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We show that in the initial value problem decay processes may lead to a self-accelerated (explo- 
sive) transfer of wave energy to the large wave number region up to the absorption region. Such a 
picture is particularly characteristic for capillary waves on a liquid surface and for electron waves 
in a cold magneto-active plasma. It is noteworthy that the description of the explosive transfer 
does not require us to go beyond the framework of the weak turbulence approximation. 

1. INTRODUCTION 

Induced scattering of waves by particles and the three- 
wave decay interaction are the main nonlinear processes in a 
weakly turbulent plasma. As far as induced scattering is con- 
cerned it is well known that it leads to a transfer of waves to 
the low frequency region (see, for instance, Ref. 1). When the 
frequency decreases the characteristic wavenumber usually 
also decreases. In the long-wavelength part ofthe spectrum a 
condensate can then be formed and it is necessary to go be- 
yond the framework of the weak turbulence approximation 
to describe this. In particular, weak turbulence theory does 
not allow us to solve the problem of the dissipation of the 
energy of the condensate. This difficulty arises, for instance, 
when we consider the Langmuir condensate in a plasma 
without a magnetic field. 

In conditions when decay processes dominate the na- 
ture of the energy redistribution over the spectrum is, gener- 
ally speaking, not so universal as in the case of induced scat- 
tering. We show in what follows that in many cases of 
practical interest decay and fusion of waves lead to an energy 
transfer not to the long-wavelength but, to the contrary, to 
the short-wavelength region up to the absorption region. 
This transfer can quantitatively be described in the frame- 
work of weak turbulence theory. An interesting feature of 
the decay interaction is, as we shall see, that the evolution of 
the initial wave spectrum may be explosive. The energy is 
then transferred to the dissipation region in a time which is 
approximately equal to the time for the nonlinear interaction 

When there is no pumping or damping the only stationary 
solution of Eq. (1) is the Planck distribution 

and, when we neglect spontaneous processes, the Rayleigh- 
Jeans distribution 

The equilibrium temperature of the waves T is determined 
by their initial energy density 

In particular, when the dispersion has a power law depen- 
dence w(k ) = akY the temperature and characteristic wave- 
number i; are approximately equal to 

From these expressions it is clear that the quantity 1 tends to 
infinity when we go to the classical limit (f i  + 0). In fact, 
however, the increase in 1 is limited by dissipative effects 
which have not been taken into account in Eq. (1) and the 
role of which usually increases with decreasing wavelength. 
The decay interaction, by transferring waves to the large k 
region leads thus in final reckoning to the absorption of the 
energy delivered to the plasma. The presence of this absorp- 
tion does not allow the spectrum (2) to be established. 

in the initial spectrum. 
We turn to the kinetic equation which describes the de- 2. CAPILLARY WAVES 

cay and fusion of waves with-a dispersion law w(k): The simplest example which enables us to follow the 
dynamics of the spectrum when decay interactions are im- 
portant is provided by capillary waves on a liquid surface. 
For these waves 

dkl dk,  o ( k )  = ( a k 3 )  '", 
x[nk,nk,(nr+l) -nk (nr ,+ l )  (nk,+l)  I--- ( 5 )  

( a n )  and the decay probability is equal to" (Ref. 3) 

f 2 wk,kk26 ( m i - o - 0 , )  6  (k , -k -k , )  [nk, (nk-kl)  (nk,+i)  J (1) 
wkk,k,=n5 ( ( a / 4 ) ' h { ( k k , / k 2 )  "[ ( k - k t )  2 -k22]  

dki dk2 
-ntnk,(nk,+l) I-----. 

(an) = + [ (k-k2)2-kiZ1 (kknlki)1'4 (6) 

- [ ( k i - k , )  '-k21 ( k i k Z / k ) " . ) 2 .  
It follows from this equation that the interaction leads to an Here k,k,,k, are two-dimensional wavevectors and a is the 
increase in the entropy of the waves2: ratio of the surface tension coefficient to the liquid density. If 
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we neglect spontaneous processes the kinetic equation for 
the waves has the form 

dk, dkz 
(nklnk2-nknk,-nknk2)- 

( 2 4  " 

(7) 
It follows from Eqs. (6) and (7) that the nonlinear interaction 
time T is inversely proportional to the energy density and to 
the characteristic frequency of the waves: 

