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The probability distribution for the transmission coefficient T is derived in the short-wave limit 
for an arbitrary matrix for scattering by an individual center. The behavior of this probability at 
values of Tnear unity is determined by those configurations of centers for which the transmission 
is resonant. The effect of an external electric field is analyzed. Exact results are derived for (1/T ) 
without using the short-wave approximation. 

The passage of an electron through a disordered one- 
dimensional ID) chain has been the subject of many studies 
(see Refs. 1-8, for example) in connection with the problem 
of Anderson localization. A significant point here is that the 
classical Boltzmann equation cannot be used to describe the 
1D motion of an electron which is scattered elastically by 
random inh~mogeneities.'*~-'~ The reason is that the Boltz- 
mann equation completely ignores the interference effects 
which are strong in this case. 

In the present paper we solve the steady-state problem 
with purely elastic scattering. Our basic result is an exact 
expression for the probability distribution for the transmis- 
sion coefficient Tin the short-wave limit ( T  is directly relat- 
ed to the conductivity of the chain3*I4-19). This distribution 
has been derived previously under the assumption that the 
scattering by an individual center is ~ e a k ' ~ * * ~ , ~ ;  we do not use 
this assumption here. Exact expressions have also been de- 
rived for expectation value~.~,' The distribution of the trans- 
mission coefficient is of particular interest, however, because 
of the well-known circumstance that Tis not a self-averaging 
quantity. 

In Section 1 we derive the basic equation for the prob- 
ability for the value of the wave function after an electron has 
traversed a part of the chain of a given lengthz with identical 
centers arranged in a random manner. Exact results for cer- 
tain expectation values ((1/T ), for example) follow directly 
from this equation; these results are derived in $6. In $2, the 
basic equation is used to derive an equation which holds in 
the short-wave limit (at large values of the wave vector). This 
equation is solved exactly, and it yields an expression for the 
probability distribution w(y,z) (y = 2/T - 1). This expres- 
sion is analyzed in $3. In particular, it yields expressions for 
( T  ) and (1nT) for an arbitrary probability for scattering by 
an individual center. In $4, a generalization is made to the 
case in which the centers are not identical, and only the prob- 
ability matrix for the scattering by the center is given. The 
case of a fixed number (N ) of centers on the chain is examined 
in the same section. In this case we can clearly see the role 
played by those configurations which result in a resonant 
transmission. For example, it turns out that the functions 
wN (ys )  in the cases N = 2 and 4 have a singularity at T = 1 
(they become infinite; at N > 4, the functions wN remain fin- 
ite). This singularity is of course retained in the problem with 
a fluctuating number of centers on the chain. The effect of a 

static external electric field on the transmission is studied in 
$5. It is shown that if the effect of the field on the scattering 
event itself is ignored than the field dependence of w(y,z) is 
governed entirely by the dependence of the scattering matrix 
of the center on the kinetic energy of the electron. If the 
chain is long enough, the electron acquires such a high kinet- 
ic energy in this field that the scattering becomes unimpor- 
tant, and the transmission coefficient of the chain becomes 
independent of its length. In the final section we derive exact 
results for ( 1/T ) and certain other expectation values with- 
out resorting to the short-wave approximation. 

There is a point worth noting here: In scaling theory3 it 
is usually assumed that at small values ofz the results should 
be the same as those found by solving the classical Boltz- 
mann equation. This assumption generates a relationship 
among the parameters in the expressions for the various ex- 
pectation values ( ( l /T ) ,  (InT), etc.). The results derived 
below show that this procedure is not correct (even in the 
short-wave limit) if the scattering by an individual center is 
not assumed weak. This circumstance was also pointed out 
in Ref. 7, where ( 1/T) and (1nT) were calculated for scat- 
tering by 8-shaped centers. 

91. BASIC EQUATION 

We consider a ID chain of randomly placed centers 
which create a potential V(z). The wave function of an elec- 
tron in this chain satisfies the equation 

day - + [k2-2V(z )  ] 'Y =O. 
dz2 

(1) 

The concentration of centers is assumed to be small enough 
that the scattering by each center is independent of the other 
centers. In the intervals between centers the wave function is 

