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The possibility of separating the interactions that occur between elementary particles and nuclei 
into coherent and incoherent processes and the validity of the single-particle approximation in the 
analysis of the behavior of these particles in a nucleus allow a constructive solution of the problem 
of describing the incoherent processes of interaction of particles with nuclei with the use of 
dispersion relations and the diagrammatic technique. The thus arising equations for the single- 
particle Green functions describing the behavior of the single-particle component in the nucleus 
can be solved in the quasiclassical approximation. This circumstance allows us to formulate an 
approach to the description of nuclear reactions that employs the methods of kinetic theory. It is 
shown that this approach allows the analysis of the behavior of a fast particle in a nuclear reaction. 
A comparison of the results obtained with the experimental data leads to the conviction that the 
present approach allows the description of both the experimental data on the inelastic interaction 
of pions with a nucleus and the processes of pion and nucleon production on nuclei by intermedi- 
ate energy protons. 

1. INTRODUCTION 

One of the most interesting problems of nuclear physics 
is the problem of describing the behavior of elementary par- 
ticles in nuclear matter, a problem which reduces to a con- 
siderable degree to the problem of describing the propaga- 
tion of these particles inside a nucleus and of describing their 
interaction with the nucleons of the nucleus. In principle, 
this problem can be solved within the framework of a theory 
that uses dispersion relations and the diagrammatic tech- 
nique.' To constructively solve this problem, we can use the 
fact that all the particle-nucleus interaction processes can be 
separated into coherent processes, i.e., processes that do not 
cause a change in the state of the nucleus and are responsible 
largely for the propagation of the particles through the nu- 
cleus, and incoherent processes.2 For the description of the 
coherent scattering of elementary particles of sufficiently 
high energies by nuclei, we have a multiple-scattering the- 
ory3 that correctly reflects the main features of this process. 
The description of the incoherent processes requires both the 
correct consideration of the collisions of the particle with the 
nucleons of the nucleus and the consideration of the effect of 
the coherent propagation of the particles, and is therefore a 
more complicated problem. The present paper is devoted to 
the solution of this problem and the application of the results 
obtained to the description of the inelastic interaction of 
pions and nucleons with nuclei. To solve the problem, we 
shall use the method of single-particle Green functions un- 
der the assumption that the collisions between the particles 
inside the nucleus have a random character. 

We shall formulate the picture of the scattering of an 
incoming particle by the nucleons of the nucleus in the lan- 
guage of multiple scattering and rescattering of waves. The 
wave 11 corresponding to the initial particle can be coherent- 
ly scattered by the nucleons of the nucleus, which, as we 
assume, are arranged randomly. The averaged-over the 
scattering centers-coherent sum wave $ can be described 
by a Schrodinger equation with a complex potential4: 

Besides the coherent scattering, which leaves the system of 
scatterers unchanged, there occurs between the incoming 
wave and the nucleons of the nucleus an incoherent interac- 
tion that leads to a change in the state of the randomly dis- 
tributed nucleons in the nucleus and, hence, to a change in 
the state of the nucleus. Such a description, in which each 
particle-scattering event with a nonzero scattering angle 
leads to the inelastic excitation of the nucleus in an incoher- 
ent manner, implies that there exists a connection (known as 
the fluctuation-dissipation theorem) between the coherent 
and incoherent scattering processes, i.e., that the damping of 
the incident wave in the medium is entirely due to inelastic- 
collision processes. 

In terms of the single-particle wave function $, this 
means that the part S$ = $ - $ of the wave function which 
is responsible for the incoherent scattering should, on being 

- 
averaged over the random scatterers, vanish, i.e., S3 = 0. 
Then if we write Eq. ( l a )  for $, then the equation for $ should 
differ from ( l a )  by a term that takes account of the incoher- 
ent collisions: 

Then we should, on averaging over the randomly distributed 
scatterers, set J =  0. Thus, we have separated the collision 
processes into two parts: the coherent, Vd,  and incoherent, j ,  
parts. 

It is now clear that, to describe the initial-particle-ener- 
gy-averaged inelastic processes due to the incoherent scat- 
tering, we should investigate the behavior of the 63811. 
Then, knowing from Eq. ( l a )  the function $, we can deter- - - 
mine the correlation function @ = $-$- + S38$ of the 
system. 

Such a description of the interaction of an incoming 
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particle with a nucleus, in which we limit ourselves to the 
consideration of the single-particle modes of excitation of 
the system, is valid in the case when the particle's mean free 
path I is significantly longer than the correlation length r, . 

Let us note that, in the theory of finite Fermi systems5 
and in many-body t h e ~ r y , ~  the optical model is justified by 
separating from the eigenenergy operator in the equation for 
the Green function the part that is a smooth function of the 
energy. We shall use a similar recipe to describe the coherent 
processes, assuming that averaging over the energy is equi- 
valent to averaging over the random scatterers. 

To compute the correlation function @ = $-$- 
- + a@$, we shall use the methods of quantum statistical 

mechanics developed in Refs. 5,7-11. 

