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The spectrum of the short-wave sound excitations in liquid He3 was determined. We observed 
purely diffusive transverse sound in addition to the weakly damped longitudinal sound. 

1. RESULTS 

1. In their  experiment^'^^ on neutron scattering in liquid 
He3, Skold et al. measured the dynamic structure factor 
S(k,w) for wave vectors in the wave-vector range 
0 . 5 ~ ~  < k < 3pF is the Fermi momentum) and at frequencies 
w 5 30 K. The plot of S vs w has two characteristic broad 
peaks. One is connected with the fluctuations of the total 
density of the liquid, i.e., with the longitudinal sound oscilla- 
tions, and the other with the spin-density fluctuations, i.e., 
with the paramagnons. When the temperature T is changed 
from 0.015 to 1.2 K the sound peak remains clearly pro- 
nounced, while the paramagnon peak broadens greatly. A 
theoretical investigation by A. Akhiezer, I. Akhiezer, and 
Pomeranchuk3 has shown that in the long-wave approxima- 
tion k-0 the experiments on neutron scattering determine 
the spectrum of the zero sound whose existence was predict- 
ed by L a n d a ~ . ~  Calculations by Aldrich, Pethick, and 
Pines5s6 in the short-wave region k -p, gave no explanation 
why the sound peak ofS  (a) is unusually broad. Although an 
attempt was made in Ref. 6 to generalize the Fermi liquid 
theory to include the region k-p,, they used a typical gas 
approach connected with the assumption that a single-parti- 
cle spectrum E = E, exists, with small damping, i.e., an ap- 
proach based on the Landau theory in its traditional formu- 
lation. 

2. We show in the present paper that a good single- 
particle E = E, spectrum is an unnecessary "luxury" for the 
theory. The Landau theory is based only on the Landau- 
Luttinger theorem that the numbers of the particles and 
quasiparticles are equal, on the Ward-Pitaevskii identity, 
and on the results obtained by Galitski? and Migda17 on the 
analytic properties of the Green's functions. The only im- 
portant assumption is that there exists in the system some 
mechanism of single-particle motion. The single-particle 
density of states n ( ~ )  should be different from zero at EZO, 
i.e., 

.(4=-2i J+I ,G( ,  ,)+o. 
n)  = 

(1) 

It turns out that this assumption alone is sufficient to deve- 
lop a reasonable theory of liquid He3. The fundamental dif- 
ference between a Fermi gas and a Fermi liquid consists of 
the anomalously small jump a <  1 of the particle momentum 
distribution function n, and of a strong difference between 
the physical scattering amplitude p from the unphysical 
one r", i.e., P SF. For a gas, the particles practically 
coincide with the quasiparticles: 1 - a(1, P Z P ,  and a 
theory can be constructed in terms of the spectrum E = E, 

and the function n, . At a = 0, when the single-particle exci- 
tation branch vanishes, no catastrophe occurs in the theory. 
The condition n(&) #O imposes a restriction only on the ana- 
lytic properties of G as a function of p2, but not of E, and 
manifests itself in the existence of a pole of G in thep2 plane: 

We have naturally arrived at the concept of a spectrum of 
single-particle excitations p2 = p2(&), and the ratio of Re B 
and Im B can be arbitrary. 

3. The main result of this paper is observation of a pure 
diffusive transverse excitation branch with spectrum 
w = - ick at k -pF. Its existence is a concrete manifesta- 
tion of the similarity between a liquid and a solid. A melting 
He3 crystal loses transverse rigidity and long-range order, 
but two excitation branches cannot vanish without trace. 
The transverse sound in the liquid attenuates and cannot 
propagate in the usual sense. It is difficult to observe in ex- 
periment. The point is that sound excitation in a liquid in the 
course of neutron scattering proceeds in two stages. The neu- 
tron produces first a single-pair excitation, after which it 
goes over into an acoustic quantum and "runs" through the 
system: 

For transverse oscillations the sound-production block 
g-eiq, where e, is the azimuthal angle of the vector p (the 
vector k is directed along the z axis). On the other hand the 
cross section CT,,,, for neutron scattering by an He3 atom is 
independent, with high accuracy, of this angle. Therefore 
the averaging over the direction ofp in (3) makes the ampli- 
tude of transverse-sound excitation in an isotropic medium 
equal to zero. In a system with long-range order, however, 
the function Gin (3) depends on the angles of p and ki , where 
ki are the periods of the crystal reciprocal-lattice structure, 
and this amplitude is finite after averaging over the p direc- 
tion. 

