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A study is made of the metal-insulator transition for interacting electrons in a disordered system 
in the presence of a magnetic field or magnetic impurities. The renormalizability in first order in 
E = d - 2 is demonstrated, and renormalization-group equations are given with full allowance 
for the Coulomb interaction. It is shown that in the critical region of the metal-insulator transi- 
tion the dependence of the conductivity, polarizability, and other quantities on the frequency of 
the external field or on the temperature is governed by the magnitude of the charge z arising upon 
renormalization of the frequency coefficient in the diffusion propagator. 

1. INTRODUCTION 

The metal-insulator transition in disordered systems 
has of late been studied by the methods of the theory of sec- 
ond-order phase transitions. Experiments confirm the cor- 
rectness of this approach: according to recent data the static 
conductivity goes zero in a continuous at the met- 
al-insulator transition, and not in a jump. In a disordered 
system both the Anderson localization effe~t"~ and the Cou- 
lomb correlations of the diffusing electrons7.' are important. 
Definite progress has been madegv1' in the description of 
noninteracting electrons in a metal containing impurities, 
but a systematic theory incorporating both these effects has 
yet to be constructed for this transition. In the very impor- 
tant paper of McMillanl' a scheme is proposed for describ- 
ing the transition, but this scheme has certain shortcomings. 
The present author has ascertained12~13 that the renormal- 
ization-group equations for interacting electrons in a disor- 
dered metal differ from those used by McMillanll chiefly in 
the following respects: 

a) The single-particle density of states N (E) does not 
influence the renormalization of the conductivity. The Ein- 
stein relation linking the conductivity with the diffusion co- 
efficient contains not N (E ) but an/+, which does not have 
diffusion corrections. 

b) In contradiction to the assumption of McMillan, the 
relationship between the energy and length scales is not gov- 
erned by the single-particle density of states. The relation 
between these scales is actually governed by a new charge z 
arising upon renormalization of the frequency coefficient in 
the diffusion propagator. This charge plays an important 
role in the description of the transition: in the critical region 
the dependence of the conductivity l3 and dielectric constant 
on the frequency w of the external field and on the tempera- 
ture T is governed by the size of the parameter z near the 

- fixed point of the renormalization-group equations. 
In Refs. 12 and 13 the renormalizability in first order in 

E = d - 2 was demonstrated and the renormalization-group 
equations were given for cases in which the corrections from 
the Cooper ~ h a n n e l ~ . ~  are suppressed but the corrections due 
to the Coulomb interaction of the diffusion electrons7.' re- 
main. The Cooper channel can be suppressed by a magnetic 
field14 or by magnetic impurities,'' since interactions which 

break the time-inversion symmetry lead to cutoff of the dif- 
fusion pole in the Cooper propagator. 

In the present paper we consider the conductivity, di- 
electric constant, and single-particle density of states in the 
vicinity of the metal-insulator transition in a magnetic field 
or in the presence of magnetic impurities. The structure of 
this paper is as follows. Section 2 gives the effective free- 
energy functional of interacting electrons in a disordered 
system. In Sec. 3 the Einstein relation is discussed and it is 
shown that the presence of a chargez in the renormalization- 
group equations is necessary in order for the equations to be 
consistent with conservation of particle number. In Sec. 4 
the renormalization-group equations describing the metal- 
insulator transitions in a magnetic field and in the presence 
of magnetic impurities are given in first order in E.  Since the 
Coulomb interaction is not small, the electron-electron in- 
teraction is taken into account exactly in these equations. In 
Sec. 5 the frequency and temperature dependences of the 
conductivity and dielectric constant are found and argu- 
ments are presented as to the value of the static polarizability 
of the insulator in the vicinity of the transition. Section 6 
takes up the problem of the single-particle density of states. 
In the Conclusion (Sec. 7) the results of this paper are com- 
pared with the theory of McMillan, and certain experiments 
are discussed. 

2. FREE-ENERGY FUNCTIONAL 

To find the renormalization-group equations it is useful 
to construct the effective Lagrangian of the diffusion 
rn~des .~~ ' '* '~  In such an approach the integration over large 
electron momenta - p ,  is done right from the start, where- 
upon the remaining problem of the interaction of diffusion 
modes is one in which only distances greater than the mean 
free path are important. The effective functional permits the 
use of the standard methods of field theory in treating this 
part of the problem. In deriving the effective Lagrangian it is 
necessary to average the free energy over the randomly dis- 
tributed impurities. This averaging is done by the method of 
replicas.16 In the problem of localization of noninteracting 
electrons the effective Lagrangian was first derived with the 
aid of a functional integral over Bose fields9 and later with an 
integration over Fermi fields.'' To obtain the correct statis- 
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tics the integration in Ref. 12 was done over Fermi fields, as 
in Ref. 10. 