2. DETERMINATION OF THE SINGLE-PARTICLE GREEN 
FUNCTIONS AND THEIR CONNECTION WITH THE CROSS 
SECTION. THE EQUATIONS OF MOTION 

To determine the single-particle Green function, which 
contains all the single-particle information about the inter- 
action of the incoming particle with the nucleons of the nu- 
cleus, let us use the Heisenberg representation of the particle 
creation and annihilation operators, IV + (r,t ) and IV (r,t ), and 
let us introduce it as the average over the state @, of the total 
Hamiltonian which describes the scattering of the incoming 
particle by the nucleons of the nucleus: 

where (see, for example, Ref. 9) 

Gq(rc, t,, rz, tz) ==MY + (rz, tz) Y (r,, ti) >, 
(3) 

G'(r,, ti, rz, tz) =-i(Y (r,, t,) Y+(rzr  tz) >. 
Here and below c = f i  = 1; the lower sign pertains to fer- 
mions; the upper sign, to bosons. The physical interpretation 
of the Green functions (3) consists in the following: 
G' (r,,t,,r,,t,) gives the amplitude of the probability of find- 
ing at the point r ,  at the moment t, a particle added at the 
point r, at the moment t,, while G <  (r,,t,,r,,t,) is the ampli- 
tude of the probability that the removal of a particle at r,, t ,  
will lead to its being absent from the point r, at t,. It should 
be noted that, for t, = t,, the quantity - iG< (r,,t,,r,,t,) is 
the density matrix of the system, while the quantity 

(n(r, t))=-iGC(r, t, r, t )  (4) 
is the mean particle density at the point r,t. 

Let us go over to the Wigner representation for the 
Green functions, for which purpose we make the change of 
variables 

1 - ,  t=t,-t,, 

R= (r,+s)/2, T= (ti+tz) /2 
( 5 )  

and, performing a Fourier transformation with respect to r 
and t, we obtain 

G'(E, p, R, T)= I h d t  erp(-ipr-kiet) (tiGc(r, t, R, T)) ,  

G'(e, p, R, T) -5 dr dt erp(-ipr+i~t) (iG'(r, t, R, T)). 
(6)  

This representation is convenient in that it allows us to deter- 

mine the quantum-mechanical distribution function 

Strictly speaking, the quantum-mechanical distribution 
function is not a positive definite quantity on account of the 
uncertainty relations. The physical meaning of the distribu- 
tion function is contained in the integral of this function: if 
we integrate (7) over the momenta, we obtain the particle- 
density distribution as a function of the coordinates, while if 
we integrate over the coordinates we obtain the momentum 
distribution of the particles in the system. In the classical 
limit the function (7) goes over into the normal classical dis- 
tribution function. Thus, it can be seen that the function 
G' (&,p,R,T) characterizes the density of the particles with 
momentum p and energy E at the space-time point R,T. The 
function G' (&,p,R,T), in its turn, characterizes the density 
of the possible (&,p) states at the point R,T, provided they are 
not occupied. 

It is clear that, in a nuclear reaction, all the states of the 
continuous spectrum will get out of the nucleus by the mo- 
ment of time T-+ m. Therefore, the cross section for inclu- 
sive reactions, e.g., (N,N ' x ) ,  where N is a nucleon, can be 
written in the form 

where I is the incident flux. It should be noted that, if the 
form of the interaction between the particles in the final state 
is known, then possession of complete information about the 
single-particle Green functions allows us to describe the pro- 
duction of complex particles (e.g., in pickup reactions) as 
well. 

In a real experiment we deal with an ensemble consist- 
ing of a particle beam and the nuclei sf the target. Such a 
system is not in a definite eigenstate @ ,  of the Hamiltonian, 
and is rather described by the density matrix corresponding 
to the distribution of the particles of the incident beam. 
Therefore, it will be more correct to average (3) over the 
distribution, which, for definiteness, can be approximated 
by the Lorentz function and represented in the form 

Sp (pY + (rz, tz) '4 (r,, ti) 
GE<(rij ti, r2, t ~ )  = 

s PP 
I (9) 

where 

while H is the total Hamiltonian of the system nucleus plus 
incoming particle. Strictly speaking, the expression (10) con- 
tains the Hamiltonian Ho in which the interaction between 
the incoming particle and the nucleons of the nucleus is ne- 
glected. The replacement of Ho by H is equivalent to the 
replacement of the averaging over the energy of the initial 
particle by the averaging over the ensemble of states of the 
system nucleus + particle. This basic assumption that the 
computation of the energy-averaged Green function G E  can 
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be replaced by the computation of the Green function 
averaged over the ensemble of random scatterers allows us to 
use the methods of mutiple scattering theory. 

Let us introduce the Green function 

G C ( r l ,  ti, rz ,  t z )  = r i ( Y + ( r z ,  t z )  Y (r i ,  t i )  ), (11) 
where the bar denotes averaging over the ensemble of ran- 
dom scatterers. Let us separate out from Y and Y + the parts - 
Yand + averaged over this ensemble of particles. Then the 
Green function (1 1) can be represented in the form 

€<(r1, $ 1 ,  rz, tz) 

In this representation the function g' describes the change, 
caused by the coherent processes, in the single-particle 
states, whileg< describes the change caused by the incoher- 
ent processes. Similarly, we can introduce the Green func- 
tion 

t i ,  r2, t2) =E'(ri, ti, rz, t z )+g>(r i ,  ti, rz, t z ) .  (12b) 

Thus, we have reduced the problem of describing nuclear 
reactions to the problem of computing the Green functions 
jj< ,gC , jj> , andg' . Since we are primarily interested in the 
description of inelastic reactions caused by incoherent pro- 
cesses, our problem has been reduced to the problem of com- 
puting the functions g <  and g >  . 

