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The effects of linear and nonlinear dissipation (instability) on the evolution of envelope solitons of 
a quasimonochromatic wave are investigated. Equations for the amplitude of the soliton and the 
wave number of the high-frequency population are derived in which the spectral dependence of 
the instability growth rate and the interaction with the induced mean flow (low-frequency mode) 
are taken into account. The rate of amplitude attenuation and the variation of the wave number of 
gravitational waves at the surface of deep water during viscous dissipation that occurs in a nonlin- 
ear regime are calculated. I t  is shown that the scattering of the mean flow by irregularities in the 
bottom may have a considerable effect on the evolution of wave packets of sufficiently high 
amplitude. The necessity of taking into account the ion-sound attenuation that slows down the 
solitons is demonstrated for Langmuir solitons in a nonisothermal plasma. 

1. INTRODUCTION 

The necessity of investigating nonlinear quasimonoch- 
romatic wave packets (envelope solitons) is obvious for a 
broad class of physical problems.' Solitons in conservative 
systems are, as a rule, long-lived formations; they are stable 
to small perturbations and interact weakly with one another. 
Moreover, solitons in certain situations are the final result of 
the evolution of arbitrary initial perturbations (completely 
integrable systems, see Ref. 1). In this connection, it is of 
considerable interest to investigate the effect of small non- 
conservative corrections, dissipation and instability, on the 
soliton. The action of a weak nonconservatism changes 
slightly the shape of the envelope soliton, but leads to a slow 
evolution of its parameters: the amplitude and the wave 
number of the high-frequency population. The possibility of 
a change in the latter parameter over a narrow range of wave 
numbers under the action of linear dissipation of a certain 
special form has been noted for Langmuir waves2 and wind 
waves on deep water.3 In the present work we have investi- 
gated the change in the spectrum of the envelope solitons of a 
weakly nonlinear wave in a wide range under the action of 
linear and nonlinear dissipation (instability) with an arbi- 
trary spectral dependence. The phenomenon considered 
here, of an adiabatic spectral shift of the solitons over a wide 
range of wave numbers, is very important, since it can lead to 
the transfer of energy over the spectrum and to an important 
restructuring of the nonlinear oscillations. This pheno- 
menon, in particular, should play a significant role in strong 
wave turbulence in dissipative media with nondecaying 
spectrum, where, because of the modulation instability, the 
generation of solitons of the envelope of quasimonochroma- 
tic waves is p o ~ s i b l e . ~  

2. EVOLUTION OF SCHRODINGER SOLITONS 

The self-modulation of a weakly nonlinear quasimono- 
chromatic wave exp( - iwt + ikx) is described by a set of 
equations for the complex amplitude a(x,t ) and for the per- 
turbation of the refractive index n(x,t ): 

(for the definition of x, a,, 8, 6 and other parameters, see 
below). Here v is the group velocity of the high-frequency 
waves, c is the phase velocity of thclow-fr5quency waves (the 
dispersion of which is neglected), D, and D, are linear opera- 
tors that determine the dissipation and the instability, re- 
spectively, of the high-frequency and low-frequency waves, 
N is the operator of nonlinear dissipation which limits the 
growth of the k igh-f~eque~cy waves. In the conservative ap- 
proximation (D, = D, = N = 0) the evolution of the ampli- 
tude a(x,t ) is determined by two nonlinear mechanisms. The 
first is the local nonlinear correction to the frequency and is 
determined, in particular, by the generation of the higher 
harmonics and their reaction to the high-frequency wave. 
The other mechanism is the interaction with the low-fre- 
quency waves (or, in the more general case, with the mean 
flows) that arise under the action of the high-frequency wave 
packet. The system (1) characterizes the dynamics of the 
Langmuir waves in a nonisothermal p l a ~ m a , ~  the interaction 
of the surface and internal waves in the ocean,6 and so on. In 
the next section we shall consider the evolution of solitons 
for this system. Here we shall limit ourselves to the investiga- 
tion of solitons within the framework of the single-wave ap- 
proximation, when the amplitude obeys the nonlinear equa- 
tion 

where p is a small parameter determining the value of the 
nonconservatism. This equation can, in particular, be ob- 
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tained from the system (1) (a = a, + p6/c2) for slow motions 
with characteristic velocity V4c in the quasistatic approxi- 
mation, when the terms d2n/dt in (1) can be neglected. 

