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Two-stream instability is investigated in the long-wave approximation. Exact nonlinear solutions 
that describe the bunching and breakup of a beam into separate plasmoids and their motion in the 
plasma are obtained. An analogy is indicated between the nonlinear stage of the two-stream 
instability on the one hand and self-modulation and self-focusing of nonlinear waves on the other. 

1. Two-stream instability in a plasma is one of the basic 
examples of a fundamental collective interaction and has ex- 
tensive and important applications. There is at present an 
urgent need for developing a theory that takes consistent 
account of the nonlinear effects in the plasma and in the 
beam (see, e.g., the review by Dolginov and Toptygin,' de- 
voted to the latest results of the theoretical, numerical, and 
experimental research into bunching and decay of beams 
into individual plasmoids). We present below a derivation 
and exact solutions of the equations for the interaction of a 
monoenergetic beam with a cold plasma in the approxima- 
tion of long-wave excitations. 

2. In the limit uo/l = kuo<wp, (nonresonant two-stream 
instability), the quasineutrality condition is valid, i.e., the 
sum of the values of the beam density n,  and the plasma 
density np is equal to the ion density N: 

np+nb=N. (1) 

It is assumed next that the ions are immobile. It follows from 
(1) that the electron current density does not depend on the 
coordinates: 

e (n~u,+n,v , )  =-I ( t )  . (2) 

Here u, and up are the beam and plasma velocities. We con- 
sider below the case when I is independent of time. 

Eliminating the electric field E from the plasma and 
beam equations of motion 

and using the continuity equations for n ,  , we obtain under 
conditions (1) and (2) a closed system of equations 

We have introduced here the dimensionless variables x = z/  
1, T = tI /eN1, 

3. We apply to (4) and (5) the hodograph transforma- 
tion, i.e., we change from the variables x to T to u and Y .  

(More convenient variables are w = In1 1 - u 1 and p = 1/ 
(1 - Y) .  It follows from (4) and (5) that 

dux= [2(p-1) (1-u)+u]d,,~- (I-u)~,T,  (6) 
d,x=ud,a+p(p-I) (1-u)d,a. (7) 

Eliminating x from (6) and (7) we get 

(p- I )  d,,2~--2 (11.- I) dr,2.t+d,,2~f d , ~ f  2dPz=0. (8) 

The general solution of (8) is expressed in terms of inte- 
grals of hypergeometric functions. We confine ourselves 
here to a few particular solutions. 

A relation of the form 

describes the breakup of the beam into individual parts (Fig. 
1). After a finite time the beam density at the point x = 0 
becomes zero. The velocity and density of the beam near the 
point x = 0 at / T I  < 1 have the following coordinate and time 
dependences: 

FIG. 1. Velocity and density of the beam vs the coordinates and the time 
corresponding to the onset of discontinuity. 
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The system (5), (1 1) has self-similar solutions 

The density distribution acquires near the singularity as 
7-0 a characteristic sharply peaked form: 

After formation of the break at 741 the individual parts of 
the beam move in accord with the law x,,, = + 2r3I2/3 at a 
velocity u,,, = f r1I2.  Next, at T) 1 the break expands in 
such a way that one edge moves with constant velocity 
u, = 1, and the other exponentially u, z - exp(r). 

From (6) and (7) we can find the rate of expansion of the 
break in the general case. If the plasma velocity in the beam 
has a power-law dependence on thex coordinate, u a xB, the 
rate of expansion of the break is a powerlaw function of the 
time: ~ , , , a + 7 8 " ~ - "  at P # 1 .  If P = l ,  then 
u,,, + exp(.r). 

Another solution of the system (6) and (7) 

where c is a constant, describes at - 1 < c < 0 interpenetrat- 
ing plasma streams. As x+ + cc the beam density vanishes 
and thevelocity tends toinfinity: u z x  - T + 1. Asx--+ - cc 

the beam density v+/cj and the velocity u-1. 
4. If Y(  1, a frequently realized experimental case of low 

beam densities, the system (4) and (5) can be simplified. In the 
limit v( 1, 1 u I < 1 we obtain from (4) the equation 

which together with (5) is completely identical with the sys- 
tem of equations considered earlier for self-modulation and 
self-focusing of nonlinear waves (see Refs. 2-4 and the cita- 
tions there). The solutions of this system are well known. 

For example, we consider the evolution of a beam of 
finite size, in which the density depends parabolically on the 
coordinates, and the velocity is a linear function of x: 

As applied to self-focusing this case was investigated in Ref. 
5. At u: (0) < 41v2(0)1 bunching of the beam takes place, i.e., 
its density becomes infinite and the beam contracts to a 
point. Within the framework of these solutions there exists a 
regime of periodic contractions and expansions, with a peri- 
od 

Expanding these relations in powers of x we find that near 
the singularity as x 4  we have 

v m  1 T 1 -a-2 (a-a') X ~ / T ~ ,  usaxlz. 
( 12) 

These relations describe flows in which at 0 <a(+ the den- 
sity becomes infinite at T-0 and turns to zero at a < 0. Far 
from the origin we have 

yvJ 15 1 , urn I x I sign (-ax). 

The solutions of the system (5), (1 1) can also correspond 
to singularities at which local minima or maxima occur with 
finite values of the density and with sharply peaked shape 
(see Ref. 4). The equations employed are then invalid. Mul- 
tistream flow is formed in the plasma and discontinuties can 
set in, at which the beam density is zero. 

5. The equations obtained and their solutions allows us 
to investigate, with allowance for the nonlinearity of both 
the plasma and of the beam, the bunching and the decay of 
the beam. There exist solutions in which even a beam density 
that is low at the initial instant of time becomes infinite at 
individual points [see (12)], i.e., it becomes important to take 
the plasma nonlinearity into account. This process differs 
from the bunching that occurs for self-intersecting trajector- 
ies in particle beams in vacuum: for example, characteristic 
acute-angle profiles are produced. Beam decay after a finite 
time has no analog whatever in the solutions for beams of 
noninteracting particles and corresponds to toppling of rar- 
efaction waves (see Fig. 1). 

The authors are deeply grateful to G. A. Askar'yan and 
L. M. Kovrizhnykh for a discussion of the work. 
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