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For the imaginary part of the Lagrange function of a constant homogeneous electric field E with 
allowance for radiative self-interaction of the vacuum charges (two-loop approximation) a repre- 
sentation is found in the form of a series in powers of the quasiclassical exponential exp( - ?T/P ), 
p =Cie~/rn'c~, similar to Schwinger's representation for the imaginary part of the single-loop 
Lagrangian. This representation has the meaning of a virial expansion, and its parameter-the 
quasiclassical exponential-is the mean number of pairs produced by the field in the 4-volume of 
pair formation. The leading term of the series is the mean number of pairs in unit Cvolume, and 
the remaining terms describe quantum-mechanical exchange effects of Fermi repulsion or Bose 
attraction of the created particles. The radiative corrections to the terms of the series in a weak 
field reduce for the leading term (n = 1) to a mass shift of an accelerated charge, and for the 
following terms (n>2) to a mass shift of the charge that represents its effective Coulomb interac- 
tion with charges of both signs in a group of n coherently created pairs. 

INTRODUCTION 

It is well known that the interaction of the field of vacu- 
um charged particles with an external electromagnetic field 
is described by the exact Lagrange function Y of the electro- 
magnetic field. In particular, the probability of vacuum per- 
sistence in the volume V during the time Tis determined by 
exp ( - 2ImY VT), i.e., 2 I m Y  is the decay rate of unit 4- 
volume of the vacuum. For the imaginary part of the La- 
grange function of a constant and homogeneous electric field 
E in the single-loop approximation Schwingerl obtained the 
representation1 

Here and below, the upper and lower signs correspond to 
charged Fermi and Bose particles with spin s = 1/2 and 
s = 0. As can be seen from this representation, the decay 
rates of the vacua of Fermi and Bose fields differ under oth- 
erwise equal conditions by not only the spin statistical 
weight (2s + 1). To elucidate the physical meaning of the 
individual terms of the representation (I),  it is convenient to 
use Nikishov's representation2 

which relates the imaginary part of the Lagrange function of 
the field to the mean number ii, of pairs produced by the 
field in the state with given momentum and spin projection 
p =p,  r. The distribution of Ti, is degenerate with respect to 
the spin projection r and the momentum componentp, lon- 
gitudinal with respect to the field with degeneracies 2s + 1 
and L , A p  I / 2 d ,  where Apl = e&T (see Refs. 2 and 3). 

It was pointed out in Ref. 4 that the right-hand side of 
the representation (2) as a functional of ii, is equal to PV/O 
for an ideal Fermi or Bose gas, where P, V, and 19 are the 
pressure, volume, and temperature. Then 2 Im Y1/fi is 
analogous to the rate of growth of the pressure in units of O. 

Expansion of ln(l f ii, ) in (2) in a series in powers of ii, 
and term-by-term integration overp, leads to the series (1). 
Therefore, the first term of the series (1) is the mean number 
ii of pairs in unit 4-v0lume,~ and the approximate expression. 

is analogous to the equation of state of an ideal gas (Clapeyr- 
on's equation). The following terms of the series (1) with n>2 
are the quantum-mechanical exchange corrections to the 
rate of growth of the pressure describing the additional Fer- 
mi repulsion or Bose attraction of the particles for the given 
mean 4-density of their number. They arise because of coher- 
ent pair creation, i.e., creation of n>2 pairs in the same 4- 
volume of pair formation. Therefore, (1) is a virial expansion 
for 2 I m Y 1  in powers of the parameter exp( - ?r/ 

P )  -ii(e~)-', which is the mean number of pairs in the 4- 
volume of pair f~ rma t ion .~  Such a representation is analo- 
gous to the virial expansion of the pressure of an ideal Fermi 
or Bose gas in powers of the degeneracy parameter, i.e., the 
mean number of particles in the 3-volume determined by the 
thermal de Broglie wavelength (see $56 in Ref. 5). 