Y ( z )  =a+efk2+a-e-ik'=Y + ( z )  +Y - ( 2 ) .  (2) , , 

The scattering by a center is characterized by the linear 
transformation 

a+=aia"++ P1a"-e-Zikfi, 

a~=~l*a"+e2ikzL+al*a"-, 1 a1 1 '- 1 p i  12=1, 
(3) 

where a * and ii . are the amplitudes of the wave function 
respectively to the right and to the left of the center. The 
coefficients a, and p1 do not depend on the coordinate z, of 
the center; they are related to the reflection amplitude r ,  and 
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the transmission amplitude t ,  for scattering by a center at the 
origin: 

al=l/tl*, pi=-ri*lti8. (4) 

We introduce a probability density W(a, z) such that at 
the point z the vector a = (Re a+ ,  Im a,, Re a _ ,  Im a _ )  
takes on a given value under the condition that it has the 
value a, at the point z = 0. For W we can write 

W (a, z+dz) = n d z ~  (G z) + (1-ndz) W (a, z) 

(n is the concentration of centers). This relation is exact, 
since the probability for a given value of the wave function to 
the left of the point z and the probability ndz for the center to 
be in the interval (z, z + dz) are independent. We thus find 
the differential equation 

where H is related to a by the transformation inverse to (3). In 
the spirit of this derivation, the boundary conditions on this 
equation should be specified at the left end of the chain. 

We transform to the new variables p +, p -, 0, x by 
means of 

a,=p, exp [ i  (xkcpfkz) I ,  Y,=p* exp [i (x*cp) I .  
Equation (5) then becomes 

Now Wmeans the probability density for the quantities 
p+,p-, @, andx (da = p+dp+p - dp - dpdx). Equation (6) 
is the basic equation for the calculations below. Using (3), 
one can show easily that in the course of the scattering the 
phasex acquires a shift independent of itself & - x is inde- 
pendent of x ). For this reason, Eq. (6) remains the same in 
form after an integration over X. Below, W will denote the 
probability integrated over X. A further simplification re- 
sults from the circumstance that the flux J = p2- - p: is 
conserved under transformation (3). As the two other varia- 
bles it is convenient to choose the intensity I =& + p: 
and the phase p. Setting W(J, I ,  p) = S(J - J,) W(I, q), we 
find for W (I,p) an equation which is the same as (6), in which 
J is a parameter determined by the boundary condition. 

Finally, we write a transformation law for I and q, for 
scattering by a center: 

I=y1Tf (7,'-1) '" (7'-1')' cos 9, 4=2Q+~ar-9el, 
171 

where y , =  lal12+ lP112= 1 +2R1/T1, R1 and T, are the 
reflection and transmission coefficients, and pa, and pp, are 
the phases of a, and 81. 

92. SHORT-WAVE LIMIT 

In the limit of large k we seek W as the expansion 
W = W'O' + ~ " ' / k  + ... (Appendix 1). In a zeroth approxi- 
mation we finda W'O'/ap = 0 from (6). We thus see that W'O' 
depends on the one variable I. Going on to the first approxi- 
mation, we find the equation 

From the condition for the solvability of this equation (the 
condition that w"' is periodic in p) we find an equation for 
~ ' 0 ' :  

It turns out that this equation can be solved exactly. To solve 
it we first consider the case of a zero flux, J = 0, in which 
case Eq. (7) simplifies considerably: 

I=T (y,i- (yiZ-1) '" cos 11'). (9)  

We specify the boundary condition 

W'O' (I, z=O) =6(Z-1) 

(the intensity has unity value at the beginning of the chain). 
We multiply Eq. (8) by F and integrate the result over I. 
Using (9) and dIdp = djd6, we find a differential equation 
for the expectation value o fF  . Solving it under the boundary 
condition I" = 1 at z = 0, we find 

j d ~ z ~ W ~ ~ ~ ~ ~ , z ~ = e x p p ( ~ ~ . ~ ~ i ~ - ~ ~ n z ~ ,  (10) 
0 

where P, is the Legendre function 

Taking the inverse Mellin transform, we find w"' (I, z) at 
J = 0 from (lo), but at present we are not interested in this 
function itself. We will now show that the result (10) is suffi- 
cient basis for calculating the probability distribution of the 
transmission coefficient of the chain. 

The values of the wave function at the beginning of the 
chain (z = 0) and at an arbitrary point z > 0 are related by the 
matrix 

This relation is 

Y + ( z ) = u Y + ( o ) + ~ ~ - ( O ) ,  YL(~)=~*Y+(O)+~*\Y-(O) .  