Let us write the equations for Y and Y + in the case of 
interest to us. We shall assume that at the initial moment of 
time we have a bound system of A particles (the target nu- 
cleus) and an imcoming particle, and that these particles 
move in a mean nuclear field U (r). Furthermore, the parti- 
cles of this system interact through a residual interaction. In 
this case the coherent interaction processes can be described 
by the equations 

Here2 - a n d 2  + are the mass operators that cause a change 
in the states of the system through the coherent processes. 
Notice that i f 2  * are local operators, then they can be relat- 
ed to the optical potential. To take account of the coherent 
processes, we proceed in the same way as we did in the deri- 
vation of Eq. (I),  i.e., we add randomly distributed currents 
j -(r,,t,)andj - '(r,,t,) to the right-hand sides of (13), assum- 
ing that j - = j + = 0. Then we can derive for the functions 
g' and g' equations for the formulation of which we use 
the matrix form: 

g<=g+Z'g-, g>=g+z=-g-, 

where 

while g + and g - are distribution functions satisfying the 
equations 

Here go is the Green function describing the collisionless 
motion of the particle in the field U: 

Thus, we have obtained for the description of the inco- 
herent processes four equations (14) and (16) that can be 
solved once we have found a way of computing the mass 
operators 2 * and 2' . We use for this purpose the diagram- 
matic technique developed in the theory of many-particle 
systems (see, for example, Refs. 8-10). In this case only two 
of the four Green functions in Eqs. (14) and (16) are linearly 
independent, since the functions g * and g2 are connected 
by the relation 

g* ( r i ,  t i ,  r z ,  t z )  =*q+lti-tz) [g2 ( r1 ,  ti, rz ,  t z )  

where 7 + (t ) = 1 + t / I  t I. The single-particle character 
of the initial conditions allows us to justify the applicability 
of the diagrammatic technique to the computation of the 
mass operators, since in this case, to compute 2 ,  it is suffi- 
cient to know only the single-particle Green functions, or, in 
other words, the higher-order Green functions can always be 
determined in terms of the single-particle functions. Notice 
that the single-particle character of the initial conditions 
arises in our case as a result of the separation of the mean 
field U (r), which is equivalent to the use of the single-particle 
model to describe the state of the nucleus. 

Since we assume that the mean field U (r) of the nucleus 
does not depend on the time, i.e., since we neglect the recon- 
struction of the nucleus in the course of the reaction, this 
implies that the problem being solved by us is a stationary 
one, i.e., the Green functions and the mass operators depend 
only on t, - t,, and not on t, + t,. In this case the cross 
sections for nuclear reactions can be determined in terms of 
the asymptotic values of the distribution function (7) for 
R+CC (see, for example, Ref. 12), which is in accord with the 
experimentally observed cross sections. 

3. THE EQUATIONS IN THE QUASICLASSICAL 
APPROXIMATION AND THE CONDITIONS OF THEIR 
APPLICABILITY TO THE DESCRIPTION OF NUCLEAR 
REACTIONS 

The use and interpretation of the Dyson equations (14) 
and (16) in the description of nuclear reactions are a compli- 
cated problem. But they can, in the quasiclassical approxi- 
mation, be related to the kinetic approach, and are therefore 
a constructive method of describing nuclear reactions. For 
the kinetic equation to be derivable, it is necessary that the 
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single-particle operators (g ; )-' and (g z)-' exist,'' a con- 
dition which is fulfilled in our case. The scheme for deriving 
the kinetic equation is the traditional one (see, for example, 
Refs. 8 and 10): 

1) we let Eq. (14) be acted upon first by the operator 
(g ,+ )-' and then by (g ; ) -  ' and use the relations (1 6); 

2) we take the difference between the resulting equa- 
tions; 

3) we go over to the coordinates R,r,r (5); 
4) we carry out the quasiclassical series expansions 

about the point R of all the quantities entering into the equa- 
tion obtained, and perform Fourier transformations. 

The use of the quasiclassical approximation is equiva- 
lent to the following estimate: 

r r-r' J e-iprma (e, r-11, R + -) b (8, r', R - -) dr' dr 
2 2 

where 

{a, b )= (V~a)  ('7,b)-(V,a) ( V R ~ )  (20) 

is the classical Poisson bracket (in the expansion (19) we have 
explicitly written out the fi  dependence, so as to emphasize 
its quasiclassical character, as an expansion in powers of f i ) .  

In this case we obtain equations that are a self-consis- 
tent generalization of the classical Boltzmann equation: 

gZ(&, P, R))  

*{Reg(&, P, R) ,  

.Z'(e, p, R))=-Z"(e, p, R)g<(e, P, R) 

+ w e ,  P, R)gZ(e, P, R), (21b) 
where 

2Re X=Z++Z-, 2Re g=gi+ g-. (22) 

Let us enumerate the conditions of applicability of the 
equations (2 1). 

a) The quasiclassical behavior of the mean field: 

I dU/dR I I d3U/dRS I x2; (23) 

b) the expansion (19) is applicable if the nonlocal term is 
significantly smaller than the local term, i.e., if 

The normal estimates for the factors on the left-hand side of 
this inequality are as follows: 

where I is the mean free path of the particle and 7t is its 
wavelength. Then the condition (24) assumes the form 

ZBX.  

Strictly speaking, the expansion (19) and, accordingly, the 
equations (21) contain the first terms of the power series ex- 
pansion in this parameter, i.e., the accuracy of the quasiclas- 
sical approximation under consideration together with the 
condition (23) is determined by the parameter 

(X/l)2<l. (25) 

As has already been noted in Sec. 2, the function 
g <  (c,p,R) characterizes the density of the particles with en- 
ergy E and momentum p at the point R, while the function 
g' (&,p,R) characterizes the density of admissible ( ~ , p )  states 
at the point R. The quantitites U and Re 2 are respectively 
the energy-independent and energy-dependent real parts of 
the mass operator characterizing the interaction of the parti- 
cle with nucleus, with Re 2 characterizing the polarization 
of the nuclear matter during the propagation of the particle 
in it. The right-hand sides in the equations (21) result from 
the incoherent collision processes involving the particle and 
the nucleons of the nucleus. The quantity 2> (&,p,R) charac- 
terizes the collision rate for a particle with energy E and mo- 
mentum p at the point R, while 2< (&,p,R) characterizes the 
probability of transition into the (&,p) state, provided it is not 
occupied. 