In statistical physics, the virial expansion of the pres- 
sure proved to be very convenient for describing the devi- 
ation of the state of a gas from the ideal state not only due to 
the effects of quantum-mechanical degeneracy but also the 
strong interaction of molecules. In our case, the force, i.e., 
radiative, interaction of the vacuum charges is taken into 
account by the two-loop correction Y2 to the Lagrange 
function of the electromagnetic field, which was found in 
Refs. 6 and 7 in the proper-time representation. In the pres- 
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ent paper, we obtain for the imaginary part of the Lagrange 
function of a constant electric field in the two-loop approxi- 
mation a representation of the form (I), i.e., for 2 I m Y  we 
obtain with allowance for the radiative interaction of the 
vacuum charges the virial representation 

The complicated function K ,  (P, s) simplifies for np( 1 and in 
this region does not depend on the spin: 

(the ellipsis denotes terms that vanish as P-0). For n = 1, 
this result was found earlier by one of the present authors: 
see Refs. 6 and 7. 

In Sec. 6 we give a physical interpretation of the radi- 
ation correction (5) on the basis of the independent physical 
meaning of the terms in the virial expansion, which gives a 
picture of coherent pair production. This meaning of the 
individual terms of the virial series makes it possible to trans- 
form the radiative correction into a field-dependent correc- 
tion to the mass of a charge participating in group tunneling. 
Such a transformation is equivalent to summation of the ra- 
diative corrections of all orders in a in a weak field. Mor- 
over, in all terms of the virial expansion the mass of the 
charge does not acquire finite corrections (corrections that 
do not vanish with the field), this being due to the correct 
behavior of the mass renormalization of the charge and the 
quasiclassical meaning of the nth term of the virial expan- 
sion for a weak field (with regard to the quasiclassical nature 
of the terms of the series (I),  see Ref. 8). 

Indeed, it was shown in Refs. 6 and 7 that by means of 
the Lagrange function one can uniquely renormalize the 
charge and mass of the particles by requiring that in the 
weak-field limit the real part of the exact Lagrange function 
be Maxwellian and the imaginary part quasiclassical: 

Im L?= (ee) ' f  ( a )  e - " m ' / e e , & - + O .  (6) 
Here, m is the renormalized observable mass of the charged 
particles. In accordance with this condition, the radiative 
corrections in the weak field change only the pre-exponen- 
tial factor f (a) = f ' I i  + af '2i + a2f'3' + ... , and do not 
change the argument of the exponential, which by virtue of 
the quasiclassical situation plays in the mass renormaliza- 
tion a part similar to the part played by the classical Thom- 
son cross section in charge renormalization, namely, in the 
limit E-0 the radiative corrections to m2 tend to zero like 
the radiative corrections to the cross section of the Compton 
effect when the photon frequency tends to zero, w-0; see 
Ref. 9. Thus, the boundary condition (6) imposed on the 
imaginary part of the exact Lagrange function uniquely fixes 
the mass c~unter term.~ Because the exponentials with n)2 

are quasiclassical, the singularities of the type CP - ', nP4 1, 
disappear after the mass renormalization in all terms of the 
virial expansion with n>2. Such singularities would lead 
after exponentiation to a finite, nonvanishing as P-0, mass 
shift in the terms with n>2, and this would be in contradic- 
tion with a quasiclassical nature of the exponentials, where 
m is defined as the physical of the pa r t i~ l e .~  Thus, to fix the 
mass counterterm uniquely, a boundary condition of the 
type (6) could be imposed on any term of the virial series. 
This emphasizes once more the independent physical mean- 
ing of each of these terms. 

All calculations in the paper will be made for the spinor 
case.'' For the scalar case only the final results will be given 
(see Ref. 1 1). 