(13) 
The matrix elements in (12) are expressed in terms of the 
reflection and transmission amplitudes of a chain of length z 
by means of equations analogous to (4). In particular, we 
have 1' = R /T, where R and Tare the intensity reflection 
and transmission coefficients. Matrix (12) can contain three 
independent parameters; we choose them to be 

7=1+2R/T=2/T-i 

and the phases of a ando. The function W'O' (I,z) is expressed 
in terms of the probability density w(y, z) alone (Appendix 2): 

where I (y, $, J ,  I,) is determined by (7) with a,,P,+a, P and 
I-I, (I, is the intensity at the beginning of the chain). Setting 
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J = 0 and I, = 1, multiplying (14) by I", integrating over I ,  
and using (lo), we find an integral equation for w(y, z): 

This equation can be solved by a Mehler-Fock transforma- 
tion'': 

Expression (16) gives the complete solution for the probabil- 
ity distribution for the transmission coefficient of a chain of 
length z for an electron. 

Under the boundary conditions J = I, = 1 (which mean 
that there is no flux incident on the chain from the left, while 
the outgoing flux is unity) the wave intensity at the point z is 
related to the transmission coefficient of a chain of length z 
by I = y. Such boundary conditions correspond to the trans- 
mission of an electron through a chain after incidence from 
the right. In this case we have W'O'(~,z) = w(y, z), so that w(y, 
z) must satisfy Eq. (8), with   related to jby  (7) at J = 1. Using 
the addition theorem for Legendre functions, we find quite 
easily by direct substitution that expression (16) is in fact a 
solution of Eq. (8) corresponding to the boundary condition 
w(y, 0) = S(y - 1). We also note that by solving this equation 
with other boundary conditions we can easily find the transi- 
tion pr~bability.~ Using it, we can find (for example) the in- 
tensity distribution in the chain for a given flux incident 
from the right. 

The contents of this section have been published in sum- 
mary form elsewhere." 

To conclude this section we note that the appearance of 
the functions P- ,,, + , , called the "cone" functions,'' in the 
problem of 1D wave transmission is "not fortuitous": The 
group of transformations specified by (2 X 2) matrices of unit 
modulus is isomorphic to the proper Lorentz group.22 
Transformation (3) is specified by precisely this type of ma- 
trix, and it can be associated with a special type of Lorentz 
transformation which conserves the coordinate Z. We un- 
derstand the coordinates X and Y and the time T here as 
meaning 2p+p - cos (2q), 2p+p- sin (Q), and p+' + p-', 
respectively; the velocity (v) of the moving coordinate system 
is related to y, by y, = 1/(1 - v2)'I2(c = 1). Transformation 
(3) thus describes, in the space X, Y, T, the motion of a world 
point along the surface of the hyperboloid X 2  + Y2 
- 72 = const (in the particular case of a zero flux, with 

p +  =p- ,  it describes the motion of the world point along 
the surface of the light cone), and the cone functions play the 
same role as that played by the spherical harmonics in the 
rotation group. We wish to call attention to the fact that the 
problem of the 1D transmission in the case of weak scatter- 
ing was first solved by Gertsenshtein and V a ~ i l ' e v ~ ~  back in 
1959 precisely by making an analogy with the case of a ran- 
dom walk in a Lobachevskii space, whose motion group is 
isomorphic to the Lorentz group. 

93. ANALYSIS OF w(y,z) 

To find certain expectation values it is convenient to use 
Eq. (15), which gives average values of the Legendre polyno- 
mials P, (y) for integer values of s. In particular, for s = 1 we 
have 

<y>=2(1 /T>- l=exp  [ ( 2 R i l T , ) n z ] .  

Differentiating (1 5) with respect tos, and taking the limit ass  
goes to zero, we find, using (1 I), 

We find the expectation value of the transmission coefficient 
T = 2/(y + 1) from (16): 

" th ( n t )  
( T ) = 2 n  J d t  t -erp{[~-~~~+i , (ys)- i ]nz) .  

ch ( n t )  
0 

These equations yield the results found previously 1.2*596 for 
weak scattering and a white-noise potential. When we sub- 
stitute in the values of R ,  and T, corresponding to 6-shaped 
centers, we find expressions for (1/T) and (In(l/T)) which 
are the same as those found in Ref. 7, where the scattering 
was not assumed weak. 

Let us examine the expression for ( T  ). At small R ,  we 
have 

and 

t h ( n t )  (T)=2ne-"in"' I d t  t  - e-""tnz , R i < f .  
ch ( n t )  

0 

At R ,nz) 1 this integral can be evaluated easily; the result is 
the known expression 

( T >  = (nVa/2) (Rinz)-" exp [ -Rinz /4] .  (1 8) 

In the opposite limit of strong scattering ( R , - + l )  we have 
P - 1,' + , (y,)-+O, so that 

( T > = e x p ( - n z ) ,  R,=l .  