The parameter describing the local prop$rties of the 
electrons in a disordered metal is the matrix Q, which has 
frequency, spin, and replica indices. Since for the cases of 
metal-insulator transitions examined in this Raper the Coo- 
per channel is unimportant, the elements of Qare complex 
numbers (in the oppo!ite case the elements of Q are quater- 
nions). The matrices Q satisfy the following conditions: 

where i is the unit matrix. 
The effective functional describing noninteracting elec- 

trons in a disordered system is given in terms of Q by the 
expressi~n~. '~. '~  

where D is the electron diffusion coefficient, the constant v is 
the density of states without allowance for diffusion correc- 
tions, and b is a matrix whose components are the Fermi 
frequencies: 

~nrn"*=en6nrn6ae6ij, en= ( 2 n + l ) n T ,  i= l ,  . . . , N ,  N+O. 

(3) 
The lower indices of the matrices Q, ?, b, etc. will correspond 
to the Matsubara frequencies, while the upper indices com- 
bine the spin (a, 8 )  and replica (i, j) indices. Unlike the treat- 
ment in papers on the localization of noninteracting elec- 
t r o n ~ , ~ . ' ~  where it is sufficient to consider only two levels 
with energies + 0/2, the functional 9, incorporates the 
enitre set of energy levels of the diffusing electrons, since Sp 
in (2) presupposes, in addition to summation over spins and 
replicas, a summation over the electron energies in the inter- 
val I E  1 5 r- ' (r is the mean free time). 

If one could neglect the frequency terms in 3, , homo; 
geneous unitary transformations (rotations) of the matrix Q 
which are allowed by conditions (1) would not change the 
free energy at all. The term containing b in k2) breaks the 
symmetry of 9, with respectJo ro!ations of Q (Ref. 9) and 
fixes the equilibrium position Q = A : 

Anma8=sign ~,6,,6,66,,. (4) 

At low frequencies E the matrix Q is fixed weakly and the 
transverse deviations pf Q is fixed weakly and the transverse 
deviations of Q and A are substantial. We shall show that 
they deviations cprrespond t9.giffusion modes: The matri- 
ces Qsatisfy (1) if Q = U -'(r)/l U (r), where the Uare unitary 
matrices which are conveniently written in the formlo 

( 5 )  
Retaining in 3, only terms quadratic in B, we obtain 

It follows that the correlator (BB +),is the propagator of the 
diffusion mode: 

In the diffusion propagator (6) there is no factor - i in front 
of the frequency because we are working in the temperature 
technique. 

The Coulomb interaction of the electrons will be con- 
sidered with allowance for the singularity at small momenta 
which is due to the long-range character of the Coulomb 
forces. For describing the interaction of the electrons, two 
amplitudes, r and r 2 ,  were used in Ref. 12. Amplitude r 
describes the small-angle scattering, and r2 the large-angle 
scattering. It is important that these amplitudes correspond 
to different structures of the spin indices: 

+a t b  y b 
= VP $;+k$p 47p+k ( r 6 a b b y  - r a h a ~ b ) .  

(7) 
The effective functional for interacting diffusing elec- 

trons was obtained in Ref. 12 as 

where y ,  and y, are tensors which differ in their spin struc- 
ture: 

6' indicates that all the replica indices of the matrices Q 
coincide, while S (n,m) = S,, ; 9( Q ) has the meaning of the 
effective free-energy functional of the interacting diffusing 
electrons. We note that in (8) a factor z not present in (2) 
precedes the frequency term [the last term in (8)]. This factor 
stems from the fact that, unlike the case of free electrons, for 
which z= 1, the coefficient multiplying the frequency term 
in the free-energy functional for interacting electrons 
changes during the renormalization process.12 As will be 
demonstrated in the following section, the introduction of a 
new charge z in the renormalization-group equations is nec- 
essary for these equations to be consistent with the condition 
of conservation of the number of particles.12 