Since we shall use the diagrammatic technique in (R,p) 
space to compute the mass operators 2' , 2', and 2* 
(Refs. 9 and lo), it follows from the condition (18) that 

g+ (ri, ti, r2, t2) -g- (ri, ti, rz, tz) =gr (ri, ti, rz, tz) 

-gc(ri, ti, r2, tz). (26) 

The use of Eqs. (14) and (16) leads to the relation 

Zt(ri, ti, rz, tz) --2-(ri, ti, rz, t2) =Xr(rir ti, rz, t2) 

-ZC (r1, ti, r2, tz) , (27) 

which, in the Wigner representation (6), is equivalent to 

while the quantity Re 2 is given by the dispersion relation8 

where the symbol f denotes the principal value of the inte- 
gral. 

On account of the relation (7), we shall seek the solution 
to the equations (21) in the form 

Subtracting Eq. (21b) from Eq. (21a), we obtain 

{E-p2/2m-U-Re 2, a) + {Re g, 21m Z) =O (32) 
The integration of Eq. (32) yields 

2 ImX 
a (e, P, R) = 

(e-p2/2m-U-Re Z) 2+ (Im 2)' ' (33) 

E-p2/2m-U-Re Z 
R e g ( ~ , p ,  R)= (E-pv2m-U-Re X)2+ (Im 2) ' 

(34) 
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FIG. 1. Diagrams considered in the computation of 2. a) and b) corre- 
spond respectively to elastic nucleon-nucleon and pion-nucleon scatter- 
ing; c) pion absorption; d) and e) pion production in nucleon-nucleon and 
pion-nucleon interactions. 

The solutions (33) and (34) satisfy the boundary conditions, 
since U = Z = 0 outside the interaction region and the parti- 
cle is located on the mass surface 

g'(&, P, R) =2n6 (8-p2/2m)f (p, R) (35) 
and correctly reproduce the ground state of the nucleus 
within the framework of the single-particle model. 

We should, in computing the quantities 2* in the low- 
est order in the interactions V, governing the internucleon 
collisions, consider a diagram of the type shown in Fig. la, in 
which the lines are associated with the Green functions and 
the points are associated with the interactions. Then we ob- 
tain 

de' dp' deq dq d e i  dq' 

x (2N4.6 (P t q - P' - q') 

x 6 ( &  +&q-sf - E ~ ) ) ] v R ( P - ¶ ) ~ ~  gs(&qr Q,R) 

X g2 (e', p', R) g2 (&ql, qf, R). (36) 

If we neglect in the equations (21) the nonlocal terms 
(Re 2, g' ) and (Re g,2 1, which are due to the polarization 
of the nuclear matter, then 

gC(e,  p, R) =2n6 (8-p2/2m-U) f (p, R) . (37) 
Performing the integration over energy in (21), and using the 
formulas (36) and (37), we obtain the usual Boltzman equa- 
tion 

A comparison of the generalized Boltzmann equations 
(21) with the classical equation (38) allows us to better under- 
stand their physical meaning. As in the Boltzmann equation, 

the term ( U, g' ) describes the motion of the particle along 
a classical trajectory under the action of the force 
( - V, U (R )). The term ( - V, Re E )(V, g' ) gives rise to an 
additional force due to the polarization of the medium. The 
presence of the term (V, Re 2 )(V, g' ) leads to a change in 
the coordinate of the particle as a result of the nonlocal char- 
acter of the interaction." 

The quantum mechanics we cannot uniquely determine 
the trajectory of the particle; therefore, the propagation of 
the particle inside the nucleus corresponds to a multiplicity 
of trajectories. This effect also occurs in the equations (21). 
The terms (Re  g,E2 ) lead to the departure of the particle 
from a given trajectory and the appearance of it on other 
trajectories (i.e., the coordinate and momentum of the parti- 
cle change), these trajectories occupying in terms of the co- 
ordinates a phase volume characterized by the wavelength#. 
Naturally, we can speak of a particle trajectory between 
collisions only in the case when the mean free path is signifi- 
cantly longer than the wavelength, as required by the condi- 
tion (25). 

It should be noted that since in Eq. (21) the terms pro- 
portional to ( % / I  )2  are not considered, it is sufficient, in com- 
puting 2 ,  to restrict ourselves to the consideration of the 
diagrams of the type shown in Fig. 1, and treat the interac- 
tions described by the interparticle collisions as free interac- 
tions. Allowance for the higher-order diagrams is equivalent 
to the analysis of the corrections of the next order in the 
parameter# /I, and would mean our going beyond the degree 
of accuracy of the equations (2 1). 

In Ref. 13 an algorithm is formulated for solving the 
generalized Boltzmann equations describing the incoherent 
interactions of a particle with the nucleons of a nucleus. This 
algorithm contains quantum-mechanical effects that play an 
important role in the description of the process of propaga- 
tion of the particle inside the nucleus, and allows us to take 
into account the nonlocal properties, i.e., the dependence on 
the energy and momentum of the mass operator characteriz- 
ing the interaction of the particle with the nucleons of the 
nucleus. The proposed algorithm uses the method of random 
trials, and possesses the same property of universality as the 
model of intranuclear cascades. This allows us to describe 
diverse many-particle reactions within its framework, com- 
pute the excitation energy brought into the nucleus in the 
forward phase of the reaction, and, consequently, combine 
the proposed method with the models describing the decay 
of the excited nucleus. 

