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An analysis is given of the interaction between a two-level system and an electromagnetic field 
with an equidistant spectrum and arbitrary and independent phases of the spectral components 
(multimode laser radiation). The concept of generalized Rabi frequencies is introduced for a two- 
level system in a polychromatic field, and the values of these frequencies are calculated. It is 
shown that the dependence of the harmonics of the population difference and of the absorption 
coefficients for the individual modes on the intermode interval and field strength exhibits extrema 
(resonances), the positions of which do not depend on the mode phases. The resonances occur 
when the combination frequencies of mode beats are equal to the generalized Rabi frequencies. 

81. INTRODUCTION 

The classical problem of the interaction of a two-level 
quantum-mechanical system with a strong resonance elec- 
tromagnetic field is now the subject of a voluminous litera- 
ture. Two lines of approach can be identified in the develop- 
ment of the theory. 

One of them originates in spectroscopy, and is con- 
cerned with the quantum-mechanical system in a given field. 
The case of a strictly monochromatic field has been treated 
most thoroughly (see, for example, the review1). In particu- 
lar, it has been established that the fluorescence spectrum of 
a quantum-mechanical system placed in a strong monochro- 
matic field acquires additional extrema that are shifted rela- 
tive to the central extremum by the so-called Rabi frequency 
(this is the dynamic Stark effect). 

Papers devoted to interaction with the biharmonic field 
have investigated in detail the situation where one of the 
fields (the probing field) is weak and the other ~ t r o n g . ~ . ~  
Apart from the fact that the absorption profile of the probing 
field exhibits additional extrema (resonances), the suscepti- 
bility car; change sign at certain frequencies and the medium 
will not absorb but, on the contrary, will amplify the weak 
field. The last step in this direction was made in Refs. 4 and 
5, in which the two fields acting on the quantum-mechanical 
system were allowed to be strong. The shape of the absorp- 
tion profile of the retuned field then becomes very compli- 
cated: a whole series of additional extrema appears and was, 
in fact, seen experimentally prior to these  calculation^.^ 

The problem arises whether a qualitatively similar pic- 
ture of resonance effects will arise during the interaction 
between a two-level atom and a strong polychromatic field. 
This situation is interesting because powerful lasers usually 
generate multimode radiation. It would seem, at first sight, 
that the two-mode situation constitutes a special case be- 
cause the phase relation between the modes becomes impor- 
tant when the number of modes is greater than two. In addi- 
tion, it is known that absorption resonances that are 
observed for a weak probing field when a two-level system is 
exposed to a strong noise field, become broadened when the 

spectral width of the noise exceeds the Rabi It 
must be remembered, however, that the model of structure- 
less noise is more representative of a thermal source than a 
laser.7v10 Moreover, the fact that the correlation function of a 
polychromatic field with equidistant spectrum and arbitrary 
component phases is periodic may give rise to a number of 
specific effects." Nevertheless, the question of the absorp- 
tion resonaaces has not, in fact, been investigated directly. " 

The other line of approach to this problem has been 
confined to laser theory. Here, the characteristic formula- 
tion is that of the self-consistent problem, where neither the 
state of the medium nor the radiation field is given, and the 
analysis is directed toward establishing the connection 
between nonlinear mode interaction and the dynamic nature 
of the laser. The problem is exceedingly complicated and 
only certain special cases have so far been examined, for ex- 
ample, the effects of combination tones on the generation 
spectrum,14 the stability of stationary generation in the two- 
mode laser,'5s16 and certain aspects of the theory of mode 
locking. l 7  

The two lines of approach, the spectroscopic and the 
laser-theoretic, cross one another in intracavity laser spec- 
troscopy. Here, we draw attention to a number of experi- 
mental publications devoted to the anomalous increase in 
the spectral density of radiation near strong absorption lines 
of gases in the interior of the laser The develop- 
ment of a satisfactory theory of this effect and certain other 
problems in laser physics and nonlinear spectroscopy re- 
quire a preliminary analysis of the interaction between the 
two-level system and a given strong polychromatic field. 