4. The crucial point of the theory is the question of the 
fluctuations of the spin density w,. It is purely diffusive and 
corresponding to it are a pole of the particle-scattering am- 
plitude r (w) at w = - iwk and a peak of the function S with 
an w-dependence in the form 
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(4) 
shown in the diagram 

The experimental accuracy is such'.' that it is impossible to 
determine the dependence ofw, on k. Two types of spectrum 
are admissible: phonon, when w, is an increasing function of >o( 
k, viz., (5) 

ok=ck+clk3, ci>O, 

and roton, 

ok=ck ( l + y Z  (k2-kO2) ' ) ,  On the basis of only the analytic properties of the Green's 

when the frequency w, has a minimum k = k,. The results 
of the present paper are not sensitive to the form of the spec- 
trum, and in the actual calculations we shall use the aver- 
aged spectrum W, = w, (k /k, ), i.e., we introduce in the usu- 
al manner the Debye frequency W, and momentum k,, of 
the order of w, - 1 K and k, -p,. As shown in Ref. 8, the 
role of the spin-density fluctuations is analogous to the role 
of the phonons in a solid. Exerting a strong influence on the 
single-particle spectrum near the Fermi surface, they are ra- 
pidly turned off slightly away from this surface. The Landau 
quasiparticles exist both near (~(w,) and far (E>U,) from 
the Fermi surface. At E < wD these are heavy quasiparticles, 
dressed by a paramagnetic "jacket," with m* z 3m, while at 
E > ED these are light bare quasiparticles with m,*z0.3m. It 
was found that the paramagnons are unimportant for the 
determination of the spectrum of the short-wave excitations 
with k-p,. We began to understand the nature of these 
excitations only after we had learned to neglect in correct 
fashion the spin-density fluctuations and had seen that the 
longitudinal and transverse sounds are excitations of a gas of 
light bare quasiparticles. In the Landau limit k-0 and 0-0, 
on the contrary, correct account of the paramagnons is nec- 
essary, in which case the sounds are excitations in a system of 
heavy quasiparticles. It is typical that the velocities of both 
the Landau zero sound and of the short-wave longitudinal 
sound are almost equal to the velocity u, of the usual ther- 
modynamic sound: ut = (n/m)ap/an, wherep is the chemi- 
cal potential and n is the density. As m*-a and m,*-+O this 
equality is exact. What is customarily called zero sound at 
k -pF, is simply ordinary sound in a liquid which for known 
reasons has not solidified, while the statistics of the particles 
does not matter here. The short-wave sound branch is locat- 
ed in the region w < ku,, where u, =pF/m,*, i.e., where it 
should attenuate strongly in accord with the Fermi-gas the- 
ory. Nevertheless it attenuates weakly, and moreover its at- 
tenuation vanishes as m , * 4 .  There is no paradox here: we 
have found the sound-excitation spectrum typical of any 
cold liquid. The parameters of the Landau theory were 
themselves chosen such that in the short-wave region, 
k-p,, the effects connected with the statistics are inconse- 
quential. 

2. SPIN-DENSITY FLUCTUATION SPECTRUM 

In the long-wave limit w 4  and k 4  the dependence of 
the scattering amplitude r on w and k is determined in the 
Landau theory and is connected with the "dangerous" cross 
section of this amplitude in the particle-hole channel, 

- - -  
functions' we shall show that the principal dependence of T 
on w is connected with the cross section not only for small k 
but for all k < 2pF and small w. To this end, using the connec- 
tion between G and the function GR and GA (Ref. 7), we shall 
turn the contour of the integration with respect to E in (5) 
from the right-hand semiaxis into the upper E half-plane and 
write 

0 

d3pd& (6) Re II ( k ,  0 )  =4 J Im G,{Re G,+,+Re G.-.) -7. 
- Co ( 2 n )  

The imaginary part of 17 is determined by an integral over a 
narrow region E < W, and the real over a wide one. Therefore 
Im 17 depends more strongly on o than Re 17, namely: 

Im I I m o ,  Re {II (o )  -II (0) ) mcl,2, o '0. 