3. EINSTEIN RELATION. CONSERVATION OF PARTICLE 
NUMBER AND THE INVARIANT CHARGE z 

The Einstein relation connects the conductivity a with 
the diffusion coefficient D, for the density of interacting 
electrons: 

ole" ( ( a n l a ~ )  D,, (10) 

where an/+ is a quantity which determines the compress- 
ibility of the electron gas. By definition, 
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FIG. 1. 

where a is the single-particle Green function of the elec- 
P a 

trons. Near the Fermi surface, differentiation with respect to FIG. 3. 
p is equivalent to differentiation with respect to the momen- 
tum modulusp. Keeping this in mind, it can be verified after 
integration by parts in (1 1) that the magnitude of an/& is 
governed by the large-momentum region, where diffusion 
corrections, in which only small momentum transfers are 
important, do not ari~e.''.'~ With allowance for the Fermi- 
liquid renormalization one has an/& = 2v/(l + Fo), where 
F,, is the standard constant in the theory of the Fermi liquid. 
By virtue of the well-known Ward identity 

dnldp=n (Q=O) =2v/ (l+Fo), (12) 
where 40 = 0) is the static part of the polarization operator. 

To find the diffusion coefficient D, in (lo), let us evalu- 
ate the polarization operator a (k ,0  ). For this purpose let us 
separate from the amplitude r the statically screened Cou- 
lomb interaction ro: 

1 
r=ro+r , ,  ro = - vc (k) 

(l+Fo)' l+v, (k) n (Q=O) ' (13) 

Here v,(k) is the Coulomb potential, and the factor 1/ 
(1 + F0)' takes into account the Fermi-liquid corrections to 
the triangular vertices (Fig. 1). The amplitude TI represents 
the set of diagrams with spin structure S,, Spy [see (7)] which 
are not separable by the breaking of only one Coulomb line 
(Fig. 2). Examples of diagrams contributing to the amplitude 
rz, which has the spin structure SaySpy, are shown in Fig. 3. 
It has been established" that in the polarization operator the 
diffusion corrections to the triangular vertices and to the 
Green functions cancel each other (Fig. 4). Therefore, to find 
1r(k,0 ) it is sufficient to evaluate the ladder diagrams of Fig. 
5, in which the amplitudes r1 and rz and the diffusion prop- 
agators should be normalized. As a result we obtain 

8. (k, Q) nT [sign(e.+Q) -sign 8.1 

2v 
n (k, Q>O) =n (Q=O) - - n 

(i'+F0)' i+ ( -2~ I '~+vI '~ )b~ (k ,  Q)nT [sign(e.+Q) -sign 8.1 

II 

8, (k, Q) =I/ (Dk2+zQ). 

I 

After summation over frequencies we have The continuity equation enables one to find a if n(k,O ) is 

1 B 
known: 

n ( k , 0 > 0 ) - e  (i-- 
ap ( 1 + ~ ~ )  DV+ ( Z - ~ V ~ ~ + V ~ ~ ) Q  -- o(k9Q) = - 'n(k,Q).  

ea ka (18) 
The condition that the number of particles be conserved 

requires that nfk = 0 ,0  ) vanish. It follows from (1 5) that this 
This equation implies the Einstein relation (lo), and with 

requires that the renormalized quantities z, v r , ,  and v r 2  
allowance for (17) and (12) we obtain a relation between a 

obey the relation 
and D: 

Here By renormalizing the functional F ( Q  ), one can find the 
an D,k2 

n(k,Q)=- D,= (l+Fo) D. (17) renormalized value of the coefficient D and, hence, of a as 
ap D.ka+IQI ' well. 

FIG. 2. FIG. 4. 

214 Sov. Phys. JETP 59 (1), January 1984 A. M. Finkel'shteTn 214 



FIG. 5. 

In the theory of the Fermi liquid, Eq. (16) corresponds 
to the familiar equation 

where r and r are the Coulomb amplitudes without dif- 
fusion corrections. Satisfaction of (16) with allowance for the 
diffusion corrections ensures that the renormalization- 
group equations will be consistent with the condition of con- 
servation of particle number. The following procedure was 
adopted in Ref. 12: The renormalization-group equations 
for z and for the Coulomb amplitudes were derived indepen- 
dently, and satisfaction of (16) was used as a check. We shall 
have no further need of separating r into ro and r,. Since 

wecan write (16) as 

~ = 2 ~ r - ~ r ~ .  