This analysis is given in the present paper for the case of 
an equidistant mode spectrum and homogeneous broaden- 
ing of an undisturbed spectral line of the medium. Particular 
attention is devoted to the conditions for the existence of 
resonances in the mode absorption coefficients and to their 
position. Generally speaking, one would expect that the po- 
sitions of the resonances would be random for arbitrary in- 
dependent mode phases. However, it will be shown below 
that there is a group of resonances whose positions are not 
dependent on the random mode phases. 
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92. CHARACTERISTIC EQUATION 

The well-known equations describing a two-level sys- 
tem in a given electromagnetic field will be written in the 
truncated form:" 

dyld~=-irA,y+r (nx-y) , 
dn/dz=a-n- ( x ' y f x y * )  12, 

(2. la) 

(2. lb) 

where we have introduced the following dimensionless var- 
iables: the time r = t /TI, x = g/g,,, , the complex field 
amplitude divided by the amplitude of the saturating field 
(g,,, = f i / p ( ~ ~ , ~ , ) " ~ ,  the normalized population difference 
n = N /8, the unsaturated population difference a = N,/R, 
the normalized complex polarization amplitude of the medi- 
um y = F / p ,  r = Tl/T,, and A, = T,(w2, - w,). It is im- 
portant to note that the normalizing factors are related by - - 
N / F  = 2i/pr  'I2 wherep is the matrix element of the tran- 
sition dipole moment, T, and T, are the population and po- 
larization relaxation times, w,, is the transition frequency, 
and wo is the field carrier frequency. 

We shall assume that the field can be represented by a 
set of equidistant modes 

where A = T,dw is the dimensionless mode spacing. To be 
specific, the modes in (2.2) are labeled in the order of increas- 
ing frequency. The total number of modes is r + 1 and the 
total spectrum width rA is small in comparison with the car- 
rier frequency. The mode phases are assumed arbitrary; and 
independent, which is typical for the radiation emitted by 
the multimode laser. For this type of field, the polarization 
excited by it will also contain an equidistant set of compo- 
nents: 

Y = ym exp (-iI'rnA~), (2.3) 

but the number of these components is greater than that in 
the exciting field. This is so because of oscillations in the 
population difference, which can also be represented in the 
form of a series: 

We shall seek the steady-state solution of (2.1) and, with 
this in mind, we substitute (2.2)-(2.4) in (2.la), and obtain the 
following relation from the harmonic balance condition: 

Equations (2.2)-(2.5) are now, in turn, substituted in (2. lb), 
and the result is 

The coefficients of this expansion are given by 

and satisfy the following symmetry relations: 

c -  ( C ) ,  C,-'= (C2) *. (2.9) 

After solving (2.6), we can use (2.5) to calculate the polariza- 
tion coefficients and, hence, the mode absorption coeffi- 
c i e n t ~ : ~ . ' ~  

where K is the absorption coefficient for the probing field at 
the line center. 

The solution (2.6) was found in Ref. 5 in the form of a 
continued fraction for the case r = 1 (two modes). It can be 
shown that the exact solution has the form of a matrix con- 
tinued fraction when the number of modes is arbitrary. It is 
capable of yielding exhaustive information on the absorption 
coefficients for the individual modes as functions of intensity 
and of the parameters of the mode spectrum. However, for 
the resonances whose position is independent of the modes 
phases, the situation is much simpler: to determine the posi- 
tions and the necessary conditions for the existence of such 
resonance, it is sufficient to investigate the equation C A = 0. 
It is clear from (2.7) that it is precisely in the neighborhood of 
the value C = 0 that the diagonal coefficient C A in (2.6) can 
experience a sharp relative change because two large terms 
in the imaginary part of CA cancel out under these condi- 
tions: one of them is - irlA, and the other is the imaginary 
part of the sum in (2.7). When the real part of CA is small in 
comparison with each of the above terms in the imaginary 
part (this occurs when the mode intensities X  i are sufficient- 
ly high andTIA) I), the quantity /CA I will vary rapidly with 
A or X i  and will pass through a deep minimum near 
CA = 0. All the other coefficients Cf will not change very 
much in this region, and the reason for this in the case of the 
off-diagonal coefficients is that the mode phases are random. 
According to (2.6), the extrema of the amplitudes of the po- 
pulation-difference harmonics are connected with this result 
and, by virtue of (2.5) and (2. lo), so are the extrema of the 
mode absorption coefficients. 