The mass operators are computed by the method of 
successive approximations. Let us set Re 2 = Im 2 = 0 in 
the expression (33), and compute2*, approximating the in- 
teractions / V(p - q)I2 with the aid of the cross sections for 
interaction between free particles (in the spirit of Ref. 10). 
Using the relations (29) and (30), we find Im 2 and Re 2. 
Then substituting them into (36), we compute new values for 
2* and, consequently, for Im 2 and Re 2. Such a procedure 
converges after four-to-five iterations. The multiple inte- 
grals in the formula (36) were evaluated by the Monte-Carlo 
method, and the computational error was not higher than 
5%. Notice that, since, in using the cross sections for inter- 
action between free particles, we consider the relativistic 
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kinematics, we must also use in place of the expression (33) 
the relativistic formula 

4. COMPUTATION OF THE NUCLEON AND PION MEAN FREE 
PATHS IN NUCLEI. ACCURACY OF THE METHOD 

The dependence on the energy and momentum of the 
mass operator characterizing the interaction of the particle 
with the nucleus leads to the renormalizaton of the nucleon 
mass and to a change in the mean free path (MFP) of the 
particle inside the nucleus, as compared with the usual esti- 
mate used in the solution of the Boltzmann equationI4: 

l=Plpo; (40) 

herep is the nuclear matter density, u is the total cross sec- 
tion for interaction of the particle with the nucleons of the 
nucleus, and P i s  a factor taking account of the Pauli princi- 
ple. Since the approach expounded here allows us to take 
these effects into account, it is of interest to carry out the 
computation of the values of the MFP within the framework 
of the quasiclassical approximation in a self-consistent fash- 
ion, and compare it with the values extracted from the data 
on the elastic scattering of protons by nuclei. For such a 
comparison, we must compute the MFP values correspond- 
ing to the propagation of a particle in a nucleus whose distri- 
bution density is characterized by the function f (p,R). Since 
in the classical limit the function f (p,R), given by the expres- 
sion (7), goes over into the classical distribution function, the 
MFP I (p,R) of the particle can be determined from the rela- 
tion 

In the region of intermediate energies (from hundreds of 
MeV to several GeV), it is sufficient to restrict ourselves to a 
simultaneous description of nucleons and pions. Therefore, 
in computing the mass operators and, consequently, the 
MFP, we took the following processes into account: the elas- 
tic nucleon-nucleon and pion-nucleon scattering and pion 
production and absorption by a pair of nucleons. The corre- 
sponding diagrams are shown in Fig. 1. The contribution of 
the pion absorption process is taken into consideration by 
approximating the interaction with the aid of the cross sec- 
tion for pion absorption by the deuteron, and the probability 
for finding a pair correlation inside the nucleus is related to 
the cross section for absorption in y quanta by n ~ c l e i . ' ~  In 
computing the diagrams that take account ofthe pion rescat- 
tering (Fig. lb), we also take the charge-exchange process 
involving pions into consideration. 

The results of the MFP calculations are shown in Figs. 2 
and 3. It can be seen that the MFP values obtained in the self- 
consistent calculation in the central regions of the nucleus 
are two-to-three times higher than the estimates obtained 
from the formula (40). Figure 3 shows the nucleon-density 
dependence of the coefficient characterizing the increase in 
the MFP given by the expression (41) in comparison with the 
estimate (40), which corresponds to the use fo rZ  in (4 1) of the 
zeroth approximation in the method of computing the mass 
operators. It follows from Fig. 3 that no significant increase 

FIG. 2. Dependence of the mean free path (MFP) of protons in the central 
region of the nucleus (a) and in the case when the density p =p,/2 (b) on 
their energy. The hatched region corresponds to data obtained in an ex- 
perimental analys i~ . '~  1) Classical MFP estimates made with the use of the 
free cross section and with allowance for the Pauli principle (i.e., they 
correspond to the zeroth approximation); 2) result of the self-consistent 
MFP calculation; 3) the de Broglie wavelength; the dashed curves indicate 
the MFP values corresponding to the quasiclassical approximation to the 
optical model. 

in the MFP occurs at the surface of the nucleus. 
The calculations carried out allow us to estimate the 

accuracy, determined by the condition (24), of the proposed 
method of describing nuclear reactions. Since it / I =  0.25 in 
the worst case for pions in the (3,3) resonance region, the 
equations (21) are accurate to within 10%. For nucleons and 
pions with energy higher than 50 MeV, the error connected 
with the condition (23) does not exceed 10-20%. Thus, in the 
intermediate nucleon- and pion-energy region the proposed 
approach to the description of nuclear reaction is accurate to 
within 20-30%; the remaining errors here should be ex- 

0 u.5 I 

P/Po 
FIG. 3. Factor characterizing the excess of the MFP computed in a self- 
consistent manner in the quasiclassical approximation over the classical 
MFP value as a function of the nucleon density in the nucleus for nucleons 
( I )  and pions ( 2 )  with energy 200 MeV. 
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plained by deficiencies in the nuclear model, or in the reac- 
tion mechanism. As to the accuracy of the Boltzmann equa- 
tion, it is characterized by a factor of 2. 