2. PROPER-TIME REPRESENTATION OF THE IMAGINARY 
PART OF THE LAGRANGE FUNCTION 

We proceed from the expression (50) of Ref. 6 for Y2,  
the two-loop radiative correction to the Lagrang: function 
in spinor electrodynamics. In different notation, Y2 has the 
form 

cos xg cos x ( 1 - g )  a 
'[ a-b 

In - 
b  

- j  dE [ c l n ( J b )  - l - b c 0 ~ r ( 1 - 2 , ~ )  
g (1 -5 )  . (a-b) '  b ( a -  b )  

cos x  + I , ,  1+41,95)(~-  I+$)], 
sin xe sin x ( I - E )  sin x  (7) 

a =  , b = - ,  
x f x ( l - E )  x  

c = l - a  cos x ( 1 - 2 a ) ,  In ?=In Y-'/~, 

where In y is Euler's constant. There is a similar expression 
for the scalar case. With regard to the modifications made in 
(7) compared with the original expressions of Refs. 6 and 7, 
see Refs. 10-12. 

In the denominators of the expressions, there is the en- 
tire function a-b, and in what follows its properties will play 
a fundamental part. The problem is to calculate the imagi- 
nary part of the double integral (7) of a function of two varia- 
bles, this function containing meromorphic terms and a pro- 
duct of the logarithm of the meromorphic function a/b and 
other meromorphic functions. 

If we denote the expression in the curly brackets in (7) 
together with the coefficient a(e.~)~/1677~ by f (x/P, x), then 
for appropriate choice of the "physical sheet" for the loga- 
rithm we have (see Ref. 12) 

f ' (x/P,  x )  =f ( . ' /P,  x') . (8) 
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FIG. 1. The cuts beginning at the points + a due to the first two terms of 
the function f (x /p ,x) .  The wavy line shows a typical cut ofthe logarithm in 
the last column. On the lines of the cuts there are also branch points and 
poles off ( x /p ,x )  at x = x ,  = na. 

This choice of the sheet corresponds to reality of ln(a/b ) for 
real x and 0 < x < n-,O < 6 < 1. Taking into account (8) we ob- 
tain 

where the contour Cis shown in Fig. 1. The upper part of Cis 
the contour of integration in (7). In accordance with the 
three terms inf, we introduce the notation 

cos X E  cos x (1-E) 
'[ a-b 

In--- 'Os ] , 10a) 
a 

b b  

1 
1. = - j d x g i ( x )  5- 

25 c ,  E(1-E) 

b(a- b )  2bZ 

a ( ee )  2a: exp (-x/p) g ( x ) =  -- 
1 6 n S B  xS ' 

a (ee )  h x p  (-ZIP) 
gi ( x )  =-gz ( x )  =- - 

16nS xS 
. (10d) 

In Eqs. (lo), we have used the analyticity off in the strip 
0 < Re x < n- and replaced the contour C by C ' (see Fig. 1). 
After this, the terms - 5/6x2f (1 - f ), 5/6x26 (1 - f ), 
- 1 + x2/3 in (7) can be omitted. The integral J2 can be 

readily calculated, and the result is obviously 

It can be seen that series (1 1) has coefficients that increase as 
p-0 for all powers of exp( - ). In accordance with the 
principle of charge and mass renormalization of Refs. 6 and 
7, such a dependence on fl in the total sum J + J, + J2 must 
vanish in the limit E+O for at least the coefficient of the first 
exponential. 

3. ANALYTIC PROPERTIES OF THE INTEGRANDS 

The integrals J and J, are nonvanishing only if their 
integrands f (x/fl,x) have poles or branch points within the 

contour of integration C '. We shall show that f has poles and 
branch points only at the points x = x, = nn-. 