Let us write the detuning of the mode with k = 0 from 
the transition frequency in the form A, = (r, + p)A, where ro 
is the "coarse" tuning parameter equal to the whole-number 
part of the ratio AdA and the "fine" tuning parameter is 
p(lp1< 1/2). Rewriting CA = 0 in terms of these quantities, 
we obtain the following characteristic equation: 
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To begin with, we shall assume that the parameters r,ro,p 
andX 2, are fixed2' and will investigate the values of the mode 
spacing for which there is a resonance in the population- 
difference harmonics. For the sake of simplicity, we shall 
assume that all the mode intensities are equal: X 2, = X '. 

Each value of I has its own equation (2.11) that deter- 
mines the position of the resonances. Its roots 2, are com- 
plex, but the mode spacing is real. Consequently, the reso- 
nance value is the real part of the root A ,  = ~ e 2 , .  For a 
given resonance to appear, at least two further conditions 
must be satisfied. The first of them is 

and restricts the possible "width" of the resonance, and the 
second is 

I Im dl+l+Im dl ( G (Ai+ i -AI  1, (2.13) 

and prevents the approach of neighboring resonances to a 
distance for which they overlap and cease to be resolved. The 
latter condition corresponds to the inequality 

53. RESONANT VALUES OF INTERMODE FREQUENCY 

Before we proceed any further, we note that there are no 
resonances in the case of a small mode spacing, A( 1, when 
several modes fall within the undisturbed line. Leaving the 
explanation of this fact until we come to Sec. 4, we merely 
note that none of the roots of (2.11) satisfies condition (2.13) 
for A 4  1. Bearing this in mind, we confine our attention to 
the case of relatively large A and begin by considering the 
situation where one of the modes coincides with the transi- 
tion frequency: Of r o e ,  p = 0. In this case, the resonance 
values of the mode spacing satisfying (2.12) are given by 

where 

The imaginary parts of the roots (3.1) will now be found by 
the perturbation method. It is clear from (2.11) that the es- 
sential point is whether there is an equation of the form 
k = ro I for any mode number k E [0, r]. Such equations 
are not possible for 

Z>i=max {r,, r-r,), (3.3) 

which corresponds to combination frequencies lA exceeding 
the separation between the line center and the boundaries of 

the mode spectrum. This ensures that Im 2, is independent 
of the radiation intensity: 

It follows from (3.1) that the initial assumption that A, 1 is 
justified when the field intensity is high enough: 

For the group of resonances (3.3), this inequality is more 
stringent than (2.13) and, consequently, defines the region in 
which these resonances exist. When I<], the imaginary parts 
of the roots are proportional to the intensities of modes with 
indices k = r, I. Since Im a, is large in this range of values 
of 1, the inequality given by (2.13) is not satisfied, so that the 
low-order resonances do not appear when the mode is accur- 
ately tuned to the line center. 

Equations (3. l), (3.2), and (3.4) are valid for an arbitrary 
number of modes, including the special case of the bihar- 
monic field (r = 1) analyzed in Refs. 4-6. We note that, when 
the number of modes is large (r(l), the sum in (3.2) can be 
replaced by an integral, and this yields3' 

In the limiting case where I%], the last formula becomes 
much simpler: 

S=2r/Z (3.7) 

and the resonance mode spacing is 

and is determined by the resultant intensity of all the modes, 
rX2, which is inversely proportional to the number of the 
resonance. 

Thus, in the above situation ( p  = O), the only reson- 
ances that are possible are those of sufficiently high (1>7) 
order, but this order must not exceed I-(rX2/r)1J2, when 
A, - 1. The largest number of resonances should be observed 
for the smallest value of7, i.e., for the symmetric disposition 
of the mode spectrum relative to the line (r, = r/2). The min- 
imum number is 7 + 1=r/2 and corresponds to the largest 
mode spacing A,--(W21nr/rr)"2. As the mode spectrum 
shifts, the lowest-number resonances are successively lost 
until the largest resonant value of the mode spacing reaches 
the linewidth for 3, = rX2/T and none of the resonances 
remains. The inequality given by (3.5) imposes a relatively 
stringent condition on the field intensity. Since the function 
S (I ) decreases monotonically in the region defined by (3.3), 
the resonances will be present if the intensity of one mode 
exceeds the coherent value r by a factor of at least r/lnr. 
This situation is connected with the fact that the line is 
strongly saturated by one of the modes. 