This result is obvious, since the right side is the probability 
for the absence of centers from a chain of length z. The 
expression for ( T  ) at large z but arbitrary R,  is given below 
[expression (22)l. 

Interestingly, the expectation value of the quantity T/R 
(which is proportional to the conductivity of the chain ac- 
cording to Refs. 3 and 1419)  is always equal to infinity (as 
has been pointed out by Landauer14 and Mel'nikov5). The 
reasons are the finite probability for the absence of centers 
from a chain of any length and the possibility of a resonant 
passage (54). 

Let us examine the behavior of w(y, z) at largez. When y 
is not very large (see below), the integral in (16) is dominated 
by small values oft.  In this case it is convenient to use the 
integral representation2' 

1  cos tx 
p-*"'(7)' 

[2(& &ch .) 1% ' oh 0-r. 
0 
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It follows from this representation that at small t we have 

P-l/,+,t (7) =p-t/, (7) -t2j (71, 

where f (y) is positive. If y) 1, then 

Expanding the argument of the exponential in (16) at small 
values oft, we find 

The function P- ,,, (y) can be expressed in terms of the com- 
plete elliptic integral: 

P-tl, (ch 0) =2K (th (012) )In ch (8/2), P-I~, ( I )  4. 

This function falls off monotonically with increasing y, but 
very slowly [see (19)]. It is not difficult to show that Eq. (20) 
holds if 

This interval of y values does not determine the normaliza- 
tion of the probability and does not include typical values of 
lny. The average transmission coefficient T =  2/(y + I), 
however, is determined by the values y- 1, for which Eq. 
(20) holds. Using this equation for large z and arbitrary y,, 
we find the expression 

The samez dependence was found by GogolinZ4 in a calcula- 
tion of the density-density correlation function. 

We turn now to the w(y, z )  dependence at large z and 
large y. We use the asymptotic expansionZ0 

Substituting this expression into (16), and evaluating the in- 
tegral by the method of steepest descent, we find 

@ (t) =(it-'/,) In (27) + [P-t,,+rt (y i )  -I] nz, 

where to is the saddle point, determined by the equation 
@ '(to) = 0, i.e., 

~n (27) + ( a ~ .  (yi)las) l--l,,+y,nz=~ 

(it can be shown that this point lies on the imaginary axis). 
Under condition (21), to is small, and Eq. (23) converts into 
(20) with exponential accuracy. The correct coefficient of the 
exponential function could have been found in this case by 
taking into account in the integration the rapid change in the 
factor t tanh (m) at small t. 

The distribution of lny about its most probable value is 
Gau~sian. ' .~ .~-~ This result is easily derived from (23). To 
show this, we denote by p(x) the probability density for 
x = lny, 

p (x) =w (e", z) e=. 

We see that the value of to corresponding to the most prob- 

able value ofx is found from the equation d (@ + x)/dx = 0. 
In the differentiation here we should treat to as a function of 
x and make use of (a@ /at ), = ,, = 0. We find d (Q, + x)/ 
dx = it + 1/2; i.e., the unknown is to = i/2. The condition 
(a0 /at ), = ., = 0 then determines the most probable value 
of x, which we denote by x,. Using (1 1) and the relation 
P, = P-,- ,, we find 

Comparison with (17) shows that x, = (x) at (x))l .  Ex- 
panding @ (to) in powers ofx-x, and retaining terms of up to 
second order, we find a Gaussian distribution, 

1 
(2n) '"a 

where 

Hence 

a2=nz r2 [1n(yi,+(7>-1)~ cos Q) 12, 

0 
27d 

in agreement with the result derived by Mel'nikov.' 
At large z, the rms deviation is a(x,, so that in most 

configurations the value ofx is very accurately x,. We must 
emphasize, however, that the corresponding meaning 
should not be extended to the quantity yT = ex' (the chain 
resistance corresponding to this value is usually called the 
bbtypical" or "scaling" value3), since even if the scattering by 
the center is weak, in which case we would have y-y, in 
most configurations, the fluctuations of y about y, are not 
small (they are on the order of y,). 