The analytic properties of the functions in the square 
brackets in (10a) and (lob) are of the same kind. It is suffi- 
cient to consider the first of them. It can be seen that all 
singularities could consist of branch points of the function 
ln(a/b ), zeros of the function a - b, zeros of the function b, 
and points f = 0 , c  = 1. To determine the branch points of 
ln(a/b ), we go over to the variables u = x(1 - f ), v = x6. 
Then 

a s inu  sin v u+v - ---- 
b u v s i n ( ~ + ~ )  ' (12) 

Since u and v are positive, on the u, v plane (see Fig. 2) the 
function a/b is positive in the regions where one or all three 
of the sines are positive and is negative where one or all three 
sines are negative. Since sin u, sin v, and sin(u + v) are, re- 
spectively, positive in the odd vertical, horizontal, and in- 
clined strips and negative in the corresponding even strips, 
the function a/b is negative only in the regions of the inter- 
section of one even strip with two odd or two even strips; in 
Fig. 2, these triangular regions are hatched. On a straight 
line parallel to an inclined strip the variable u + v = x is 
constant, and the variable f increases monotonically from 
zero (u axis) to unity (v  axis). It can be seen from Fig. 2 that if 
x is fixed and lies within the nth inclined strip, i.e., 
(n - 1)n- < x  < nn-, then as 6 increases from zero to unity the 
function a/b becomes negative n - 1 times. Moreover, the 
points at which a/b changes from a positive to a negative 
sign are characterized by increasing values f = f -, , where 

and they alternate with points 6 = c +, at which a/b 
changes from negative to positive sign: 

E+k=kn/x, k=l ,  2,  . . . , n-I ,  (14) 

i.e.,{-, < 6 + ,  <(-2<6+2<. . .  < C + H - ~ .  
In the integral (7), x = Re x + i0,-i.e., x has a vanish- 

ingly small positive imaginary part. Therefore, in accor- 
dance with (13) and (14) the points c_ ,  are shifted from the 
interval 0 < f < 1 into the complex plane of 6 upward, while 
the points 4 + , are shifted downward. As 6 moves along the 

FIG. 2. The regions in which a/b  < O  are hatched. Between them are 
curves on which a = b = 0. 
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FIG. 3. 

interval (0, I), the path passes below the points f = 6 - , and 
above the points 6 = f + k ,  and the phase of the function a/b 
changes at these points from zero to a and from a to zero. In 
the integrals (9) and (10) on the lower part of the contour of 
integration x = Re x - iO, and in this case the points [ - , 
and 6 + , are displaced from the interval 0 <l< 1 downward 
and upward, so that the phase of the function a/b changes at 
these points from zero to - a and from - a to zero. The 
position of the branch points (1 3) and (14) near the real axis f 
forx = Rex f iO is shown in Fig. 3. Thus, ln(a/b ) has imagi- 
nary part equal to + i a  if 

Outside these regions, Im ln(a/b ) = 0. We emphasize that in 
the region 0 < x < a,O < f < 1 the function ln(a/b ) does not 
have branch points. But when x varies in the complex plane 
and 0 < Re x < a ,  the branch points f - , and 6 + , do not 
intersect the interval of integration over 6, and this in con- 
junction with the absence of other singularities with respect 
to { leads to analyticity of the function f (x//?,x) for 0 <Re 
x < a. 

We now consider the zeros of the function a-b. In the 
variables u,u 

sin usin u (+- 
a-b = 

1 
ctgv+--ctgu).  (16) 

u+ v U 

On the u,v plane, the line of zeros a-b is determined by the 
equation 

The coordinate axes u = 0 and V = 0 are obviously also lines 
of zeros. We denote the line of zeros lying in the nth inclined 
strip by x = xE(6). These lines of zeros are shown in Fig. 2. 
The points x: (0) = x: (1) at which the line of zeros x: (6) 
meets the coordinates axes u and v are the roots of the equa- 
tion cot z = z- l. These roots lie to the left of the numbers 
(n - 1/2)a, n = 2,3 . . . , but with increasing n tend to them. 
At the points { = m/n, m = 1,2, . . . ,n - 1, the line of zeros 