Since the energy density is conserved in the initial-value 
problem, Eq. ( 8 )  shows that the time for spectral transfer 
decreases with increasing characteristic wavenumber x. In 
other words, the process of energy transfer to the short- 
wavelength region is self-accelerating. We note that the de- 
crease of the characteristic interaction time with increasing 
average wavenumber does not violate the conditions for the 
applicability of the random phase approximation as for a 
sufficiently broad spectrum (Sw-w) the product rSw re- 
mains constant [see Eq. ( 8 ) ] .  It is thus sufficient to require 
that the condition for fast phase mixing raw > 1 be satisfied 
initially. The estimate ( 8 )  is a very rough one since, as we 
shall see in what follows, in the initial stage of the evolution 
of the spectrum not the whole energy of the waves is involved 
in the self-accelerated transfer process. Nonetheless the 
qualitative conclusion that the larger part of the wave energy 

lies after a finite time in the region of arbitrarily large wave- 
numbers remains correct also when we give a more correct 
discussion. 

It is not possible to find the complete solution of the 
problem of the evolution of an initial wave distribution; one 
can, however, find the short-wavelength asymptotic behav- 
ior of the solution which is of interest to us and describe 
qualitatively the time-dependence of the spectrum. We as- 
sume that the initial spectrum is isotropic and that the main 
part of the energy in it corresponds to waves with wavenum- 
bers of the order k,. We estimate the characteristic times for 
the rearrangement of various segments of the spectrum. The 
interaction time for waves of the main scale k ,  with one an- 
other is approximately equal to 

~ ~ - l / k ~ ~ n ( k ~ ) .  (9)  

We now split off in the spectrum the group of short wave- 
length waves with k ,  > k,. The time for interaction with one 
another for them is 

while the interaction time with the main spectrum is 

It is clear from the estimates (9) to ( 1  1 )  that in the case when 
the spectral function decreases with increasing k more slow- 

ly than k -* the short-wavelength part of the spectrum 
changes faster than its main part and this change is caused 
primarily by the interaction of the short-wavelength waves 
with one another. It is thus natural to assume that the solu- 
tion of Eq. (7) in the range k > k ,  is independent of the de- 
tails of the initial distribution and is self-similar. Equation (7)  
admits the following self-similar substitutions: 

nh(t)  = (to-t) 5b - ' f  [ k  (to-t) b ] ,  O<t<tO, (13) 

where b and to are arbitrary constants. The Rayleigh-Jeans 
distribution 

in particular, belongs to the number of solutions of the form 
(12) and (13) and also the solution found in Ref. 3 with a 
constant energy flux P along the spectrum: 

-P'"/k"/& 
A- ( 1 5 )  

Apart from these two solutions there is yet one other exact 
power-law solution of Eq. (7): 

nk ( t )  =C/k5 (to-t)  . (16) 

It corresponds to the substitution (13) and has an "explo- 
sive" time-dependence. The fact that there is no such solu- 
tion for the substitution (12) is connected with the require- 
ment that n, ( t )  be positive. We show that solution (16) 
indeed satisfies Eq. (7). To do that we substitute the spectrum 
(16) into Eq. (7) and integrate over the angles, after which the 
right-hand side of Eq. (7) takes the form 

C' , (xy )  *'~6 ( I  -x''~- y*':) 

64nk5 (to--t)2 [ ( 2 ~ ~ ) ~ -  ( I - X ~ - ~ ~ ) ~ ] ' ~ ~  

We have here introduced the dimensionless integration var- 
iables x = k , / k  and y = k,/k instead of the wavenumbers k ,  
and k,. Moreover, we have dropped in the expression for the 
probability w terms which vanish when the conditions for 
decay are satisfied. Making in the second integral in (17) the 
variables changes x = l / q  and y = p/q we can obtain from 
Eq. (7) the following expression for the constant C: 

where 

In order that the solution (16) make sense the constant C 
must be positive and finite. We show that the integral (1 8) is 
indeed positive definite. Using the symmetry of the function 
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U(p,q) and the decay condition 
l-p"-q"=o, (19) 

we can rewrite the integrand in the form 

(1-2q3)  (1 -p5-q5)  U ( P ,  q )  = (1-p3-q3)  (1 -p5-q5)  U ( P ,  Q )  

=2pahqah ( I - p 5 - q 5 )  U ( p ,  q )  . 
Under condition (19) the quantity 1-p5 - q5 is positive. The 
constant C therefore also turns out to be positive. One can 
also easily check that the integral (18) is bounded from 
above. 