4. RENORMALIZATION-GROUP EQUATIONS 

To derive the renormalization-group equations, let us 
follow Ref. 18 and integrate exp( - F(Q ]/T)  over the ra- 
pidly changing variables. To do this, let us separate the ma- 
trix U [see ( 5 ) ]  into a product of rapidly and slowly varying 
partslgJO: 

U=UoD. (21) 
where Uo and Dare unitary matrices; Uo is the rapid part and 
0 the slow. If we now integrate Qo = U,+A Uo over the rapid 
variables, we obtain a renormalized functional P(Q ] de- 
scribing the slowly varying field Q = fi +A 0 :  

In the cases under consideration here, one finds that in 
first order in E = d - 2 integration (22) recasts the functional 
91 Q 1 in the form (8) with renormalized coefficients D, v r ,  
vrZ,  and z. 

The technical details of performing the integration in 
(22) and a comparison of this procedure with the diagrams in 
the impurity technique are described in sufficient detail in an 
earlier paper12 and will not be discussed here. Let us merely 
note two important points. 

1. Since the quantities z, v r ,  and v r 2  to be renormalized 
are not small, these charges should be taken into account 
exactly. This turns out to be possible because in the problem 
under study the order of the renormalization-group equa- 

FIG. 7. 

tions is determined solely by the number of integrations over 
the momenta of fast diffusion modes. In first order in 
E = d - 2 it is sufficient to consider only those diagrams in 
which there is just one momentum integration. To obtain 
exact (in the sense of incorporating the electron4ectron in- 
teraction) renormalization-group equations it is therefore 
sufficient to augment the renormalized Coulomb amplitudes 
in the skeleton diagrams by the sum of the ladder diagrams 
(Fig. 6). Upon such a modification the number of integra- 
tions over the momenta of diffusion modes does not change. 

2. Two types of diagrams are encountered in the renor- 
malization of amplitudes v r  and vr2.  In the diagram shown 
in Fig. 7, the integration is done only over the momentum. In 
addition, there are other diagrams in which the integration is 
done over both the momentum and frequency of the fast 
diffusion mode. Such diagrams have the shape of a ring with- 
in which the fast momentum passes. There are several differ- 
ent ring diagrams, but all of them are paired; the diagrams of 
a pair differ by the manner in which the ring is broken. An 
example of such a pair is given in Fig. 8 (in accordance with 
what we have said above, the interior amplitudes in dia- 
grams 8a,b should be augmented by the ladder diagrams of 
Fig. 6). It turns out that in contrast to the situation studied in 
Ref. 12, in the cases considered in the present paper the dia- 
grams of a pair cancel each other, so that the renormaliza- 
tion of the Coulomb amplitudes is brought about only by the 
diagrams of Fig. 7. 

1. Magnetlc fleld 

In describing the neighborhood of the transition, we are 
interested in the region1' 

m, T < g ~ y a H ,  (23) 

whereg, is the Land6 factor, H i s  the magnetic field, andp, 
is the Bohr magneton. Here one should be mindful of the 
Zeeman splitting. Magnetization of the spins corresponds to 
the appearance of the following term in the functional of the 
diffusing electron: 

FIG. 6. 
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Expanding .FgL to second order in B, we obtain (indices 1 
and 2 correspond to the spin projections) 

nv 
fP,, W T  -Z- 5 (-igLlrd) ( B : : ~ B ~ ~  -B; : ,B~  :' ) dr.  (25) 

6.6' 

Thus the Zeeman splitting leads to a cutoff of the pole in the 
diffusion propagator with opposite projections of the elec- 
tron  pins.'^^'' AS a result, at large distances these modes 
drop out, and W8 and Q@ turn out to be diagonal in the 
spin indices: 

Then the effective functional for interacting electrons (8) in 
region (23) can be written in the form 

where i is the replica index. The renormalization of the coef- 
ficients of functional (27) is given by the following expres- 
sions: 

It follows from (28b,c) that the relation z = 2vf  - v f ,  re- 
mains valid in the renormalization process. 

Let us introduce a dimensionless quantity G which, to- 
gether with z, v f ,  and vf,, will be an invariant charge of the 
renormalization group: 

Here A is the momentum cutoff, which decreases during re- 
normalization, and kd = 2 - d + ' T IT ''' /r ( 1/26 ). Formu- 
las (28) correspond to the following renormalization-group 
equations of first order in E :  

wherex = ln(il,,/il ) andil, = 277/10 (Io is the mean free path). 
Equations (30) have an unstable fixed point corresponding to 
the metal-insulator transition in a magnetic field: 

We note that the parameter z is nonzero at this point. 