x: (4 ) reaches its maxima, which are equal to na. 
It is clear that a line of zeros of the function a-b avoids 

the region where a/b < 0. It can also be seen from the figure 
within the interval 0 < { < 1 it is not for all x that points at 
which a - b = 0 are present. If we describe the straight line 
u + v = x and then increase x from x, + 6 (6 > 0 and a is 
small) tox,,, -6,  t h e n f ~ r x > x ~ + , ( O ) = x ~ + ~ ( l )  in the 
interval (0,l) of the variable < points { = lot (x) begin to ap- 
pear in pairs (in Fig. 2, the points of intersection of the 
straight line u + v = x and the line of zeros (17) would corre- 

spond to them). As x approaches x, + , from the left, the 
zeros {oi(x) are displaced toward the points m(n + I)-' 
(m = 1,2, . . . , n)-two zeros for each rational point of this 
type. Note that in the neighborhood of the point x = x, , 
6 = m/n the line of zeros of the function a-b has the form of 
a parabola touching the straight line x = x, : 

The zeros of the function a-b are not poles of the inte- 
grand if b # 0, since for a-b-0 but b # 0 we have ln(a/b )-0, 
and then 

cos xg cos x (1-g) a cos x 
In---- 

a-b b b  

sin xk sin x (1-E) +cos xt cos x (I-E) 

Thus, the function in the square brackets is finite for 
a - b-0, b # 0. The additional singularities associated with 
the factor (1 - f )]-' in (10a) and (lob) are also unimpor- 
tant, since as f-0 or 6-1 the variable z and the first term in 
the square brackets tend to zero as [ or 1 - f ,  and b # O  if 
x # na. As a result, the function (1 8) compensates these sin- 
gularities. Thus, there remain the zeros of the function b, i.e., 
the points x = x, = na. 

We arrive at the necessity of splitting the integral (10a) 
into two groups of terms: 

cos X E  cos x(1-g) 
X [  a-b 

In--- b b  

cos xE cos x(l-E) (19) 
X [  a-b 

In--- 
b a cOsxl -  b 

The first group of terms is formed by integrals around 
small semicircles K ,  of radius S, surrounding the points 
x = x, above and below the real axis, the contour passing 
around them clockwise. The second group is formed by inte- 
grals along the two edges of the cut, which are traversed in 
the indicated limits along the upper edge in the positive di- 
rection and along the lower in the negative (6, are small 
parameters that tend to zero in the final expression. In gen- 
eral, they depend on n). In the limit 6-0, both terms in (19) 
contain S-dependent singular terms. But in the complete 
expression for J they cancel each other, as is necessary by 
virtue of the finiteness of the physical quantity Im Y2.  

All that we have said above concerning the analytic 
properties of the integrand in (10a) also applies to the inte- 
grand in (lob). 

240 Sov. Phys. JETP 59 (2), February 1984 S. L. Lebedev and V. I. Ritus 240 



4. CALCULATION OF THE INTEGRALS AND 
REPRESENTATION OF Im 9 2  AS A SERIES WITH RESPECT 
TO EXPONENTIALS 

Lack of space does not permit detailed calculations here 
of the integrals J and  J, in accordance with the scheme (19). 
These calculations are given in the preprints of Refs. 10 and 
11. The final expression for J and J, are two-dimensional 
residues of the functions in the square brackets of (10a) and 
(lob), i.e., 

0 (n-2)  n'" 

Here, S,, is the Kronecker delta, 6- ,  
= 1 - (n + 1 - m).rrx-' in accordance with (13) for the 

(n + l)thpole, 8 (2) = 1 forz>Oand 8 (z) = Oforz < 0, and c.t. 
denotes 

Adding the expressions (1 1) and (20), we finally obtain for 
s = 1/2 

The imaginary part of the two-loop correction to the La- 
grange function in scalar electrodynamics (s = 0) is1' 

Here 

m(n+l)-' 