Let us now suppose that none of the modes falls into the 
line, i.e., p $0 and, moreover, jpA 1 ) 1. The roots of (2.11) 
which satisfy (2.12) are now given by expressions that differ 
from (3.1) and (3.4) by the fact that S must be replaced with 
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FIG. 1. Resonance value of the normalized mode spacing A ,  (3.1) as a 
function of the number 1 of the resonance. The graphs were plotted nu- 
merically for the following values of the parameters: r =  9, 
r,, = 2, p = 0.1; 0.25; 0.5 (curves 1,2, and 3, respectively). X = 4; 40 (lower 
and upper curves, respectively). Circles represent resonances satisfying 
condition (3.11). 

Comparison of (3.2) with (3.9) will show that, for resonance 
of a high order (3.3), the accuracy with which the tuning to 
the transition frequency is performed is unimportant, and all 
the results obtained for p = 0 remain in force (cf. the des- 
cending branch on the right of Fig. 1). However, this group 
of resonances is joined by a group of resonances of a lower 
order, 147. For these, we have l~d, 1 - lp2Sp I -I. When 
Ip 1 4 1, for which 

the resolution condition (2.13) will be satisfied when the in- 
tensity of one mode satisfies the inequality 

For the lowest-order resonances I <7, the last inequ~lity is 
very stringent because Sp ~ S S l n r .  However, for /<I<?, 
when S, = +p-l)S and 

the conditions imposed on the intensity are much softer be- 
cause Sp  increase^.^' According to (3.1 l), when the detuning 
is small enough, Ip 1 < l/l, the resonances given by (3.12) ex- 
ist ifX '>8N 3/p (we note that this quantity is independent of 

the number of modes). The last inequality leads us to the 
conclusion that resonances in this group are already possible 
for intensity X that exceeds the coherent va luer  by one or 
two orders of magnitude. The most favorable conditions are 
established forp - 1/2 and I = 0, when the line lies between 
the outermost and the nearest modes. The first resonance to 
appear as X 2  increases should then be the resonance with 
I =  1. For given intensity, the resonance appear for 
= 
1<1S l*  = ( ~ ~ / ~ 1 / 8 r ) ' / ~ ,  i.e., in the interval (21 */ 
p)  SA, < (1 */T)I1' . 21 */p, and their number increases with 
increasing fine-tuning parameter p. Figure 1 illustrates the 
overall picture. 

In this section, we have concentrated our attention on 
the situation where the transition frequency lies within the 
mode spectrum (O<ro<r). No complications are found to 
arise when this conditionis relaxed. All that we have said 
above remains in force even for the external position of the 
line, say, for5'ro < 0. All that needs to be done is to substitute - - 
I = Irol, 7 = r + Irol and remember that S is negative for 
I < ro(r - 5) 1 ' I 2 .  Hence, in particular, the lowest-order res- 
onance, /<I, are absent because, according to (3. lo), for such 
resonances. 

54. GENERALIZATION OF RABl FREQUENCY 

We must now consider the physical interpretation of 
the above resonances. We begin with the most obvious limit- 
ing case presented by (3.8), which is conveniently rewritten 
in the form 

The quantity f2 = (rX2/T )I1' on the right of this equation 
can be interpreted as the frequency of Rabi oscillations pro- 
duced by a monochromatic field of intensity rX ', tuned to 
the transition frequency. The effect of this field on the two- 
level system is equivalent to the effect of the above polyhar- 
monic radiation if the Rabi frequency f2 is much greater than 
the width rA of the mode spectrum and the detuningg9" 
lr,,A I. It is precisely these assumptions that lie at the basis of 
(3.8). (The interpretation of the resonances in this case is also 
discussed in Ref. 20, where use is made of the idea of quasien- 
ergy states found in the adiabatic approximation.) We shall 
show that, in general, the resonance condition is still that the 
mode beat frequencies, or the beat harmonics, are equal to 
certain natural frequencies of the system, which may be re- 
ferred to as the generalized Rabi frequencies. To show this, 
we shall seek the solution of (2.1) for a = 0. (for the sake of 
simplicity, without relaxation) in the form 

n=ii exp  ( - i l ? Q ~ )  + C.C. ; (4.2) 

y = [ y: ex*(-iI'(kA-D) .I) +y/ exp  ( - i r  ( k A + Q )  r )  1. 
k=O 

(4.3) 