Apart from the power-law solutions (14) to (16) the 
equation has exponentially decreasing asymptotic solutions: 

t6b-1 
n, ( t )  a e->Iz , z=k tb> l ,  b<O; (20) 

An attempt to join the asymptotic forms (16), (20), (21) 
directly to the energy-containing part of the spectrum turns 
out to be unsuccessful. Such joining should take place at a 
point k-k, where, owing to the slow change in the main 
spectrum with time, the value of the spectral function n(k,) 
can be assumed to be constant. None of the asymptotic forms 
(16), (20), (21) satisfies this requirement. The impossibility to 
join the asymptotic forms (16), (20), (21) with the energy- 
containing part of the spectrum can be explained by the fact 
that the lower limit of applicability of the asymptotic solu- 
tions with increasing time shifts rapidly in the direction of 
large k. One may expect that in the region between this limit 
and the main spectrum there is formed a universal distribu- 
tion of waves with a lifetime much larger than the time for 
shifting the limit. We shall see that the solution with con- 
stant energy flux along the spectrum has this property. We 
note that in the intermediate range the Rayleigh-Jeans spec- 
trum cannot be formed as the shift of its upper boundary to 
the short-wavelength region would mean that the total ener- 
gy of the waves would grow without limit with time. 

The equation of motion for the short-wavelength limit 
ofthe distribution (15) k . ( t  ) can be obtained from the follow- 
ing considerations. We assume that after a time At the limit 
is shifted by Ak to the short-wavelength region. The energy 
density of the short-wavelength waves then increases by an 
amount 

a W - P ' ~ A ~ / ~ ~ / A .  

On the other hand, the increase in W is given by the energy 
flux of the waves 

AW=PAt. 

Hence it follows that 
k* ( t )  ( k t )  (22) 

where the time to is determined by the magnitude of the ener- 
gy flux and the initial position of the boundary. This relation 
enables us to choose two asymptotic forms which allow a 
joining with the spectrum ( 15), namely, the solutions (1 6) and 
(21) with self-similarity exponent b = 4/3. The presence of 
two self-similar short-wavelength asymptotic forms indi- 

cates that the actual form of the solution to the right of the 
boundary (22) may depend strongly on the initial conditions. 
This fact, however, does not affect the equation of motion of 
the boundary itself which after a finite time gets into the 
region of arbitrarily large k. 

In the initial stage of the evolution of the original distri- 
bution of the waves there is thus split off from the spectrum a 
short-wavelength "tail" which soon reaches the absorption 
region. After the spectrum (15) is established in the whole 
range from k, to the absorption region the flux P (as function 
of time) starts to decrease due to a decrease in the total wave 
energy. As a result the larger part of the energy of the origi- 
nal spectrum reaches the absorption region after a time of 
the order of magnitude of 7,. 

3. WAVES IN A PLASMA 

The self-accelerating transfer of energy to the large 
wavenumber region is not an exclusive feature of capillary 
waves. This effect may also occur for other kinds of waves. 
We consider here three other examples of practical interest: 
helicons, electron cyclotron waves and Langmuir waves in a 
plasma in a strong magnetic field. 

The helicon dispersion law has the form 

o (k) =I OHX I kZc2/cop2, (23) 
where w, and w, are the electron plasma and cyclotron 
frequencies andx is the cosine of the angle between the wave- 
vector and the external magnetic field. The probability for 
the decay interaction of these waves was calculated in Ref. 4: 

(no is the plasma density). It follows from the kinetic Eq. (7) 
that the time for spectral transfer of helicons is inversely 
proportional to their energy density and to the square of the 
average wavenumber: 

am ( R 2  W o )  - I .  (25) 

As in the case of capillary waves the energy transfer to the 
short-wavelength region does not violate in this case the ap- 
plicability of the random phase approximation. We note 
that, in contrast to the capillary waves, helicons can reach 
the large wavenumber region without appreciably increas- 
ing their frequency as for them the constant frequency lines 
in k-space are unbounded. When the characteristic value of 
the wavenumber of the helicons reaches the magnitude w, /c 
the dispersion law (23) changes and becomes the cyclotron 
wave dispersion law. 

The frequency of the electron cyclotron waves depends 
only on the angle of their propagation relative to the external 
magnetic field: 

and the decay probability equals 

271 Sov. Phys. JETP 59 (2), February 1984 B. N. BreTzman and Yu. M. Rozenraukh 271 



The characteristic time for spectral transfer (as in the case of 
helicons) decreases when the wavenumber in the spectrum 
increases: 

TZ (E2Wo) - I .  (28) 

The conclusion about the self-accelerating nature of the 
transfer remains valid also for cyclotron waves. 