Equation (2) characterizes the self-action of a weakly 
nonlinear wave with a narrow spectrum in a medium with 
weak dissipation. The right side of this equation represents 
the first terms of the expansion in powers of the amplitude 
and wave number for the dissipation operatorin the single- 
wave approximation. Terms in the operator R (a) that are 
linear in the amplitude are obtained in the expansion of the 
growth rate y(k ) in the operator 

l +- 6. ( a )  = - y ( k )  a,eZkx d k  
2n 

-m 

[a, is the Fourier transform of the complex amplitude a(x)] 
in powers of the wave number: 

Y Q = ~  ( k=O),  y i=  [ d y l d k ]  ,=e, yz= ' l z  [ d 2 y l d k 2 ]  

A 

The first two nonlinear terFs in R (a) represent the analogous 
expansion of the operator N (a) of the nonlinear dissipation of 
a high-frequency wave in the cubic approximation in the 
amplitude, while 

where p(k ) is the Landau coefficient, which determines the 
limitation of the intensity of the high-frequency oscillations 
in the spatially homogeneous regime. Actually, ifwe take the 
solution (2) in the form a = A  exp(ikx) (k = const), then it is 
not difficult to establish the fact that the intensity / A  1' 
should satisfy the equation 

Finally, the last term in 2 (a) characterizes the nonlocal 
mechanism of nonlinearity, which is connected with the dis- 
sipation of the mean flow, which latter is indzced by the 
wave packet. In particular, the linear operator L can be ex- 
pressed, @ the quasistatic approximation, in terms of the 
operator D, of dissipati2n of the low-frequency wave in the 
system (1). Expanding L in a series in powers of the wave 
%umber, we restrict ourselves to the approximation: 
L (laI2) = sdla12/dx. 

It should be noted that we take irto account the disper- 
sion of the nonlinear dissipation in Eq. (2), but the dispersion 
of the conservative nonlinearity is lacking, i.e., those terms 
are omitted that are determined by the small imaginary cor- 
rections to the coefficientsp, and s. Account of these correc- 
tions can lead only to a change in the shape of the profile of 
the nonlinear waves, but have no effect on the evolution of its 
characteristic parameters. 

A 

In the conservative approximation, when R SO in Eq. 
(2), an arbitrary bounded perturbation decays into soli- 
tons-stationary waves of the form 

a=A exp [-'12iaA2t-ixq2t+iq ( x - V t ) ]  ch-I [FE ( x - V t )  ] (3) 

(wherei = A  ( a / 2 ~ ) " ~ ,  V = u + 2x9) andintononsolitonos- 
cillating wave trains, the amplitude of which decreases with 
passage of time.' Under the action of a weak nonconserva- 

tism, the amplitude of the soliton A  and the correction to the 
wave number of the high-frequency population q changes 
slowly. The equations of the evolution of these parameters 
can be obtained with the help of the asymptotic method.' 
However, in first approximation in the parameter ,u, these 
equations can be found from the laws of conservation of the 
number of quasiparticles. 

and of the quasimomentum'' (Refs. 3 and 9) 

1 
P = 21 1 (a' da /dx -o  Ba' /dz)  dx .  

Namely, 

d N  + " dP 
+- a A - = 2 p  Re 1 a'R^(a) dz. -- = 2 p  Im J a' - R ( a )  dx .  (4) 

d t  d t  dx 

Substituting the soliton (3) in these relations we obtain, in 
first approximation, 

It should be observed here that the characteristics of the 
envelope soliton is the complete wave number k, = x + q of 
the high-frequency population. In Eqs. (5), the coefficients 
a,x,y, p ,  s are functions of the variable k, and are written in 
the form - of an expansion in powers of the quantity 
q = k, - k. With the help of the change of variable 

a=b exp [iqx-i  ( vq+xq2)  11 

it is not difficult to show that the amplitude b of the wave 
with wave number k, also obeys Eq. (2), in which the coeffi- 
cients that are functions of the wave number are calculated 
at k = k,. Thus, for the amplitude A of the envelope soliton 
and of the wave number k, we have from (5), with accuracy 
to terms - A  4: 

A2 d ( a / x )  d y  a A 2  d2y  4 ---=A 2~+----. +--------pA2 
d t  d A  [ 6 d k ,  d k ,  6% dh.' 3 