G 
J 1 a -  - xn(x-xn) 

t-m 
(26)  

a and b are the same as in (7), 

c=cosxE cos x(1-E)+3 sin xE sin x(l-E), 

In ~ = l n  y-'/., 

and c.t. differs from (23) by reversal of the sign of the last 
term and by the common factor ( - 1)" + ' . 
5. ASYMPTOTIC BEHAVIOR OF Im 2 2  FOR A WEAK FIELD 

We find the asymptotic behavior of the functions p, (P ) 
and p,, @ )  ad P-0. It can be shown that these functions 
have the general structure (the index of p is omitted) 

cp ( P I  = k ,  ( P I  +e-"'Ble2 ( p ) ,  (28) 
i.e., at the point /3 = 0 the function p(P ) has an essential sin- 
gularity, which is separated by the representation (28), in 
which k ,,, (P ) do not have an essential singularity at P = 0 
but may have square-root and logarithmic singularities 
there. For 84  1, the functions k ,,, (P ) can be represented by 
asymptotic expansions of the form 

The following simple example illustrates the expression 
(28): 

The functions k ,,, p), which are determined in (30) by inte- 
grals, can be represented for Pg 1 by asymptotic series: 

P 2P" k ,  ( p ,  a )  = - - - +. . . , -kz (p l  a )  = k ,  ( P ,  a+n) 7 (31) 
a2 a3 

the terms of which are obtained from the original integral by 
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successive integrations by parts. This representation can 
also be generalized to the case when (a + in the integral 
is replaced by the functions In x, x1/2, x In x,x3I2, . . . en- 
countered in the calculation. 

In contrast to the integral (30), for the functions p(P ) it is 
difficult to obtain simple closed expressions for the coeffi- 
cients k ,,, (p )in the representation (28). However, the expan- 
sion (28), which is a complete asymptotic expansion (see Ref. 
13) of the functions p ,  can be uniquely constructed by 
successive integration by parts. The finding of the functions 
k ,,, (P )in (28) makes it possible to rewrite the expressions (24) 
and (25) in the form 

where the function a r K ,  (P,s) no longer has an essential sin- 
gularity at P = 0 and determines the radiative correction to 
the nth term of the virial series [see Eq. (4)]. 

We calculate K ,  (P,s) for P< 1. 
We consider the asymptotic behavior of the integral 

term of the function p, (p ) in (21) asp-0. Using the expres- 
sion (A5), we obtain for the integrals in the sum over m and 
corresponding to m # 1 

The integration by parts can be performed arbitrarily many 
times, the singular terms in the expansions of the integrands 
at the origin being subtracted each time (as was done for Fm ). 
It follows from the expansion of F,,, (x') at the origin that 
such singularities will give power, square-root, and logarith- 
mic contributions multiplied by positive powers of B, 

We give here the results of the final calculation, only the 
terms that do not vanish as p-0 being given for k, and k,; 
the intermediate expressions are given for reference in Ap- 
pendix D of the preprint Ref. 10. We have 

The asymptotic behavior of (35) for pln (P ) was also calculat- 
ed in accordance with (33). Integration by parts and the pos- 
sibility of differentiating infinitely many times the inte- 
grands F, ,  (x') with known expansions in the neighborhood 
of the pointsx' = 0 and X ' = r make it possible to construct 
asymptotic expansions of the type (28). As can be seen from 
(A4) and the calculations indicated in (21) and (22), the 
asymptotic expressions (34) and (35) are obtained when 

Replacing p, and p,, in (24) by their asymptotic ex- 
pressions (34) and (35), we obtain an asymptotic representa- 
tion for the function in the square brackets (24): 

+ . . . +e-nlb 2 In ( y n / ! )  -2 +... . 
m=i 

x m x n + i  

Note that the terms of the integral J,  have canceled com- 
pletely against the corresponding terms in the asymptotic 
behaviors of the functions p, and p,, . In the infinite sum 
(24) there is a further canceling of the terms with equal pow- 
ers of exp( - r/P ), SO that for the function K,  (P,s) from (32) 
we obtain the simple asymptotic behavior (5), and for the 
imaginary part of the Lagrange function the expression 

where the ellipsis denotes terms that vanish as fl-0. The 
expression (38) also contains the case of scalar electrody- 
namics (s = 0), lower sign). 