When we substitute the amplitudes of the polarization har- 
monics, given by (2. la) in terms of E and x k ,  into the right- 
hand side of (2. lb), we shall omit terms that depend on the 
mode phases, i.e., we shall average over the random phases. 
Eliminating in this way the phase effects in which we do not 
interested, we find that the population difference oscillates 
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in the polyharmonic field with specific natural frequencies 
satisfying the condition 

The number of generalized Rabi frequencies is thus seen to 
be equal to the number r + 1 of field modes. 

In the special case of one mode (r  = 0), we obtain the 
well-known expression for the Rabi frequen- 
cy:'Rc = ( X 2 / r )  + A z. When thereare twomodes (r = I), 
Eq. (4.4) turns out to be a biquadratic equation and there are 
two generalized Rabi frequencies: 

Figure 2 shows the distribution of generalized Rabi fre- 

U Z Y 6 8 1 0 1 2  

r-z J2, /A 
i P b . 1  I I I I I I 
0 I ?Yt Y  6 8  r=S Mode number 

p=0.25 

FIG. 2. Generalized Rabi frequencies f2, (k = 0, 1,. . . r), normalized to 
the mode spacingd as functions of the parameter x / m f o r  three differ- 
ent positions of the spectrum, indicated on the graphs. Solid curves show 
the Rabi frequencies generating at least one resonance. Resonances are 
indicated by open circles. The graphs were plotted numerically for the 
case of ten modes. 

quencies for an arbitrary number of modes, where the fre- 
quencies normalized to the mode spacing A are shown as 
functions of the universal parameter X / r  'I2A for different 
positions of the mode spectrum relative to the quantum tran- 
sition. Resonances correspond to the points of intersection 
of the curves A - '0, (X /r '124 ) and the straight lines R / 
A = I (k = 0, 1 ,..., r; I = 1,2 ,... ). When the intensities are low 
enough, the Rabi frequencies are formed by each of the 
modes independently: R : z X  '/r + (kA - As the 
mode intensity increases, all the Rabi frequencies with the 
exception of one, the highest, tend to certain fixed values 0, 
lying within the mode spectrum in intervals bounded by the 
points /A, - kA 1. According to (4.4), the highest frequency 
increases without limit with increasing field intensity and, 
for X '%T CIA )2/r is given by R, = (rX '/r )'I2. As we have 
seen, this determines the high-order resonances in (4.1) with 
I%r, Ir,l Similarly, in the general case, a resonance with ar- 
bitrary I appears when intermode beat resonance frequency 
Id is equal to one of the r + 1 generalized Rabi frequencies 
a,, R ,,..., Rr  . In fact, replacing R in (4.4) with Id,, we imme- 
diately obtain the characteristic equation (2.11) that was 
used in the above analysis [relaxation is taken into account in 
(4.6)]. Since the first r Rabi frequencies lie within mode inter- 
vals with bounding points lA, - kA 1, and the highest rth 
Rabi frequency lies outside the most distant of them relative 
to the transition frequency, it is clear that of the lowest order 
resonances I <? occur when the intermode beat frequencies 
coincide with one of the r first Rabi frequencies, whereas the 
high-order resonances with I >?occur when there is a coinci- 
dence with the highest Rabi frequency (see Sec. 3 and Fig. 2). 
The latter are the subharmonics of Rabi frequency R, but 
the former are not: each of the low-order resonances is cou- 
pled to its own Rabi eigenfrequency 0,. For example, in the 
case of the two modes given by (4.5) (for X2%rA lA, 
- A /2 I), thehigherRabifrequency0, z (2X2/r)'12mayco- 

incide for a particular intensity with any of the intermode 
beat frequencies IA, where I >?, and the lower frequency, 
which is given by R, = ( [A + (A - AJ2 ] /2)'12 and lies in 
the intermode interval [/A,/, /A -A,/], may coincide with 
one of the intermode beats, provided both modes lie on one 
side of the transition frequency. 