We emphasize that the system (6) does not contain the pa- 
rameter x and, consequently, it preserves its shape under 
relatively large changes of k, ( I  k, - / k 1 ), when the com- 
plex amplitude a(x,t ) becomes a rapidly oscillating function 
and it is impossible to use Eq. (2). Equations (6) determine the 
evolution of the one-dimensional envelope solitons in a me- 
dium with instability and dissipation. The adiabatic approxi- 
mation considered here is applicable only in the case of suffi- 
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ciently weak dissipation, when the establishment of the 
shape of the soliton, perturbed by the nonconservative cor- 
rections, takes place more rapidly than the change in its pa- 
rameters, i.e., under the conditions 

We now consider the different variants of the evolution 
of the envelope solitons within the framework of the model 
(6). In a dissipative medium (y(k ) = - v(k ) < 0) the solitons 
decrease in amplitude, simultaneously spreading out. Up to 
the time when the conditions (7) are violated, the damping 
proceeds in a nonlinear regime, which, at small amplitudes, 
is described by the simplified system 

dA 
-=- dk, aA2  dv 2vA, -=--- 
dt d t  3% dk, ' 

The damping decrement of the amplitude of the soliton ex- 
ceeds by a factor of two the damping decrement v(k ) of a 
monochromatic wave, while the wave number changes, so 
that the spectrum of the wave packet is shifted towards 
smaller values of the decrement. In the damping of a soliton 
with initial parameters A ,  and k, to infinitely small ampli- 
tudes, the wave number k,+k, (see the drawing, case a), 
where 

Taking it into account that aA ;/xk ; 4 1, we have 

As an example, we consider viscous damping of gravita- 
tional surface waves in a deep medium (the swell of the 
ocean). The nondimensional amplitude a = kJ (J is the am- 
plitude of the displacement of the surface) of weakly nonlin- 
ear two-dimensional gravitational waves in the conservative 
approximation obeys the nonlinear Schrijdinger equation 
[Eq. (2) in the caseE = 01, wherea = - 2(gk )'I2, x = - 1/ 
8(g/k 3)112. The development of a modulation instability 
leads to the formation of envelope solitons of type (3), which 
then decay in amplitude, simultaneously shifting along the 
wave-number spectrum. Substituting the viscous damping 
decrement v(k) = 2v,k2 in (10) (v, = 0.01 cm2.s-' is the 
kinematic viscosity of water)," we obtain, for example in the 
case of an initial amplitude A, = 0.2, the relative shift in the 
wave number in the damping process: 

It should be emphasized that the nonlinear damping regime 
of the surface waves is continued to very small amplitudes. 
Actually, the conditions (7) are violated only at 
A 5 A, = ( 4 k  3/g)114. At a wavelength il = 1, we have A, 
= 7X lop5, which corresponds to the maximum amplitude 

of the surface displacement = lop2 mm. 
In an active medium (y > O), the amplitude of the soli- 

tons increases, while the wave number shifts toward a larger 
increment (see Fig. 1, case b). A stable equilibrium state with 

FIG. I. 

small amplitude is possible in the system (6) at k, = k,, 
when the increment y(k ) takes on the maximum value 

Near this state, we can use the approximation2' 
y(k ) = y(k, ) - h (k - k, )2 and find the equilibrium value 
of the amplitude 

A=Am=[2y ( k m )  l ' " [4 / sp (km)+pa(km) /3x  (k,) ] - I h .  (12) 

Thus, in a weakly nonequilibrium medium, solitons of 
small amplitude, which arise because of the initial perturba- 
tion, are flattened out in amplitude and wave number and 
therefore acquire the same velocity, which is equal to the 
group velocity of the most unstable harmonic (cf. Ref. 9). 
Further evolution is determined by the interaction of soli- 
tons having close parameters, as a result of which a periodic 
chain of solitons arises with alternating phases-a periodic 
envelope wave.8 

Upon increase in the amplitude, a calculation of the 
interaction with the mean flow becomes necessary. This flow 
is determined by the coefficient s(k ) in the system (6). Here 
the wave number is shifted from the value k, = k,. 