The appearance of the characteristic square-root singu- 
larity in (38) for the terms n>2 is due to the square-root 
asymptotic behavior of the integrals F,,, (x') and F,, (x'), 
m = 2,3, . . . ,n as x'-0 [see (A5) and (A6)]. This behavior 
of these integrals is, in turn, due to the function a-b having 
lines of zeros that, although not entering the regions of inte- 
gration over the hatched triangles in Fig. 2, do touch them, 
which makes it impossible to retain in the expansion of the 
denominator in (A4) only the first term [cf. (A2)]. 

6. INTERPRETATION 

The radiative correction to the n-th term of the virial 
expansion for nP< 1 obtained in Sec. 5 has the following re- 
markable property [see (5)]: 1) it does not depend on the spin 
s; 2) for n>2 it has a term singular in the limit P+O, in con- 
trast to the correction to the leading term n = 1; 3) the singu- 
lar and the constant term have different signs; 4) for n, 1 the 
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correction depends on n and p only through the product np, 
since c, =:(.rr/2)n-'I2 for n b  1. All these properties obtain a 
simple physical explanation. 

Since the terms of the virial expansion have an indepen- 
dent physical meaning, the radiative corrections to them 
must not increase unboundedly with decreasing field. This 
suggests that allowance for the further corrections of order 
a2, a3, . . . , will lead to exponentiation of the correction in 
(38): 

1 - exp (-nnm.Zlee), 
n2 

where 

1 1 ee 
m.(n)=m + -ancn(ee)"'- - an-, npK1, (40) 

2 2 m 

i.e., 2 Im(Y '  + Y2 + . . .) acquires the form of the virial 
series (1) with replacement of the mass m in the weak field by 
the mass m. (n)  determined by the expression (40). 

The properties of the radiative correction listed above 
are not transformed into properties of the mass shift (40) and 
can be explained by means of a picture of the coherent pro- 
duction of n pairs.4 The coherent tunneling of n particles 
separated from each other by the longitudinal distance 
Ar -m-' takes place as the tunneling of one particle with 
charge Q = ne and mass M = mm through a barrier of width 
2M /QE = 2m/e~.  Therefore, to coherent tunneling of n par- 
ticles there corresponds the quasiclassical exponential 
exp( - na/P),  and their distribution with respect to the 
transverse momenta has the form (E, )" . Therefore, the effec- 
tive value of the transverse momentum of a particle in the 
group isp, - (e&/n)'I2, and the effective transverse distance 
between the particles is r, - (n/e..c)'I2. As a result of the co- 
herent tunneling two narrow groups of oppositely charged 
particles are formed during the timedt- m / e ~  with distance 
r =: 2m/ea between them: 

The conditon (41) is equivalent to the condition nP< 1 (36), 
under which the asymptotic behavior (38) is valid. 

The negative term - 1/2an(ea/m) of the mass shift (40) 
does not depend on f i  and can be interpreted as the energy of 
effective attraction of an individual charge to the n charges 
of the opposite sign in the coherent group at distance 
r =:2m/e& from it: 

For n = 1, the negative term of the shift (40) exhausts the 
entire shift and is equal to the classical mass shift of an accel- 
erated charge found in Ref. 14. This agreement confirms the 
validity of the exponentiation of not only the singular but 
also the constant term of the radiative correction to the nth 
term of the virial expansion. 

The positive term 1/2anc, (e&)'I2 of the shift (40) de- 
pends on f i  and is the energy of the Coulomb repulsion of an 

individual charge by the remaining n - 1 like charges, the 
partners in the coherent group, which are at distance 
r, - (nf ic/e~)"~ from it [see (41)l. 