We note that Eqs. (23) and (26) are particular cases of 
the more general dispersion law 

W (k) = I O H X  I ( I + O ~ ' / ~ ~ C ~ )  -', 

which is valid the whole range of k values. It is easy to find 
also the corresponding general formula for the probability 
@kk.k. : 

In the limiting cases k < wp /c and k , wp /c this expression 
reduces to (24) and (27). 

We finally consider the potential oscillations of a mag- 
netized (0, % w, ) plasma for which 

and the decay probability is given by the following expres- 
sion': 

An estimate for the characteristic interaction time for the 
waves is 

T a (R2 Wo)-' (31) 

and in this case it indicates the explosive nature of the energy 
transfer to the large wavenumber region. 

In contrast to capillary waves and helicons, the increase 
in average wavenumber in the spectrum can in the last two 
cases lead to a violation of the condition for the applicability 
of the random-phase approximation. Indeed, the width of 
the spectrum in frequency cannot exceed the values of w, 
and w, for the electron cyclotron and magnetized Langmuir 
waves, whereas the characteristic time for the energy trans- 
fer in both cases decreases unrestrictedly with increasing x. 
The description of the dynamics of the spectrum by means of 
the kinetic Eq. (7) is thus correct only for not too large values 
of z: 

for cyclotron waves and 

for Langmuir waves in a magnetized plasma. 

In all examples given above we considered decay and 
fusion of one kind of waves. If, however, several kinds of 
waves participate it is impossible to reach a universal conclu- 
sion about the direction of spectral transfer. In that case 
energy transfer to the long-wavelength region rather than to 
the short-wavelength region is possible. A buildup of waves 
in the small wavenumber region occurs, in particular, when 
Langmuir waves decay into Langmuir and ion-sound waves. 
We explain this in more detail. We assume that initially a 
Langmuir wave spectrum is given with characteristic wave- 
number ko and energy density Wo. The number density of 
quanta in that spectrum is approximately equal to 

No-Wo/Aop. (32) 

The decay interaction of the form I -+ I ' + s leads to the es- 
tablishment of equilibrium distributions for the plasmons 
and the ion-sound waves: 

n k l ,  (e(f iBkZ+v)/T- . l )  -1. 
1 (33) 

We have introduced in Eqs. (34), (34) the following notation: 
p = 3/2wp 6; c, is the ion sound speed; v = &a, - p > 0, 
where p is the plasmon chemical potential. The plasmon 
number density is conserved when decay takes place and the 
energy of the initial spectrum is redistributed between the 
Langmuir and ion-sound waves. Reckoning the energy den- 
sity for the quantity &ap No we can write the energy conser- 
vation law in the form 

where E is a quantity of the order k :r$, . The integrals occur- 
ring in this relation are approximately equal to T ( T /  
fi,6 )3'2 exp( - v/T) and T ( T  /?kS )3 .  One easily checks that in 
equilibrium the energy of the plasmons with k # O  is small 
compared to the energy of the ion-sound waves. Indeed, it 
follows from Eq. (35) in that case that the temperature of the 
waves is of the order of magnitude of 

T-  [&Wo (hc,) 3] 'I4, (36) 
while the energy of plasmons with k > 0 is proportional to 
f i 3 I8  and in the classical limit tends to zero. The equilibrium 
number density of Langmuir quanta with k > 0 is equal to 

and turns out to be negligibly small compared to the original 
density [see Eq. (32)l. All the Langmuir waves therefore go 
into the lowest energy state with k = 0, forming the conden- 
sate and only a small fraction of the energy ( - E  W,) is trans- 
ferred to the ion-sound waves. 

In conclusion we note that the possibility of a self-accel- 
erating energy transfer to the short-wavelength region of the 
spectrum due to decay processes appears completely natural 
if we bear in mind that all waves considered by us are hydro- 
dynamic in nature. In the original (not phase-averaged) dyn- 
amical equations such a transfer must appear as the steepen- 
ing of the wave profile up to the formation of discontinuities. 

The authors are grateful to D. D. Ryutov for his interest 
in this work and to V. E. Zakharov for useful criticism. 
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"The difference between the probability (6) and the 
corresponding expression given in Ref. 3 is explained by 
the fact that an error has slipped in: one must write the 
moduli instead of the vectors k, k,, k, themselves. 
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