By analyzing Figs. 2a, b, and c, we can establish which 
particular Rabi frequency coincides with the combination 
frequency lA at the I th resonance. It is clear from Fig. 2a 
that, even if we neglect relaxation, the lower-order reson- 
ances with I <? should be absent when one of the modes is 
accurately tuned to the transition frequency ( p = 0). Coinci- 
dences between the combination frequencies lA and the first 
Rabi frequencies are then impossible for finite mode intensi- 
ties. Coincidences are possible only with the highest Rabi 
frequency R, and, to reach the resonances, we must satisfy 
the condition R, >p + l)A by increasing the Rabi frequency, 
for example, by increasing the mode intensity. This means 
that, when the number of modes is very large, resonances 
will now appear for higher intensity than the lower-order 
resonances with l ~ i i n  the case of detuningp#O (cf. Fig. 2a 
and b). Inspection of Figs. 2b and c will show that the exis- 
tence of resonances with I < I <? depends on the sign of the 
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detuning (see footnote 4). If the mode spectrum does not 
include the transition frequency (Fig. 2c), resonances of very 
low order I < e are impossible because the lowest Rabi fre- 
quency, a,, now exceeds Id.  It is thus clear that the proper- 
ties of the resonances, including those established earlier in 
Sec. 3, are determined by the distribution of the generalized 
Rabi frequencies, so that the resonances investigated in this 
paper can be referred to as Rabi resonances. 

Relaxation has so far been neglected for the sake of sim- 
plicity. However, when it is taken into account, the equation 
for the Rabi frequencies assumes the form 

The generalized Rabi frequencies thus become complex: 

where Im 6, < 0, which corresponds to the damping of the 
natural oscillations in the population difference. It is clear 
from the physical significance of the Rabi frequencies that 
the following conditions must be satisfied for resonances to 
occur: 

Q k B ] I m  Qhl, [Q,+l-Qh1211m Qkl+IImQh+iI 

[cf. (2.12) and (2.13)]. When r=  1, i.e., TI = T,, Eq. (4.6) 
yields Im dk = - 1. Consequently, resonances are possible 
only with Rabi frequencies that exceed the linewidth: 
a, s IIm dk 1 = 1. Moreover, it is now clear why there are 
no resonances in the case of a dense spectrum, when several 
modes fall into the medium line. In fact, resonances with l<i 
are impossible because the first r Rabi frequencies fl, are 
separated by the mode spacing and overlap considerably for 
A < 1 = Im dk 1. On the other hand, there are no resonances 
with I >I  because broadening of the highest Rabi frequency 
(Im d, = 1) ensures that its subharmonics A, = a,/l over- 
lap because the difference A, -_d, + , = A ,/I is small in 
comparison with Im 2 ,  = Im fl, j/l for A, < 1. We note 
that even in the general case (r > I), Eq. (2.14) shows that the 
condition I Im d k  I 5 A must be satisfied on resonance since, 
otherwise, the broadening of the Rabi frequencies will en- 
sure that the resonance relation 0 = Id will be satisfied for 
given fl and A for different neighboring values of 1, and the 
resonances will become unresolvable. 

55. RESONANCE EFFECTS ACCOMPANYING INTENSITY 
VARIATIONS AND SHIFT OF MODE SPECTRUM 

The resonance values of the mode spacing were deter- 
mined above for fixed other parameters characterizing the 
field. On the other hand, there are other acceptable formula- 
tions of the problem in which the mode spacing is fixed and 
some other parameter is varied. The analysis is then reduced 
to the solution of the characteristic equation given by (2.11) 
for the varied quantity, and to an analysis of the necessary 
resonance conditions such as (2.14). Thus, when the intensity 
is varied, its resonance values are given by X: = 2rlA /S, ,  
which corresponds to (3. I), and the necessary condition giv- 
en by (2.14) reduces to the inequality given by (3.11). 