We introduce now a parametrization of G ( p , ~ )  (Ref. 8), 
We expand the smooth functions in powers of E andp2 -pg, 
separate the contribution of the spin excitations, after which 
we obtain in self-consistent manner: 

The quantities a, and m,* are connected with the expan- 
sion of the smooth part of 2 :  

It is essential that 2" is a strong function of&, but a weak one 
ofp2. We can threfore integrate with respect to p2 without 
expanding the dependence of2" on E. Since Im 2 vanishes at 
E = 0 (Ref. 7), there exists an interval where Im 2 is small 
but Im G is a S function ofp2 -p i :  

The real part of 2 is inessential here, and is therefore omit- 
ted. We can now dispense in (5) with integration with respect 
top2 and with respect to the angle betweenp and k: 

Im II ( k ,  o )  

- 1 0 1  kuo - -- v, arctg 
kuo 

Im Z ( a )  ~ ( P ' - P F ' ) ~ (  ( ~ - k ) ~ - p ~ ' ) 6  ( E ) .  

(8) 
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Here v, = piai/7~2vo is the unrenormalized density of states 
and v, =p,/m,* velocity of the bare quasiparticles. For all 
the k of significance here, the arctangent in (8) can be re- 
placed by 7r/2. In the derivation of (8) we made only one 
assumption: 2 is expanded in terms ofp2 --pi; the depen- 
dence o f 2  on E turns out to be inessential, since the unrenor- 
malized jump a, of the particle momentum distribution 
function n, is cancelled out in the combination v,/v, in (8), 
so that this expression valid also at a = 0. 

Since both momentap andp - k in (5) turned out to be 
clamped to the Fermi surface at all k < 2p,, a closed equa- 
tion for the amplitude r ( p,, p2,k ) can be obtained when all 
its external momenta lie on this surface.At w = 0 the ampli- 
tude in questions the one contained in the collision integral 
in the kinetic equation: 

In (9) there is only one integration with respect to the azi- 
muthal angle of the momentum p; see Eq. (5) and 

I f T  is expanded in a Fourier series in the angle p = p, - p,: 

r ( k ,  0 ,  p )  = D. ( k .  0 )  ezm'. 
m ( 10) 

r ( k ,  a ,  p )  = CD.(~. w)etmT,  
m 

Eqs. (9) for the different terms of the series are separated. 
From (9) and (10) we have 

D,(k ,o)= -. g 2 ( k )  
o,(k)- i lol  ' 

(11) 

We have introduced the notation 

2kvo gZ=-, 2 
O,  ( k )  = - - kvo~~- 'Drn-~  ( k ,  0 )  

nvo  n 

Expression (1 I )  has the standard "sound" form. Strong at- 
traction for one of the quantum numbers m, i.e., 
- D ; 'Y; '4 1, leads to the appearance of a soft diffusion 

branch of excitations with spectrum w = - iwk ,ak gkv,. 
The onset of excitations with imaginary frequencies does not 
contradict the stability conditions, as explained in detail in 
Refs. 8 and 9. We note that in the limit as k+O the quantities 
Dm do not go over into the functions T :  of the Landau the- 
ory. Thus, the zeroth harmonic of Do in terms of the angle p 
is connected with T (k,cos 8 ) by the relation 

1 ' d cos 0 
~ . ( k .  O) = - J r ( x ,  cos 0) . 

n (1-cos e )  ' " (COS  0-cos 0,)"" 
cos 'a, 

k 
C O S  0, = - - 1. 

