi are the characteristic 
ion frequencies, we use the expression derived by Trigerl1: 

2h 
Sei ( k ,  o )  =- - a' 

~ { ~ ' ( k ,  a ) ]  , (13) 

where ~ , ~ ( k , w )  = 1 - V,,KIeeR(k,w) is the retarded dielec- 
tric function of the electron subsystem, Z7fe is the exact po- 
larization operator of the electron subsystem, and L f is the 
retarded density correlation function of the ion subsystem 
(we will omit the superscript R below). Working from (13) we 
can easily show that the terms quadratic in Sei are small. In 
this case we have 

where 

is the ion structure factor in the two-component system. We 
have also used 

- - - 2% Im nee0 
1 - e x p  (-pfio) l eeo12 (15) 

(the superscript "0" corresponds to the one-component sys- 
tem, but with correlations in this system being taken into 
account exactly). 

It can be seen from (14) that taking the electron correla- 
tions into account does not reduce to the customary replace- 
ment of ~f~~ by E: ,  which might be expected on the basis of 
heuristic considerations, but instead involves taking into ac- 
count an additional factor which arises from the difference 
between Im Z7 :, (k,w) and Im Z7EpA ( k , ~ ) .  The occurrence of 
this effect was first pointed out for the static case by Klyuch- 
nikov and Triger,l4?l5 who studied the static conductivity of 
metals by working with a kinetic equation which incorpo- 
rates electron exchange approximately. In our notation and 
for the high-frequency case, this factor is found from the 
condition 

For a hot plasma, in which correlations are unimportant, 
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and at frequencies w)w,, the integral in (14) can be evaluat- 
ed easily, since 

RPA E . o ( ~ ,  =I,  s i (k)=i ,  nee0-n.. . 
Using the expression for Im Z7:pA ( k , ~ ) ,  we find 

where KO is the modified Hankel function. Exyression (17) is 
the same as the result derived by Perel' and Eliashberg. l6  

In the adiabatic approximation, the following expres- 
sion can be derived for the imaginary part of the conductiv- 
ity for the ion subsystem: 

where we have used the Kramers-Kronig relation for I/& 
( k , ~ ) .  

Expression (17) for y(w), even taken in the RPA, differs 
from the result derived by Helam and Balten~perger,~ be- 
cause the dynamic nature of the screening has been taken 
into account here. Taking into account the relationship 
between the complex high-frequency conductivity and the 
dielectric constant, 

we find 

in the adiabatic approximation for the ion subsystem, where 
y(w) and v(w) are taken from (19) and (17), respectively. 

We can use this result to construct a rigorous basis for 
the concept of an effective mass for describing the real part of 
the dielectric constant: 

where 
4nnez m , m* (o) = ------ 

14-7 (0)  ' 

In summary, expressions (l4), (19), and (21) for the com- 
plex dielectric constant at frequencies w)v have been de- 
rived by a pseudopotential approach in the adiabatic approx- 
imation for the ion subsytem, with allowance for strong 
ion-ion and electron-electron correlations. 

4. To carry out calculations on the optical properties of 
liquid metals we need to know the Fourier component of the 
pseudopotential, the dielectric constant of the electron gas, 
and the ion structure factor, as can be seen from (14) and (19). 
We have calculated the high-frequency conductivity of liq- 
uid sodium at T = 400 K, and we have compared the results 

with the experimental data of Ref. 1. As the structure factor 
for the ion subsystem we adopted that for a hard-sphere po- 
tential,'' which is a good approximation for liquid alkali 
metals. To determine the packing parameter we used the 
limiting relation1' 

where X ,  is the isothermal compressibility. 
To describe the electron-ion interaction we adopted the 

Ashcroft pseudopotential 

Its Fourier component is 
4n;ez 

VkA=- - cos (kR) . 
kZ 

We have only a single adjustable parameter here. It is 
customary to use the RPA to describe a degenerate electron 
gas, although we know that at real densities this approxima- 
tion has some important shortcomings, which rule out a 
good quantitative agreement with experiment. A question of 
independent interest is how the electron correlations in a 
degenerate electron gas, primarily the exchange correla- 
tions, affect the properties of the system as a whole. Further- 
more, if a good quantitative agreement with experiment can 
be achieved then a suitable description of the dielectric con- 
stant of the electron gas would make it possible to determine 
the adjustable parameter of the pseudopotential, R .  

Many theoretical papers have addressed the problem of 
taking exchange-correlation effects into account in the di- 
electric constant of a degenerate electron gas in an approxi- 
mate way. These effects are customarily described by some 
function G (k,w): 

&.O (k, o )  =I - veen,"PA (k, o )  
l+G (k, o )  V,,II? (k, o )  ' (27) 

For the values of the electron-electron interaction pa- 

FIG. l. High-frequency conductivity ofliquid sodium at T = 400 K vs the 
frequency (a) of the external field with R = 1.67 a.u. For high frequencies 
the vertical scale has been multiplied by a factor of 10. 1-theoretical, 
with the function G (k,O) from Ref. 19; 2-theoretical, with G (k,O) from 
Ref. 21; 3-theoretical, RPA; dashed curve--calculation from the Drude 
formula with v = lim,,v(o); points--experimental data.' 
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FIG. 2. High-frequency conductivity of liquid sodium at T = 400 K vs the 
frequency (o) of the external field with R = 1.8 a.u. At high frequencies 
the vertical scale has been multiplied by a factor of 10. 1-theoretical, 
with the function G (k,O) from Ref. 21; 2-theoretical, with G (k,O) from 
Ref. 20; 3-theoretical, RPA; points--experimental data.' 

rameter r, characteristic of metals, 2-6, we do not have a 
regular procedure for evaluating the function G (k,w). We are 
thus forced to use approximate methods based on physically 
reasonable approximations which satisfy the well-known ex- 
act relations for E: (k,w) (the sum rule for the compressibility, 
etc.). This approach naturally leads to some ambiguity in 
G (k,w), and different approximations, seemingly similar in a 
qualitative sense, can lead to large numerical discrepancies 
in the description of the properties of real metals. The corre- 
sponding questions are discussed in detail by Utsimi and 
Ichimaru, l9 for example, who also give a detailed bibliogra- 
phy. 

Toigo and W0odruff2~ have shown that 

G (k, a) =G (k, 0). (28) 
They used expressions derived in Refs. 19 and 21 for G (k,O). 
It can be seen from Figs. 1 and 2 that taking the exchange- 
correlation effects in an electron gas into account has a 
strong effect on the conductivity over the entire frequency 
range studied. The conductivity values calculated with 
allowance for electron correlations are far higher than the 
values calculated in the RPA. We are furthermore struck by 

the substantial difference in the results found when different 
approximations are used for G (k,O). 

It can be concluded from this calculation of the conduc- 
tivity that an increase in the pseudopotential parameter R 
reduces the conductivity at relatively low frequencies and 
increases the conductivity at higher frequencies. Evidently 
the only way to identify some preferred approximation of the 
function G (k,O) and a preferred model pseudopotential is to 
compare the theoretical and experimental data over broad 
ranges of the frequency and the temperature. For the experi- 
mental data available,' we find a good agreement between 
theory and experiment by using Hubbard's2' function 
G (k,O), and R = 1.8. 

We wish to thank L. M. Biberman, A. A. Rukhadze, 
and the participants of their seminars for useful discussions 
of this study. 
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