If we now suppose that the intensity and mode spec- 
trum are fixed (X2, r,A = const > I), we can determine the 
values of the detuning of the center of the mode spectrum 
A, - Ar/2 from the transition frequency for which reso- 
nance is possible. To be specific, we shall consider high-or- 
der resonances with I >I>r/2. If we substitute r,  + r, + p in 
(3.1) and (3.6), we obtain 

Hence, it follows, in particular, that, when X 2 TA 'r/2, the 
required detunings differ from a whole number of mode 
spacing.6' Figure 2 presents a clear picture of the resonances 
if we recall that a shift of the mode spectrum as a whole to the 
right is accompanied by a shift of the generalized Rabi fre- 
quencies in the same direction. Resonances with 121 then 
correspond to the seccessive crossing of the vertical lines fl / 
A = 1 by the point of intersection of the curve fl,/A (repre- 
senting the highest Rabi frequency) with the horizontal line 
X /r '/*A, specified by fixed values of X and A. 

56. CONCLUDING REMARKS 

It is clear from the foregoing that resonance effects will 
occur when a two-level system interacts with multimode ra- 
diation with an equidistant spectrum and arbitrary indepen- 
dent mode phases. Resonances in the mode absorption coef- 
ficients correspond to coincidences between the harmonics 
of intermode beats and generalized Rabi frequencies that are 
functions of the mode spacing the position of the mode spec- 
trum, and the mode intensities. These Rabi resonances are 
independent of the phase relationships, and are described by 

where S, of (3.9) is determined by the disposition of the 
mode spectrum. 

Resonances occur when the amplitude of each mode 
exceeds by at least a substantial factor the coherent value f i /  
pT2 and the mode spacingdm is greater than the width T,-' 
of the spectral line of the medium. In the special case of the 
biharmonic field, examined earlier in Refs. 4-6, the reso- 
nance intermode frequencies given by (6.1) are the subhar- 
monics of a single Rabi frequency. In the case of the poly- 
chromatic field, there is, in addition to the high-order 
resonances with I > I  = max( r,,r - r,] , which are also the 
subharmonics of the same (highest) Rabi frequency, a new 
group of low-order resonances with l<T, each of which is 
coupled to its own Rabi frequency. The number of reson- 
ances and the maximum value of the resonance mode spac- 
ing will, in general, increase with increasing intensity and 
number of modes. From the practical point of view, the most 
interesting are the resonances with low numbers I < r that 
correspond to the main components of the intermode beats. 
They have a greater effect on the mode absorption coeffi- 
cients than the higher-order resonances, and occur at rela- 
tively low radiation intensities that are completely attainable 
in multimode lasers (for example, for T, - T, - lo-' 
s, p -  ID, and optimum disposition of the spectrum, the 
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power density of multimode radiation should be of the order 
of 10, 1000, and 10000 W/cm2 for r- 10, 100, and 1000, 
respectively). 

We note that the conditions for which the above Rabi 
resonances will occur are very typical for experiments in in- 
tracavity laser spectroscopy. However, the given-field ap- 
proximation has to be abandoned when such phenomena are 
examined, and resonance effects in the self-consistent for- 
mulation must be investigated. 

"The exact solution of the equations describing the dynamics of a two- 
level system in a polychromatic field was obtained in Refs. 12, 13 for 
certain special cases. However, the analysis of the solution was difficult 
because of its complexity and did not lead to a clear picture of the mode 
absorption resonances. 

2'In particular, when the frequency of the quantum transition lies inside 
the mode spectrum, the fixing of these parameters means that we have 
fixed the ratio in which the transition frequency divides the mode spec- 
trum. Other possible formulations of the problem are considered below, 
in Sec. 5. 

'I When one of the factors in the numerator or the denominator in the 
logarithm is equal to zero (i.e., when I = r ,  or 1 = lr - rol) we must 
replace this particular factor with unity. 

4)Since A ,  -S, 'I2, the necessary condition for resonance is that S, be 
positive. This sets the sign of p, depending on which side of the line 
contains more modes: p > 0 for r, < r/2 and p < 0 for r, > r/2. 

5' We note that, without 'loss of generality, we'may suppose that ro < r/2 
because the opposite situation corresponds to the symmetric position of 
the mode spectrum relative to the line center. 

6)It is clear from the foregoing that we are concerned with resonance 
effects that differ from resonances in the saturation of the quantum tran- 
sition, which occur when the successive modes cross the line of the medi- 
um as the spectrum is shifted. 
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