2pp2 

Here 0 is the angle between the vectorsp, andp, [see (571. At 
k = 0 we have 

I '  d cos e 
D. (0 ,  O) = - J r A ( ~ o s  e )  - . 

n sin 0 

The generally accepted representation for T,(w) at small k 
and w turned out to be inexact: 

r , A 

rO(o)#  i-l?0h611 ( k ,  0 )  

The expansions of r in terms of p and 8 are not repetitions of 
each other. 

3. SINGLE-PARTICLE SPECTRUM 

1. We separate now the contribution made t o 2  (8) by the 
spin excitations with m = 0: 

The wavy line in (1 3) corresponds to D g(k,w). The Lehmann 
expansion f o r 2  (Ref. 10) guarantees that the contribution of 
D to 2 enters with the verticesg(k ) defined in (1 I), the ques- 
tion of renormalizing the vertices does not arise. The princi- 
pal part o f 2 " ( ~ )  was calculated long ago by the known Mig- 
dal procedure1': integrate first with respect to the angle 
betweenp and k and then with respect tow. Just as for 6IZ (w), 
the strongest dependence of 2" on E is associated with the 
integration over the narrow interval of w in (13): 

To track the transition to the Landau theory, we consider the 
limit as ~4:  

aG-' ( p ,  e )  =E-u (p-pa) +is sign 8 ,  

We express a,Ja also in terms of D ;(k,O): 
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Allowance for the spin-density fluctuations changed 
the density of states v,, the residue a,, and the velocity v, by 
the same factor a d a .  The softer the w, spectrum, the heavier 
the quasiparticles and the lower the density ofstates v. In the 
limit as wk 4, according to ( 1  5 ) ,  the bare mass m,* does not 
enter in the connection of m* with wk : 

It can be seen from (16) that since D E(k,O) < 0, the quan- 
tity D ," should be made nondimensional not by the true den- 
sity of states v ,  but by the unrenormalized y,. The slight 
error incurred when a/a,  is calculated by (17) can lead to a 
negative value of a, since aga,. 

To get a feel of the dependence of 2 on E ,  we carry out 
the calculations for the simplest spectrum w, = w,  (k  /k ,  ); 
in this case 

aa ~ r n  z"=- - E p a k D 3  { l n ( l + y z )  +2y2-2y3 arctg - sign E ,  
2npR3 Y 1 

(18) 
where 

We present also the expressions for the limiting values 
of G: 

aoG-' ( p ,  E )  =8- (p -pP)  vo-koo sign E 

At E >wD the contribution of the spin excitations to 
Im 2 diverges logarithmically, and at E - k ,  v, this growth 
stops. There is a fundamental difference between diffusion 
excitations and ordinary phonons. The propagation func- 
tion D of a phonon decreases rapidly like w P 2  with increas- 
ing w, while the diffusion excitations are turned off slowly: 
D a w - ' at o > w, . The criterion for the applicability of per- 
tubation theory for diffusion is therefore also more stringent: 
(k ,  / 2 ~ , ) ~  < 1 .  This condition limits the phase space of the 
fluctuations. If ( ~ : / w , ) ( k , / 2 p ~ ) ~  < 1 ,  the spin fluctuations 
make a small contribution and m,*--,m*; a , z a ;  v,--,v. If, 
however, the inequality is reversed, the properties of the sys- 
tem are greatly altered, but only in a narrow region near the 
Fermi surface. Besides the regions& < w, and E > w, there is 
an intermediate region w, < E < O,  where G is practically 
independent of E: 

Oo E Z  
a0G-' (p, E )  =-vo (p-pF)  +i sign E -In7. 

n  O D  

The appearance of one more energy scale w, on top of 
w, complicates the problem greatly, since it is unknown 
whether there exists an interval w, < E < E:, in which bare 

particles with effective mass m,* can be correctly defined. We 
shall assume that such an interval exists. From a comparison 
of the experimental and calculated dependences of the heat 
capacity C (T) and of the entropy on Tit follows that for He3 
we have a, - 0.5-1 K ,  E: - 12-20 K ,  k ,  -p,; w, - 2-5 K ;  
m,* -0.25-0.4m. 