2. Magnetic impurities 

Magnetic impurities create a magnetic field of random 
magnitude and direction. After an averaging over the ran- 
dom fields the functional 9 ( Q ) of the <iffusion modes con- 
tains an additional term'' -7; 'Sp(a,Q )', where 7, is the 
spin-flip scattering time and a is the Pauli matrix. Repre- 
senting the matrix V8 [see formula (5)] in the form 

WaB=2-'" (Gad WO+aaBW), (32) 
we can infer that the magnetic impurities lead to a cutoff of 
the diffusion pole in the correlator of the fields W but does 
not affect the mode WO, which is associated with diffusion of 
the particle density. At large distances all the modes except 
W0 are "turned off."" As a result, in the presence of magnet- 
ic impurities one has 

6 =A exp (mO/l"), (33) 

while the effective functional of the diffusing electrons (8) 
assumes the form 

Upon renormalization of (34) we see that 
Sz = S (2v r  - vF2), SO that relation (20) is satisfied, and we 
finally get 

Renormalizing the functional 9, we obtain the relations 

which correspond to the following renormalization-group 
equations [x = ln(il,,/A )I: 

[the charge G was defined in (29)l. These equations have an 
unstable fixed point: G * = I/&, z* = 0. The vanishing of z 
at the unstable fixed point of the renormalization-group 
equations is very important for the description of the critical 
region of the metal-insulator transition in the presence of 
magnetic impurities. We shall show below that the depen- 
dence of the conductivity13 and other characteristics on the 
frequency o of the external field and on the temperature in 
the critical region of the transition is determined by the value 
of the parameter z near the fixed point. It appears to the 
author that to establish the existence of a fixed point with 
z* = 0 the accuracy of the equations obtained in first order 
in E is sufficient. However, since the initial value of z is not 
small (it is in fact equal to one), this fixed point may not bear 
any relationship to the transition; in this case the phase- 
plane portrait of the system of exact equations should dis- 
play another unstable fixed point in addition to the one 
found. Such a situation is, generally speaking, unlikely. 
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5. CONDUCTIVITY AND DIELECTRIC CONSTANT 

At a finite external-field frequency w the renormaliza- 
tion of the charge G in the critical region is cut off at the 
length 

L,= (Dlzo)", (38) 
and therefore in the transition region, where the correlation 
length obeys g>L,, the conductivity is 

a - e ~ ~ t - 4  (39) 
With allowance for (19) it follows that 

It was found above that z* = const#O at the transition in a 
magnetic field [see (3 I)]. In this case 

0 ( o )  -(,,(d-ZI/d (41) 

just as for the case of noninteracting electrons,22 in whichz is 
not renormalized at all (z= 1). 

When magnetic impurities are present in the system, 
z* = 0. In this case thew dependence of a is governed by the 
exponent 5, which describes the vanishing of z near the fixed 
point of equation (37): 

Z- (.h/h,)t, (42) 

where A is the momentum cutoff, which goes to zero upon 
renormalization. At the distance L, which determines the 
magnitude of the conductivity in the critical region we have 

2- (1,lL.) (43) 

( I ,  is the mean free path). As a result, for the magnetic-impu- 
rity case we obtain from (38)-(40) 

o-o(d-a) / (d-c)  
(44) 

In first order in E we find the exponent 5 from (37): 5 = 1/ 
4G * = ~ / 2 .  In what follows, we shall employ the exponent 5 
both in the magnetic-impurity case and for description of the 
transition in a magnetic field: 

magnetic field: 

b=O, (454 
magnetic impurities: 

f =e/2+0(e2). 

We have discussed the dependence of a on the frequen- 
cy w of the external field for w>T. If w < T, then in the cases 
under consideration here the renormalization of the quanti- 
ty G in equations (30) and (37) is cut off at the temperature 
lengthl. = (D /zT)"', and therefore in the critical region of 
the transition we have 

O-T(d-Z)/(d-t). (46) 
Let us now consider the dieelctric constant (d = 3) 

In the vicinity of the transition we find that the polarizability 
~ ( o )  =Re [e (q=O, o )  -11 /4n 

takes the form 
X (,(,,) "o-(a-c)!(s-t) 

(48) 

At the present time we do not have a systematic description 
of the dielectric phase near the metal-insulator transition, 
and therefore for finding the static polarizability of the insu- 
lator in the vicinity of the transition we shall use the argu- 
ments of scaling theory. Let us express the dielectric suscep- 
tibility x (w) in terms of the length L, : x - L i-c.  