5. DESCRIPTION OF THE INELASTIC PION-NUCLEUS 
INTERACTIONS 

Analysis of the data on elastic pion scattering by nuclei 
convinces us that, first, the effects contained in the terms 
(Re gJ* ) and Re 2, g* ) in the generalized Boltzmann 
equation (GBE), (21), should appear in the description of the 
propagation of pions in a nucleus, i.e., should manifest them- 
selves in pion-nucleus interactions, and, secondly, it is pre- 
cisely these reactions that are the most critical for the verifi- 
cation of the approach, proposed in the present paper, to the 
description of nuclear reactions. 

We shall focus our attention on the description of the 
inclusive processes of inelastic scattering a + ' A m '  + X, 
or pion absorption a + 'A-absence of a + X, as well as the 
description of exclusive reactions of the type (a ,alN).  We 
took the diagrams shown in Fig. 1 into account when com- 
puting the mass operators. Notice that, since our computa- 
tions are based on the use of the Monte-Carlo method, they 
contain statistical errors. In those cases where they are not 
indicated in the comparison with the experimental data, it 
means that the errors do not exceed 5%. No free parameters 
were used in the calculations, and all the cross sections are 
given in absolute units. The calculations are presented in 
order of increasing degree of detailedness of the experimen- 
tal data: the analysis begins with the description of the total 
cross sections for inelastic interaction of pions with nuclei 
(reaction cross sections) and ends with the description of the 
double differential characteristics. 

Figure 4 shows the experimental and computed energy 
dependences of the cross sections for inelastic interaction of 
pions with the 12C nucleus. It can be seen that the calculation 
performed within the framework of our approach (i.e., of the 
GBE) reproduces both the magnitude of the cross sections 
and the position of the peak. This means that the proposed 
approach allows us to reproduce correctly both the imagi- 

I 
il 100 200 300 

Ez, MeV 

nary and the real parts of the mass operator E. The calcula- 
tion performed in the solution of the Boltzmann equation 
within the framework of the method of intranuclear cas- 
cades (MIC), i.e., without allowance for the terms in the 
GBE that take account of the polarization of the nuclear 
matter in the presence of pions, does not reproduce the 
peak's position, which in this approach coincides with the 
position of the peak in the pion-nucleon interaction, this 
peak occurring at an energy of 180 MeV. This circumstance 
has made necessary the introduction in MIC calculations of 
an energy-independent pion-nuclear potential in the form of 
a square well of depth 25 MeV (Refs. 14 and 17). It is clear 
that the introduction of such a free parameter, which is in- 
consistent with the experimental data on elastic scattering, is 
incorrect, if only because the result obtained in the MIC 
without the introduction of this parameter is in agreement 
with experiment if we taken into consideration the accuracy, 
discussed in the preceding section, of the quasiclassical ap- 
proximation when it is used to describe this type of reaction. 

Thus, we verify in the particular case of the most inte- 
grated characteristic of the pion-nucleus interactions the ne- 
cessity of a self-consistent computation of the real and imagi- 
nary parts of the mass operator and the fact that it is 
incorrect to neglect any terms in Eq. (21). Let us note that 
our approach allows us to reproduce as well the cross sec- 
tions for pion absorption on the basis of the quasideuteron 
mechanism. 

The most critical for the verification of the theory are 
data in which an important role is played by the multiple 
interaction of the pion with the nucleons of the nucleus, and 
in which the correct description of the scattering in the cen- 
tral regon of the nucleus, where the effect of the polarization 
of the nuclear matter is strongest, is important. An example 
of such a process is the double charge-exchange process in- 
volving the a meson. Unfortunately, this process has been 
experimentally studied only on the nuclei of photoemul- 
sions, where it is difficult to uniquely establish the identity of 
the target nucleus, but the trend of the energy dependence of 
the double charge exchange cross sections can be verified. 

I I 

a 100 zoo 100 
E,, MeV 

FIG. 4. Dependence of the cross section for inelastic interaction of pions FIG. 5. Dependence of the cross sections for the double charge transfer 
with the 12C nucleus on the energy of the initial particle. The points repre- (n+,n-) on the n+-meson energy. The closed circles represent experimen- 
sent experimental data16; the continuous curve is the result of a GBE tal data for emulsion n ~ c l e i ' ~ " ;  the open circles, the results of a GBE 
calculation; the dashed curve, the result of an MIC calculation. calculation. 
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FIG. 6 .  Dependence of cross section for the reaction 1 2 C ( ~ + , ~ ' N ) 1 1 C ,  
involving the quasielastic knocking out of a nucleon, on the energy of the 
initial pion. The curve is a plot of experimental data taken from Ref. 19a; 
the closed circles are the result of a GBE calculation; the open circles, the 
result of an MIC calculation (a version of the calculation performed in 
Ref. 17al. 

Figure 5 shows the computed and experimental cross sec- 
tions for the process (a+,aP) .  The calculation was per- 
formed for the I2C nuclei. It can be seen that the calculation 
reproduces well the growth of the cross section for this pro- 
cess as the energy of the initial pion increases, and predicts 
the saturation of this dependence at an initial energy of 200 
MeV. Mischke et al.lBb have measured the cross section for 
double charge exchange in the reaction 160(a+,n-) with 
E,+ = 240 MeV. The experimental cross section 
(ue,, = 5.8 & 0.9 mb) for this process is also fairly well re- 
produced in the calculation performed within the frame- 
work of the solution of the GBE (acalc = 4.8 f 0.6 mb). 

Figure 6 shows the yield of the "C isotope in the reac- 
tion 12C(a+,a'N)11C as a function of the energy of the initial 
pion. In computing the cross section for this process together 
with the forward reactions, we must also take into considera- 
tion the excited-nucleus decay process.I4 We see that the 
calculation with the use of the GBE for the description of the 
forward phase reproduces not only the magnitude of the 
cross sections in the case of the interaction of the a- mesons, 
but also the curve width, which is not reproduced in cascade- 
evaporation model calculations (the results for this model 
calculation were taken from Ref. 19a, and correspond to that 
version of the MIC which is described in Ref. 17a). In Ref. 