4. SPECTRUM OF SOUND EXCITATIONS 

1 .  We obtain the sound spectrum as the poles of the 
spin-independent amplitude r (k,w).  Just as for 2 ( p , ~ ) ,  we 
separate in r the abrupt part connected with the paramag- 
nons, and regularize the regular part8: 

In analytic form this means: 

g 2 ( p - )  , + r R ( p , .  p,, k) . (207 r ( p i ,  E I ,  P Z ,  E Z ,  k, 0) = - 
2 a , - 4 s - l  

We have parametrized the amplituder (k,O) which is static in 
thew channel, i.e., we are transfering from left to right in (20) 
a momentum k ,  a zero frequency w = 0 ,  and a zero spin. 
Along the second particle-hole channel (downward) are 
transferred a momentum p -  = p ,  - p,, a frequency 
E -  = E ,  - E,, and a zero spin. The retardation with respect 
to the variable E -  is taken into account only in the D-func- 
tion of the spin excitations, and rR is a static amplitude also 
in E -. The equation for r (w)  is the same as for the spin excita- 
tions (9) .  Here, however, we are interested in small w <E: and 
small k(2pF, and the important relation is between a, kv, 
and kv,. It is therefore not enough to retain in SI7 only 
Im SI7, but account must be taken also of Re 617. At small w 
and k, however, we can use in the calculation of SI7 also the 
representation of G in the form (7)  and integrate first with 
respect t op  in (9).  In view of the rapid convergence of this 
integral we can close the contour of the integration with re- 
spect top in the upper half-plane: 

r ( n , ,  E I ,  n ,  E ,  k ,  0) r (n ,  E ,  n2,  E Z ,  k, a) 
k n v , - o + a o ~ "  ( E + o / ~ )  - a o i u ( & - 0 / 2 )  ' 

(21) 

Equation (2 1) for r (o) is closed with respect to the momenta: 
they all lie on the Fermi surface: n, = p,/p,, n, = p,/pF, 
n = p/pF. The equation is closed also with respect to the 
frequencies E , ,  E,,  and E ,  since the integration interval in (2 1 )  
is finite: - w / 2  < E < w/2.  

According to (14) and (20), r (w = 0 )  and2" ( E )  are func- 
tional~ of the spectrum of the spin fluctuations w,  , therefore 
the solution (2 1 )  also depends on the form of w, . There are, 
however, two limiting regions w < w,  and w > w, ln(w,/w, ) 
with w, = k bvd4p:, where the detailed dependence of w,  
on k is unimportant. The first region is the Landau limit; the 
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retardation with respect to E-  is inessential here since a fre- 
quency E- < w, is transferred in the transverse channel. In 
this region 

In the second region the retardation is so much stronger, 
that the contributions of the spin excitations to r a n d  2 can 
be neglected, since the characteristic value 
E- - w > wO 1n(w,,/wD ) and therefore 

The difference between (22) and (23) is that P , v, v + r R  , v,, 
v,. We now represent rR in the form 

rR(ni,  n,) =I'oR+I'iRn,n,. 

If we confine ourselves to this representation, we can find 
r f  and r f from experiment: according to (20), the vertex r 
coincides at E, = E~ = 0 with P of the Landau theory, and 
the contribution r - rR of the spin excitations is connected 
with the quantity m*/m,*. The first two harmonics T,k and 
r :, however, are known from data on the heat capacity and 
the compressibility of the liquid, so that 

To obtain (24) we used the connection between the momen- 
tum and the angle: pZ- = 2pg(l - n,.n2), and neglected the 
corrections -k ;/4p;. According to the Landau theory the 
quantity r f v  is connected with m*/m, so that (24) leads to a 
connection of m/m,* with r t  and r f : 

m/m'=l-rihv/3. 