By joining the dynamic susceptibilityx (w) with the stat- 
ic susceptibility at L, --c, we obtain for the static dielectric 
constant of the insulator near the transition 

X - E ~ - ~ ,  (49) 
where 6 is the correlation length [recall that on the metallic 
side of the transition one has 5-e2/a(w = O)]. 

6. SINGLE-PARTICLE DENSITY OF STATES 

The single-particle density of states is given by 

where 91R is the retarded single-particle Green function of 
the electrons. The single-particle density of states is mea- 
sured in tunneling e ~ p e r i m e n t s , ~ ~ . ~ ~  but contrary to the as- 
sumption of McMillan," this quantity does not influence the 
renormalization of the conductivity. 

It was found previously12 that in the variables Q expres- 
sion (50) is of the form 

N(E) =Y (AQ)~  (51) 

and its evaluation is analogous to finding the Debye-Waller 
factor: 

@Q) = blJ+;leelJ)  s (Au+A exp ('/,< W W ) )  U )  . 
Augmenting the correlator ( WW) by the ladder diagrams of 
Fig. 6 and retaining in it only the most singular term, we 
obtain 

where, as a result of renormalization, D and z are functions 
of q and 0. In the two-dimensional case the corrections to 
the single-particle density of states are stronger than the cor- 
rections to the other quantities8; after the momentum inte- 
gration the integral of l n ( 0 ~ ) / 0  remains in the argument of 
the exponential, so that ultimately the square of the loga- 
rithm appears. For d = 2 + E we obtain after integrating 
over the momentum 

To proceed further, let us write the renormalization- 
group equation for G [see (29)] in another form. We intro- 
duce G in the following way: 

After integrating (28a) and (36a) over the momentum, one 
can obtain the following equation for the charge G in first 
order in E: 

a) magnetic field: 
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b) magnetic impurities: 

where y = ln(0r)-'. Substituting (54) into (53) and making 
use of the fact that u/e2 = 2vD, we obtain 

In the critical region 
N (E) -v(max Et, T T ) ~ ,  

while for E, T 4  
N (0) ,g-8,0e/cd-a) 

and here one can obtain the following relation for the expo- 
nents 8, 8, and c: 

6=p (d-f). (57) 

In lowest order in E we have/3= 1/&G *. In a magnetic field 

and in the case of magnetic impurities 

On account of the circumstance that N (E ) in the two- 
dimensional case has doubly logarithmic corrections, the se- 
ries expansion of the exponent /3 for the single-particle den- 
sity of states in powers of E begins with a constant. What 
happens is that for d = 2 + E a factor of 1 / ~  rather than 
ln(0r) arises in the argument of the exponential in (53) after 
the integration over momenta, and this factor cancels the 
charge G - ' -E. The accuracy of the renormalization-group 
equations in first order in E does not permit one to find the 
- E  correction to the exponent (58). The entire situation de- 
scribed above is the result of allowing for the long-range 
coulomb interaction. when vc (q) is replaced by a constant in 
the model description the doubly logarithmic corrections do 
not arise, and the series expansion of the exponent /3 in pow- 
ers of E begins with the first power. 

In concluding this section let us touch upon a secondary 
consequence of the results of this paper. Equations (55) per- 
mit one to find in the two-dimensional case exact expressions 
for the logarithmic corrections to the conductivity of the 
metal in the presence of spin-flip scattering or in a magnetic 
field H > T/gL p, , when the Zeeman splitting is important. 
In a magnetic field2' the correction is of the form 

To obtain this formula one must set E = 0, z = 1, and 
r2 = ri in (55a) and bear in mind that a = 2eZG /$ifd = 2. 
In comparing this with the previously ~btained'~.~'  formula 
for So: 

e" 
8a=- 

4n2 
(2-F)ln Tz, F=2vrZ0 

one must consider the fact that these expressions do not 
agree even when F< 1 : 

ea 
60 (2-F/2) ln Tz, 

4n 

i f F =  2vFi41.  
It follows from (55b) that in the presence of magnetic 

impurities the correction to Su is particularly simple: 

&= (e2/2n2) In Tz. (60) 
In the three-dimensional case, to obtain the correct coeffi- 
cients in the square-root corrections to u in the metal in the 
presence of a magnetic field or magnetic impurities, one 
should setz = 1 and rz = r i in formulas (28a) and (36a) and 
perform the corresponding integrations. 