There is the interesting question of which values of y 
basically determine the expectation value (y). It is easy to 
see that these values lie outside the range of applicability of 
Gaussian distribution (25). The use of (25) to calculate ( 1 / T )  
thus leads to an incorrect result, as has been pointed out 
p r e v i o u ~ l y . ~ ~ ~  To find (y) we need to evaluate the integral 

OD 

(7)- jdre=p(z , s ) .  
0 

By a method similar to that used in the derivation of (24) it 
can be shown that the integrand has a sharp peak at 

and it is this which determines the values of x = lny that 
dominate ( y). These values are x = 3R ,nz at y, z 1(R, < 1) 
and x = nzy,lny, at y , > l ( R , ~  1). 
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Finally, we note that the function w(y, z) actually has 
integrable singularities at y = 1, y = y,, and y = 2 d  - 1 
(§4), because of the contribution of large values of t  to inte- 
gral (16). At large values ofz, however, these singularities are 
not influential. 

94. OTHER MODELS 

Certain other models can be examined by the same 
method. Let us assume that the scattering centers are differ- 
ent and that we are given the probability matrix of the scat- 
tering by a single center. In Eq. (5) we should then under- 
stand $ to be the quantity W(1, z), averaged over various 
values of y, and P,. Repeating the calculations of 52, we find, 
in the short-wave limit, some equations which differ from 
(15) and (16) in that the Legendre function in the exponential 
function is averaged over the values of y,. The analog of 
expression (15), for example, is 

OD 

/ d y w ( y ,  z )  ~ . ( y )  = e x p { [ ( ~ . ( r r ) ) ~ , - i l n z ) .  
1 

The symbol (. . . )y, denotes an average over y,. For the 
expectation values we find 

We wish to emphasize that for (1/T ) and ( T  ) the averaging 
over y, must be carried out in the argument of the exponen- 
tial function, while for (In(l/T)) the quantity ln(l/T,) must 
be averaged. At large values ofz we have the following ana- 
log of Eq. (22): 

Another model which we will consider here and which 
has been discussed in the l i t e r a t ~ r e ' ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~  assumes that the 
number of centers in the chain, N, is given and that the 
centers are again distributed at random. We then find, in- 
stead of Eq. (S), 

w = z  wN (nz)  Nc-nz/N!. 
N 

If we assume that w, does not depend onz, then we can find 
it immediately by expanding exp(nz)w(y, z) in a Taylor series 
in z. Using (15) and (16), we find - 

w N ( y )  = J d t ~ - . + , t  (7) t t h ( n t )  LP-v~+. ( y l )  I N ,  
0 

(28) 
OD 

Lps(rl)  l N =  d y w N ( y ) p 8 ( l ) .  
1 

Direct substitution easily shows that expression (28) satisfies 
the equation 

which is found from (27) in the short-wave limit under the 
boundary conditions J = I, = 1. 

The expectation values are 
( y > = 2 ( I / T > - I = y l N ,  

(In (112') )=N In ( l / T 1 ) ,  

" t h ( n t )  ( T > = 2 n  i d t  t- 
ch ( n t )  [P-til+it ( ~ i )  I N  

0 

Let us compare these expressions with those found pre- 
viously for the case of a fluctuating number of centers. It is 
easy to see that expression (17) for ( ln( l /T))  is determined 
primarily by configurations for which the average number of 
centers is nz. For ( 1/T ) and ( T  ), on the other hand, this is 
true only in the case of weak scattering (R, ( 1) and for chains 
which are not very long (nzR : 4 1). In the opposite case, ( 1/ 
T ) and ( T )  are determined by configurations for which the 
number of centers is respectively greater than and less than 
the average value. 

For N = 0 and 1 we find trivial results from (28): 

wo(y) = 6 ( y - I ) ,  w i ( y )  =6(y-y1) .  

It is also a straightforward matter to derive an expression for -- = - d W N ( a 7 z )  * L W N - 1  (a ,  z)-WN(a,  z )  1, dz Z 
(27) w,(y). For this purpose it is convenient to use recurrence 

relation (29); we find 

where W,(a, z) is the probability density of the value of a for ( y )  = ( - I )  - ' h ( 2 y l z - - ) - ' h ,  < y < 2 y 1 z -  (30) 
a chain of length z on which there are N centers. There is a 
distinction from Eq. (5) in that we have made the natural 
substitution n-+N/z  here. We have also taken into account 
the circumstance that if the center is in an interval dz then 
there are N-1 centers to its left. We could solve a recurrence 
system of Eqs. (27); we would naturally expect that its solu- 
tion in the short-wave limit would not depend on the chain 