3. EVOLUTION OF LANGMUIR SOLITONS 

A 
Tke sygem (1) in the conservative approximation 

(D, = D, = N = 0) also has a solution in the form of solitons 
(3), where a = a, + BS(c2 - V2)-I, 

Such solitons arise, for example, as a result of the devel- 
opment of a modulation instability of the Langmuir waves in 
a nonisothermal plasma. The study of their properties has 
drawn a great deal of attention in recent years in connection 
with attempts at the construction of a theory of strong plas- 
ma t~rbulence.~ 

Here we consider their evolution under the action of the 
dissipation of the high-frequency and low-frequency modes. 
For this purpose, as in the preceding section, we calculate 
the rate of change of the number of quasiparticles 

and of the quasimomentum 
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where du/dx + dn/dt = 0 which take for a solution the form 

Here k =A (a/2x)'I2. We write down the corresponding 
conservation laws: 

dlli 
+ m  

-- = 2 Re J a. [i). ( a )  +N ( a )  ] dx ,  
dt 

The equations of the evolution of the parameters A and q are 
obtained in first approximation by substituting the soliton 
(3) in (14). Taking it into account here that for the stationary 
waveu = Vn,n =SlaI2(V2-c2)-I, weobtain 

d 
+2 Irn a' - N ( a )  dz, J a x  

where 
+a + m 

ah= J ae-"' dx,  nh= J necikx dx,  

I +== I d ,  ( a )  = l;, J y ( k )  ahez" dk ,  6 ( n )  = -7 r ( k )  nhs'hx dk ,  
2 n  

For the soliton we have 
n A 

lahI=- 
n61klA2 

Inhl= 
k  ch [ n  (k -q)  / 2 k ]  ' X 2 1  V2-c21sh(nl k l / 2 k )  ' 

Ifthe spectral dependenceofthe growth rates y(k ) a n d r  (k )is 
slow in the scale L, we can use the expansions 

y ( k )  =yo+yi ( k - q )  +yz (k -q) ' ,  r ( k )  =r0+r,k+rzk2 (18) 

and then Eqs. (1 5) are simplified significantly. At 2 (a) = 0, 
we have 

where 6 (z) is the Riemann zeta function. Equations (5) for the 
Schrodinger solitons can be obtained from (19) under the 
conditions kgk,, Vgc. In such an approximation, the sys- 
tem (1) can be replaced by Eq. (2) if r, = Tl = 0; here the 
coefficient s = BS Vr2/c4. 

We estimate here the effect of average-current dissipa- 
tion characterized by s on the evolution of gravitational 
waves on the surface of a liquid of depth H. If the wavelength 
AgH, then we can use the deep-water approximation, so that 
the frequency and the wave number are connected by the 
relation w2 = gk in the linear approximation. At the same 
time, the mean flow induced by the nonlinear wave packet 
represents a large-scale perturbation, which can be de- 
scribed in the shallow-water approximation if its character- 
istic length L -A /la I2>H (wherea = kc). Thus, upon satis- 
faction of these conditions, the quasimonochromatic surface 
wave is described by the system ( I )  for nonlinearly coupled 
short and long waves, where a(x,t ) is the dimensionless am- 
plitude of the short wave, u = (w/2k )n is the horizontal com- 
ponent of the velocity in the long wave, B = 0/2, S = w2/ 
k 2. The group velocity of the deep-water waves V= w/ 
2kgc = (gH)'I2; therefore, the envelope solitons of the am- 
plitude of the short waves are described by the system (6). We 
make use ofthe expression v(k ) = 2v, k ofthe viscous damp- 
ing of surface waves," and as the basic mechanism of damp- 
ing of the waves in shallow water we consider the scattering 
from the two-dimensional large-scale roughnesses of the 
bottom. l2  If the mean square relative change of the bottom 
level is E = ((AH /H )2) ' I2< 1, while the correlation length of 
the two-dimensional fluctuations is I>L, then the damping 
decrement is determined by theexpressionr (k ) = - ce21k ', 
so that the coefficient in (6) s = - 6'1 & / 4 k ~  312. At H = 1, 
6 = 0.1,1= 5 the change in wave number of waves of length 
A = 50 cm, due to the effect of the roughnesses of the bottom 
on the mean flow, becomes comparable with the correspond- 
ing change due to the spectral derivative of the damping 
decrement dv/dk # 0 at an amplitude A = 0.15. 