In the Landau notation4 we have 

It is natural to introduce a corresponding notation also for 
rR : 

It can be seen from (25) that m/m,* is also connected with A y 
as m/m,* is connected with A,. This analogy can be contin- 
ued even farther: the speed of sound uo, according to the 
second relation in (25), can be expressed in terms of m* and 
F, as well as in terms of m,* and Fg : 

This result was obtained earlier in Refs. 8 and 9: in the self- 
consistent-field approximation the spin excitations make no 
contribution to the compressibility of the liquid. We can now 
estimate the first two harmonics A and Fz : 0 < Fg < 0.6; 
- 9 < A y <  -4.5. WerecallthatF,= 11 andAl=2.The  
quantities F: and A: are not defined because m,* is not 
uniquely determined from the data for the heat capacity at 
high temperatures: 0.25m < m,* < 0.4m. Since - A )Fz, 

we introduce a simplification of no further importance and 
put Fg = 0. It will be seen below that the large number A y 
yields an unusual amount of physical information.We shall 
not need the exact value of A y ,  all that matters is that - A y 
s 1. 

2. We solve now Eq. (23) for r (a): 

vOr (k, a )  =COS 01 cOS 02-411 (k, 0 )  

+exp {i(rpl-rp,)) sin 0, sin 0zA~(k, a ) ,  

where 8,,pl,8,,p2 are the angles between the vectors k,pl 
and k,p2 [see (5')] 

Here s = w/kv,, and W is the Landau function 

The poles A ,, and A, yield respectively the spectra of the 
longitudinal and transverse oscillations. Both excitation 
branches lie in the region w < kv,, with 

at 
- W=l+i-s, s>O, 

2 
and from (27) we get 

The amplitude A ,, has a pole at 

Since u, < v,, the damping of the longitudinal excitations is 
moderately small: 

The spectrum of the longitudinal excitations runs counter to 
all rules: it lies under the line w = kv, and attenuates weakly. 
As m,*+O its velocity coincides with the velocity of the ther- 
modynamic sound u, (26), and the damping of uy vanishes. 
There is nothing surprising here, we have obtained ordinary 
sound, but its characteristics are expressed in terms of Fer- 
mi-liquid constants. The same picture is obtained also in the 
Landau limit w <a,. The zero sound velocity expressed by 
Abrikosov and KhalatnikovI2 in terms of the constant F, 
and F, was practically equal to the velocity u, of ordinary 
sound. This agreement appears also in experiment. So long 
as dispersion equation for zero sound admits of a solution 
with w > kv or o < kv,, this agreemet must take place. It is no 
accident that u, has landed in the interval v2 < ui < vi. 

It is interesting that the sound damping w > w, ln(w,,/ 
o, ) has no Fermi-liquid character, and there was no need for 
us to take it into account that the quasiparticles, have a 
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damping -w,ln(~~/w;) (19). In contrast to zero sound, 
Landau damping of short-wave sound is a k  and not 
a k '.The imaginary part ofA is a quantity that can be mea- 
sured in experiments, since Im A ,, (w) andS (w) have the same 
w dependence: 

Corresponding to longitudinal sound is a peak in the depen- 
dence ofSon w, and the relation between its width and posi- 
tion does not depend on k: 

3. The transverse branch of the excitation is purely dif- 
fusive: 

2 kuo 
A, ( k ,  a )  =- - , U z  = 

4pa 
x u2k-il a1 3n (m--mu*) (30) 

Here is a new unexpected fact: at m,*(m the quantity u, is 
expressed only in terms of the density n = pi/3.R2 and of the 
bare mass m. This again does not mean that have find a 
"foreign" branch of excitations for the Fermi liquid. Such 
excitations should be possessed also by liquid He4. The "ve- 
locity" of the transverse sound is lower than that of longitu- 
dinal sound: u, < u,. With increasing density of the liquid 
this inequality becomes stronger, since the longitudinal 
branch becomes more rigid. Therefore the thermodynamics 
of He3 and He4 at high densities and temperatures is deter- 
mined completely by the contribution of the transverse 
sound. The linear contribution of transverse sound to the 
heat capacity (as that of any diffusion excitation) exceeds the 
contribution a T 3  from longitudinal sound. For both He3 
and He4 there is a region of high temperatures where the heat 
capacity is linear in T. Another explanation of this depen- 
dence was proposed by Andreev.13 

4. Let us make clear now what happens to the longitudi- 
nal and transverse branches of the excitation at large 
k - 2pF, but at small w as before. We have learned how to do 
this in the beginning of the paper: at such k and w we can 
neglect Re SDin (9) and we can calculate Im 17 at all k < 2p, 
and w < E:. We consider first the limit w-0, at which 