(n  - 1) e2 n - l  
- u p  n'la ( ~ C E E ) ~ [ ~  ' 4nri r,-(nnc/ee)'l2 (43) 

The estimates (42) and (43) reproduce all the qualitative fea- 
tures of the shift (40), including the fact that it does not de- 
pend on the spin. 

Particular attention should be drawn to the agreement 
between the mass shift for the leading term n = 1 and the 
mass shift of a uniformly accelerated charge.14 This casts 
light on the reason for the radiative enhancement of pair 
production by a weak electric field-the accelerated charges 
are lighter than the unaccelerated charges, and therefore 
they can be more readily produced. In addition, this also 
makes it possible to give a new interpretation of the shift 
itself: Whereas in the scattering channel "e + field 
+e + field" it can be interpreted as a reactive energy15 or as 
a manifestation of the clock paradox,16 in the cross channel 
"field +ef e- + field" it can be regarded as an effective at- 
traction between the e+e- in their region of formation. 

We thank A. I. Nikishov for discussion and comments. 

APPENDIX 

We find the asymptotic behavior with respect to 
x' = x - x, of the integrals 

mln+i)-' 
dE cos X E  cos x ( I - E )  

F.(xJ)= J 
E-m 

E(1-E.1 (a-b) (-41) 

assuming that x lies in the (n + 1)st inclined strip, i.e., 
0 <x'  < a. As x'-0, expanding the integrand with respect to 
x' we obtain 

X n  =- - X n  xnZ 
-2+xn ctg - + ---- +0 (x', x' In x') . 

x / n+l n+l 

In the complete range of integration, the second term in the 
expansion is of order x' relative to the first. We have used the 
expressions 

5 / 
c=l-Rn cos 2znE - - Sn cos 2xnf ; f . .  . , 

5. 

where R, and S, are functions ofg with the following behav- 
ior near the origin and the point m/n: 
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n (n-2m) 
Rn- - 

n2E'2 [i - (n-m) m (n-m) 
it+ ...I. 

n(n-2m) 
s. - ,'+. . .] , 

m (n-m) m (n-m) 

which is important for calculating the correction terms of 
the asymptotic behaviors. 

Similarly, for F, ,(xf) we obtain 

The asymptotic behaviors of the integrals F, (xl),F,, (x'), 
m = 2, . . .,n as xf+O can be found similarly if instead of 4 
we introduce the variable 

Then 

The ellipsis in the denominator denotes all the remain- 
ing terms, which are -x'u2, x", i.e., in the complete range of 
integration they are of order xi relative to the leading terms 
that we have given explicitly. The ellipsis in the numerator 
denotes terms -xlu, which for the given accuracy can also 
be ignored (like terms -x' if there were any). The integral 
determined by the leading terms can be calculated exactly 
[see 1.5.9 (27) in Ref. 17)]: 

f 0 (x'"', x' In x') . (A51 

The difference between the integrals F,(xl) and F, (x'), m # 1, 
a s x ' 4  is due to the different behavior of the second term of 
the expansion with respect to x' of the integrand near the 
lower limits of integration, as a result of which the integral 
(A2) is basically determined by the first term of the expan- 
sion in the regiong-x', while the integral (A4) is determined 
by both the first and the second term in the region 
6 ' = 6 - (m - l ) / n  -x"'~.   similar calculation forF,, (x') 
gives as x ' 4  

+ O (XI-'", In x') . ('46) 
The asymptotic behaviors of the functions F, and F,, as 
Xt-m are 

We have used expansion of the denominator a-b in the 
neighborhood of the point x = x, + , . The simplification of 
the asymptotic behavior is due to the limits of integration 
with respect to 6 getting closer together: As X '--m, we have 
g,,+rn(n + I)-'. 
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