We now consider the application of the theory devel- 
oped here to the study of the dynamics of Langmuir solitons 
in a collisionless plasma. The amplitude of the electrostatic 
field a(x,t ) and the perturbation of the density n(x,t ) in the 
one-dimensional model of a non-isothermal plasma obey the 
system (I),  where 

~ = 3 ~ ~ , ~ / 2 w ~ , ,  P=wpe/2n0, aO=O, iV ( a )  =O, 
6= (16nM)- ' ,  c= (T, /M)'" ,  u,,= (T , /m) ' " ,  (20) 

w,, = (4ne2ndm)lt2 is the Langmuir frequency of the elec- 
trons; m, T, and M, T, g T, are the mass and temperature of 
electrons and (singly-charged) ions, respectively; v, is the 
thermal velocity of the electrons; n, is the unperturbed con- 
centratione5 Solitons of the form (3) exist in this model at 
V <  c (k, < (w,, /vTe )(m/M)'I2). Under the condition 
A / ( n , ~ , ) " ~ g l  [when the model (1) is applicable], and at 
subsonic velocities ( I  1 - V2/c21 - 1) their spectral width is 
kgw,,/v,. In this case, for the characteristic frequency of 
the ion-sound perturbations, the condition L2(wpi is satis- 
fied, so that for a collisionless plasma we can use the expres- 
sion (8), which characterizes the damping of the ion sound, 
setting To = r2 = 0. 
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Two terms in this expression are determined by the Landau 
damping of ion sound by electrons and ions. At the same 
time, the Landau damping of the Langmuir waves, which is 
determined by the decrement,13 

is exponentially small. Neglecting the latter3' at 
k,,k<w,/v,, we can use the system (19), which, with ac- 
count of (13) and the relation V = 2 ~ k , , ~  takes the form 

Thus the Landau damping of the ion-sound mode leads to a 
slowing of the soliton, the velocity of which falls off expo- 
nentially. Here the wave number k, of the high-frequency 
population of the soliton decreases. Such a result can be in- 
terpreted with the help of quantum considerations. Actual- 
ly, the dissipation of the momentum of the soliton P in the 
case of conservation of the number of quasiparticles N leads 
obviously to a decrease in the momentum fik, of each quasi- 
particle. Under the condition 

AZ/n,T,< ( m / M )  (1-V2/c2) 

the second term on the left side of (23) can be neglected 
(Schrodinger solitons) and then the characteristic inverse 
time of slowing of the soliton, 

is small in comparison with the damping decrement of the 
ion sound 

The relative slowing of the soliton within the time of travers- 
al of its length, 

(7-'IVK) < (Elk,) "m/M)'i2 

is small under the condition k 5 k,. 

4. CONCLUSION 

The process of the nonlinear evolution of quasimonoch- 
romatic wave packets that was considered above includes 
decay into an envelope soliton with high-frequency popula- 
tion, the wave number of which then shifts adiabatically 
along the spectrum under the action of a weak dissipation or 
instability. It was shown above that in an active medium, the 
envelope solitons are expressed in terms of the amplitude 
and the wave number. Thus, if quasimonochromatic wave 
packets with different wave numbers are excited at the 
boundary of the amplifying medium, they are transformed in 
the propagation process into a series of identical solitons 
withA =A, and k, = k,. 

Such a spectral shift of the soliton can be shown to be 
the essential element in the theory of the origin of self-oscil- 
lations in a medium with a nondecaying spectrum. Let the 
instability growth rate y(k )be positive in some spectral inter- 
val, with the increase of the parameter R characterizing the 
degree of nonequilibrium character of the medium (for ex- 
ample, in hydrodynamic flows, R is the Reynolds number). 
Near the instability threshold (in the "soft" boundary re- 
gime), the amplitude of the established quasimonochromatic 
perturbations is small. The envelope solitons that arise move 
in the direction of the maximum of the spectral dependence 
of the increment (see the drawing and also Refs. 3 and lo), 
transforming, in the final analysis, into a periodic wave of 
the envelope. Upon increase in the parameter R, the ampli- 
tude of the perturbations increases and now it is necessary to 
take into account the interaction of the wave packet s with 
the mean flow (low-frequency mode), the dissipation of 
which leads to an additional shift of the wave number and to 
the departure of the soliton from the region of maximum 
increment. 

A 

"We note that Eq. (2) at R -0 has an infinite number of first integrals. 
However, the evolution of the soliton is determined only by the change of 
the first two: Nand P (Ref. 10). The change of the remaining first inte- 
grals in the soliton as it evolves is in general associated with the emission 
of oscillating perturbations, so that the soliton can preserve its shape. 

2'We note that in this approximation Eq. (2) becomes a nonlinear Schro- 
dinger equation with complex coefficients, the solutions of which have 
been investigated in Refs. 3 and 9. 

3'The Landau damping of the Langmuir waves must be taken into account 
only at / V --c/ (c, when the spectrum of the soliton is strongly spread 
out, so that k - oPq/v, s k ,  (cf. Ref. 2). Such a possibility, however, re- 
quires special consideration. 
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