19a this circumstance is related to the more important role 
played by the central regions of the nucleus in processes of 
this sort as compared with the role realized in cascade calcu- 
lations, since the higher Fermi momenta corresponding to 
the higher nucleon densities lead to a greater degree of 
smearing of the energy dependence of the aN-interaction 
cross section. Indeed, as we saw in Sec. 4, the self-consistent 
procedure for computing pion mean free paths in a nucleus 
yields larger values in comparison with the values used in 
cascade calculations, which leads to a situation in which the 
central regions of the nucleus play the major role. 

The discrepancy between the calculations and experi- 
ment in all the approaches to the description of the reaction 
with a+ mesons is apparently due to the major role played 
by the coherent processes of charge transfer from a proton to 
a neutron. The coherence is attested by the good description 
of the analogous reaction on gold nuclei for both a' and a- 
mesons (Table I). At the same time, let us note that our ap- 
proach also describes well the angular distributions of the 
a+ mesons in the reaction ( a+ ,n fp )  (Fig. 7), which indicates 
a correct description of the initial phase of the pion-nucleus 
interaction process. Analysis of the reaction (a,ap) within 
the framework of the dispersion approach'9c shows that the 
greatest contribution to its cross section is made by the pole 
mechanism and the mechanism of decay of the excited nu- 
cleus following the inelastic scattering of the pion. Both of 
these mechanisms are contained in our approach, which also 
takes into account in a natural way the so-called high-mo- 
mentum component "cutoff' effect occurring in the spec- 
trum of the outgoing pions, and connected with the necessity 
of the consideration of the proton binding energy in the nu- 
cleus. 

A comparison of the computed double differential dis- 
tributions of the pions produced in the charge-transfer reac- 
tion 160(a+,a0)X with experiment shows that the GBE de- 
scribes such a process well, whereas the MIC provides a 
significantly softer energy distribution for the pions (Fig. 8), 
which indicates a greater role for the rescattering process in 
the latter approach. 

Thus, the analysis performed shows that the approach 
proposed in the paper allows us to describe the experimental 
data without the introduction of adjustable parameters, this 
description being better than the description within the 
framework of the approaches based on the solution of the 
Boltzmann equation. It is important to emphasize that, on 
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TABLE I. Cross sections for the reaction I9'Au(n* , T ' N ) ' ~ ~ A U ,  involving the quasielastic 
knocking out of a nucleon, for different initial-pion energies. The experimental data and the 
results of the computations performed within the framework of the MIC (a version of Ref. 17a) 
were taken from Ref. 19b). The cross sections are given in mb. The measurement and computa- 
tional errors are equal to 10%. 
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FIG. 7. Angular distributions of the secondary pions produced in the 
quasielastic knocking-out reaction "C(n+,lrfp) for different initial-parti- 
cle energies E,: a)  E, = 60 MeV; b) E, = 112 MeV; and c) E, = 170 
MeV. The points represent the experimental data given in Ref. 19c; the 

Ezo, MeV 

FIG. 8. Double differential distributions of the r0 mesons produced in the 
charge-transfer reaction 160(n+, r0)X in the case of an initial-pion energy 
ofE,. = 100 MeV. The curves are experimental curvesz0; the histograms 
are the results of GBE (continuous histograms) and MIC (dashed ones) 
calculations. 

histograms are the results of GBE calculations. 

the whole, both approaches reproduce the experimental data 
within the limits of the accuracies determined by the condi- 
tions of their applicability (see Sec. 4). 

6. DESCRIPTION OF PION AND PROTON PRODUCTION ON 
NUCLEI BY PROTONS OF INTERMEDIATE ENERGIES 

An important criterion for the validity of a given ap- 
proach to the description of nuclear reactions with nucleons 
of intermediate energies is the successful description of the 
processes of pion production on nuclei. In this case we must 
correctly take into account both the pion production in the 
nucleon-nucleon collisions and the propagation of the pions 
in the nuclear matter. In this case a pion may be created in a 
state lying outside the mass shell, and the correct description 
of its propagation in the nucleus and all possible rescatter- 
ings by the nucleons of the nucleus requires a quantum-me- 
chanical treatment. 

The results of the application of the generalized Boltz- 
mann equation to the description of the process of pion pro- 
duction in proton-nucleus collisions are presented in Table 
11. The double differential distributions of secondary pions 
(Fig. 9) are also well reproduced by our calculations. A com- 
parison with the MIC calculations performed with the same 
parameters used in the solution of the GBE (21), i.e., without 
allowance for the nonlocal effects in the mass operator and 
its dependence on energy, shows that the MIC yields lower 
values for the energy of the secondary pions, as compared 
with the values given by the GBE; this is especially notice- 
able in the case of T-  mesons. It is important to emphasize 
that both the GBE and the MIC reproduce the experimental 
characteristics with an accuracies equal to the accuracies 
determined by the conditions of applicability of these quasi- 
classical approximations (up to a factor of 2 for the MIC and 
to within 30% for the GBE). 