7. CONCLUSION 

The expressions found above for the conductivity, di- 
electric constant, and single-particle density of states for 
d = 3 can be compared with the formulas of Ref. 11 if one 
sets 

fd, 8=3-q 

(the second equation is simply a redefinition of the exponent 
8 in terms of the exponent q used by McMillan). Then from 
the relation 19 = /3 (3 - { ) obtained in Sec. 6, we find for the 
exponent f l  describing N (E ) that /3 = - 1 + 3/77, as in Ref. 
11. An analogous agreement is found for the corresponding 
expressions for a andx [see (44, (46), and (49)l. Equality of 
the exponent 0 for the single-particle density of states to the 
exponent 5. describing the relationship of the energy and 
length scales would constitute justification for the viewpoint 
of McMillan that the single-particle density of states governs 
the relationship between these scales. In actuality, as was 
shown above, the exponents 5 and 8 are independent: 

Without going into details, we can conclude that the 
main distinction between the theory of McMillan and the 
present study is that the relationship between the energy and 
length scales is governed not by the single-particle density of 
states, as was assumed in Ref. 11, but by the value of the 
charge z near the unstable fixed point of the renormaliza- 
tion-group equations describing the metal-insulator transi- 
tion. The following types of z behavior in the critical region 
are possible: 

a) z-onst, c = 0. This case is realized when the transi- 
tion occurs in a magnetic field and the Zeeman splitting is 
important. 

b) z 4 . 5  > 0. According to the equations given in first 
order in E = d - 2, such a transition is realized in the pres- 
ence of spin-flip scattering. 

c) z-~oo. We do not as yet have an example of such a 
transition. 

In Sec. 5 we argue that in the metal-insulator transi- 
tions under consideration, the polarizability of the insulator 
in the vicinity of the transition goes as x-g2-C, where g is 
the correlation length. The dielectric constant of the insula- 
tor was measured2' (in the absence of magnetic interactions) 
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in Si:P, and it was found t h a t ~ - l ~ . ~  *O.'. Although the val- 
ue of the polarizability exponent is undoubtedly close to 2, 
the sign of the deviation from 2 is not completely clear. The 
author considers it possible (from the experience of Ref. 12) 
that in the absence of magnetic fields or impurities the met- 
al-insulator transition corresponds to z* = co ; it is possible 
that here the polarizability exponent will turn out to be 
greater than 2. 

The single-particle density of states was recently mea- 
sured" in tunneling experiments on Nb, Si, -, . It was 
found that N(E)-E1'3, while N(0)-u', i.e., /3= 1/3 and 
9 = 1. The relation 9 = B ( 3  - 5 )is satisfied ifthe valueofthe 
exponent { is small; then f (3  - 5 ) =. 1. There is justification 
for assuming that spin-flip scattering is important in this 
material. In this case it was found above that in lowest order 
in E = d - 2 the exponent /3 = 1/2, while = ~ / 2 .  The role 
of spin-flip scattering might be elucidated by measuring the 
magnetoresistance in the metallic phase in the region of 
small corrections. Furthermore, it would be desirable to 
have data on the dielectric constant of Nb, Si, - , in the vi- 
cinity of the transition. 

The author wishes to thank D. E. Khmel'nitskiK for 
helpful discussions of this study. 

')In Ref. lythe behavior of a two-dimensional system was considered in 
another region: eDH/c > T > g L  p,H. The first inequality permits neg- 
lect of the Cooper channel, the second, the Zeeman splitting. The prop- 
erties of the system wheng, < 1 turned out to be particularly interesting. 
In such a system the logarithmic growth of the resistance upon a further 
decrease in Tgives way to a decline. For this reason the study of this case 
could be carried to conclusion. A system with gL =O can be realized in 
compounds of the type Al, Gal -,As, where the composition is chosen 
such that gL < 1. In addition, there are semiconductors which for reasons 
of symmetry have g, 4 in certain directions. 

')For weaker fields (see footnote I), when the Zeeman splitting is unimpor- 

tant, the correct coefficient for the logarithmic correction to ois  given in 
Ref. 12. 
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