A,, ( k ,  o )  =-,r 
gi2 ( k )  2 4pp2 

giz ( k )  = - kuo - 
a8(k)'-ilol'  n k2 (31) 

8pa3Ai0 ( 0 )  
a3 ( k )  = 3nkAio ( k )  (m-mu') ' 

We do not know the A y (k ) dependence. It is reasonable to 
represent it in the form 

A i O ( k )  =A,"O) ( l+k2/koz)-1 ,  

where k, is the cutoff momentum. We recall that allowance 
for the dependence A y on k is not an exaggeration of the 
accuracy: A y(k ) is the first harmonic of the amplitude as a 
function of the angle 19 [see (571 and all the external momenta 
of this amplitude lie on the Fermi surface: 

A diffusive branch of excitation appeared, with a frequency 
w, that increases as k-0. At small k this growth, of course, 
ceases since the equation valid there is (28) and not (3  1). On 
the basis of (6), (28), and (31) we can obtain for A ,, depen- 
dences on w and k that are valid at all k < 2pF and w, ln(w,/ 
w D ) < w < ~ % :  

k 2 ~ 0 2  
A"'k' " )=k2-kzu , ' ( k )  +iy ( k ,  a )  

Damping with good dispersion gives way to pure diffu- 
sion at u ,k=1 k 2/2m,*, i.e., at k -2pF(m,*/m)1'2. This agrees 
with the experimentally observed situation: at k>pF the 
peak of S (w) broadens greatly. We present also for S (w) an 
expression valid at k < 2pF and w, ln(wo/oD ) < w < E;: 

o,=kul ( k ) ,  

(33) 
The quantities u,(k ) and w,(k ) are defined by (32) and (3 1). At 
small k, i.e., at w > k 2/2m,*, we have A a w3 and the peak of 
S(w) is narrow, while at large k, i.e., at w < k '/2m,*, we have 
A a w and a broad peak. 

5. The transverse excitation branch becomes more rigid 
at large k: 

The singularities ofg2 and w, at k = 2pF are, of course ficti- 
tious, and Eq. (34) is valid at o2 < ku,. At kg2pF Eq. (34) goes 
over into (30). 

5. CONCLUSION 

1. Let us indicate the weak spot of the paper. What was 
considered above was in fact the self-consistent-field approx- 
imation. We have assumed the parameter (k, /2~,)~ to be 
small and took the spin-density fluctuation into account to 
first order in this parameter, after which we neglected it 
again only in first order. This yielded the principal equation 
(26), which enabled us to transform from the Fermi-liquid 
amplitude of the Landau scattering, A = A, + Alnl.n, to the 
unrenormalizedA O =A +A ':n,.n,. We cannot offer an es- 
timate of this approximation, but it is known from experi- 
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ment that the temperature dependence of the speed of sound 
in He3 has no anomalies whatever. On the other hand the 
heat capacity C ( T )  and the magnetic susceptibilityx (T) de- 
pend very strongly on T.  If the paramagnons were to make a 
noticeable contribution not only to C (T)  but also to the com- 
pressibility of the heat capacity would be similar. The next 
higher orders of perturbation theory in (k, / 2 ~ , ) ~  were tak- 
en into account in Ref. 9 in a model that admits of an exact 
solution. 

2. Our interpretation of the experimental data on neu- 
tron scattering differs in principle from that proposed in 
Refs. 5 and 6. We improve the Landau quasiparticles by tak- 
ing into account the dependences of r and 2 on the frequen- 
cy, whereas in Refs. 5 and 6 this is done by taking into ac- 
count the momentum dependences of these quantities. In 
Refs. 5 and 6 in the self-consistent-field approximation there 
is therefore no zero-sound damping, and to find it we must 
introduce the concept of multipair excitation. In our ap- 
proach, however, the sound is damped even in the mean-field 
approximation. 

In conclusion we thank A. B. Migdal, G. M. ~ l i a s h b e r ~ ,  
D. N. Khmel'nitskii, and V. A. Khodel' for discussions. 
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