In conclusion of this section, let us consider within the 

TABLE 11. Cross sections (in mb) for pion production in proton-nucleus interactions for differ- 
ent proton energies E, . 
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FIG. 9. Double differential distributions of the nz mesons produced in 
the interaction of 585-MeV protons with lead nuclei. The points represent 
the experimental data given in Ref. 21a; the histograms are the results of 
GBE (the continuous histograms) and MIC (the dashed ones) calculations. 

framework of the proposed method one of the problems that 
are of interest for nuclear physics. There occurs in nuclear 
reactions with particles of intermediate energy intensive 
production of fast particles, called cumulative particles, that 
fly out into the region kinematically forbidden in the case of 
scattering on a free nucleon. A comparison of the results of 
the calculations with experiment shows that allowance for 
the multiple particle-rescattering processes, including the 
pion production processes, enables us to satisfactorily ex- 
plain the main inclusive characteristics of the spectra of the 
secondary nucleons produced during the interaction of pro- 
tons of energy 1 GeV with nuclei22 (Fig. 10). It should be 

FIG. 10. Inclusive distributions of the cumulative protons produced in the 
interaction of protons of energy 1 GeV with nuclei. The points represent 
experimental datazza; the histograms, the results of computations. 

noted that this simple mechanism gives a good account of so 
important a characteristic of the cumulative-nucleon pro- 
duction process as the ratio of the neutron yield to the proton 
yield (let us make a comparison for the carbon nucleus22b : 

Wn/Wp 1 ,,,,,=0.66*0!06; W,/Wp I .., =0,71*0,18). 

Furthermore, the experimentally observed irregularities in 
the cumulative-proton spectra for light nuclei (of the Li, Be, 
or C type) are also reproduced in a ca l~u l a t i on .~~  Notice that 
in our approach these characteristics are connected with the 
resonance character of the production of a pion in a nucleon- 
nucleon collision and its subsequent absorption by the nu- 
cleus. It is possible that this mechanism is universal also for 
deep-inelastic processes involving higher initial-particle en- 
e r g i e ~ . ~ ~  

7. CONCLUSION 

Let us enumerate the main results of the paper. We have 
formulated for the description of nuclear reactions an ap- 
proach based on the solution of the Dyson equations for the 
single-particle double-time Green functions and the separa- 
tion of the particle-nucleus interaction process into coherent 
and incoherent parts. It is shown that in the quasiclassical 
approximation, i.e., in the case when the man free path I is 
significantly longer than the particle wavelength 72, this ap- 
proach admits of a kinetic interpretation, and allows us to 
analyze the quantum effects as corrections in the quasiclassi- 
cal parameteriE/I. In this case, to describe nuclear reactions, 
we can use generalized Boltzmann equations for the Green 
functions, these equations being a self-consistent generaliza- 
tion of the classical kinetic equation for the distribution 
function. 

Two important circumstances should be noted. First, 
the neglect of the (Re g,X2 ) terms in Eq. (21), while the 
(Re 3, g' j terms are retained, leads to the violation of the 
energy conservation law.9 Therefore, the description of nu- 
clear reactions in the quasiclassical approaches that use the 
energy dependence of the real part of the optical potential, 
but neglect the imaginary-part-related effects of the descent 
from the mass surface in the spectral function a ( ~ , p , R )  (as is 
done in Ref. 17), though leads to an improvement in the 
accuracy of the Boltzmann equation, can be admissible only 
in the description of inclusive reactions of the type (N,N ') and 
(.ir,.irl) (although it can lead to errors in the determination of 
such important characteristics of nuclear reactions as the 
excitation energies of the nuclei), or in the description of 
exclusive processes. Secondly, in the description of surface 
nuclear reactions or reactions with nucleons with energy 
k 500 MeV, the lowest quasiclassical approximation, name- 
ly, the Boltzmann equation, is also a fairly good approxima- 
tion. 

We have seen that an important role is played in the 
description of the pion-nucleus interactions, as well as of the 
processes of pion production by nucleons of intermediate 
energies, by the dependence on the energy and momentum of 
the mass operator characterizing the particle-nucleus inter- 
action. The proposed quasiclassical approach, which takes 
these effects into account, allowed us to correctly reproduce 
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so fundamental a characteristic of the propagation of a parti- 
cle in a nucleus as the particle's mean free path, and to estab- 
lish the accuracies of the various quasiclassical approaches 
(we have in mind the approximations of the lowest and next 
order in the parameter*// [i.e., the Boltzmann equation and 
Eq. (21) respectively)]. A comparison of the calculations 
with the experimental pion-nucleus interaction cross sec- 
tions and cross sections for pion production in proton-nu- 
cleus interactions shows that, on the whole, within the limits 
of the indicated accuracy, the two methods correctly de- 
scribe the entire set of experimental data. This circumstance 
attests the validity of the quasiclassical approximation to the 
Dyson equations in the description of nuclear reactions. 
Thus, we have a method of describing the inelastic pion- and 
nucleon-nucleus interactions that does not contain any free 
parameters. An approach based on such a method is univer- 
sal enough for the analysis of the role of the various mecha- 
nisms underlying nuclear reactions. In particular, it allowed 
us to demonstrate the important role played by the polariza- 
tion of the nuclear matter in the interaction of pions with 
nuclei. 

Naturally, the proposed approach can also be used to 
describe the interaction with nuclei of other particles pos- 
sessing sufficiently long mean free paths in the nuclei. Thus, 
we can, for example, hope for a successful description of the 
interactions of K mesons with nuclei within the framework 
of such an approach. 

The authors thank the late L. A. Sliv, V. M. Struinskii, 
and I. S. Shapiro for useful discussions of the results of the 
paper. 

"Let us note that, since the Green function is not a particle distribution 
function, here the term "particle," like the statements regarding its prop- 
agation and collisions inside the nucleus, should be understood condi- 
tionally. This terminology is convenient, since, owing to the condition 
(37), the transition from the Green function to the distribution function is 
trivial outside the interaction region. 
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