Outside the indicated range of y values, the quantity w, is 
zero. Expression (30) could be derived in a different way-by 
twice applying transformation (3) directly and by taking an 
average of S (y-y2) over the relative positions of the centers. 
Here y, is the value of 2/T-1 for the passage by two centers 
separated by a distance Az: 

length z, but only on the number of centers in the chain. y 2 ~ ~ 1 2 +  ( y t 2 - 1 )  cos (2kAz+2qar) .  
However, we will take a different approach. The solution 

(31) 

found above for the problem with a fluctuating number of This quantity lies between the value y, = 1, which corre- 
centers on the chain, w(y, z), is related to the probability of sponds to the resonant transmission of an electron through 
interest here, w,, by averaging over a Poisson distribution: the pair of centers, and the value y2 = 27: -1, which corre- 
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sponds to maximum reflection [Eq. (31) actually describes 
the transmission of a wave through a Fabry-Perot resona- 
tor]. We see that the function w2 has singularities at these 
extreme points. A remarkable result is that the expectation 
value of T/R (a quantity associated with the conductivity) is 
infinite for a system of two centers. This result shows that the 
divergence of ( T/R ) in the problem with a fluctuating num- 
ber of centers results not only from the possible absence of 
centers from the chain but also from the configurations for 
which the centers fall in a regular order, allowing a resonant 
transmission. Lifshitz and Kirpichenkov'~~~ have pointed 
out the role played by resonant transmission in a disordered 
system. 

We can also derive an expression for the probability 
w3(y): 

2 ' (b-a) '" (c-1) 'I' 

WS(Y)= (C-a)l12 (b-1) % (- ) Y<Yl? - (c-a) "(b-1)'" ' 
(32) 

where K is the complete elliptic integral, 

For y,(4y12 - 3) > y > y, we need to make the replacements 
b e  in (32). This expression is valid for y < yl(4yl2 - 3) (i.e., 
for a < c); at larger values of y, we have w,(y) = 0. At values 
of its argument near unity the function K diverges logarith- 
mically; i.e., w3(y) has a singularity at y = y,(b = c). This 
situation corresponds to a configuration in which there is a 
resonant transmission through two of three centers. It can be 
shown that w,(y) diverges logarithmically in the limit y-1, 
while wN(y) has no singularities at all at N >  4. In other 
words, the weight of the resonant configurations is relatively 
small at N > 4. Nevertheless, it is the resonant transmission 
which is responsible for the fact that wN (y) does not vanish in 
the limit y-1. 

55. TRANSMISSION IN AN ELECTRIC FIELD 

When there is an external electric field, the potential 
V(z) in Eq. (1) contains a regular component u(z) in addition 
to the random potential of the impurities. Between centers 
we then have the following instead of (2): 

Y (z) = k-'A (z) 

where k (z) is the semiclassical wave vector. At the point 
z = 0, we take the potential u to be zero. We assume that k is 
large enough that the semiclassical description can be used 
to describe the motion between centers. Furthermore, the 
electric field is assumed weak enough that it does not affect 
the scattering. Under the assumptions, the amplitudes a ,  to 
the right of the center are again related to those ii * to the, 
left by Eqs. (3), except that in the latter equations we need to 
make the replacement 

and Eqs. (5) and (6) hold as before. Repeating the calcula- 
tions of $2, we find the following replacement for (16) in the 
short-wave limit: 

with a corresponding analog of Eq. (15). The effect of the 
electric field on the probability w(y,z) and thus on the trans- 
mission by the chain is due entirely to the dependence of the 
scattering matrix on the kinetic energy [the dependence 
y,(k )I, which makes y, a function of the position of the cen- 
ter. The expectation values in this case are 

It is also a simple matter to derive the other expectation 
values. 

We recall that in our formulation of the problem an 
electron is incident on the chain from the right and leaves at 
the point z = 0. It is interesting to examine the asymptotic 
behavior of the expectation values for long chains and at a 
fixed energy of the incident electron, fi2k 2(z)/2m = E,. We 
assume that the field E is uniform and directed in such a 
manner that the electron is accelerated toward decreasing z. 
At the exit the electron acquires a large kinetic energy. We 
can then use the Born approximation for the scattering of the 
electron by an individual center, and R ,  approaches zero 
more rapidly than l/k 2. The integrals in Eqs. (34) thus con- 
verge as z-00. Consequently, an arbitrarily weak field, in 
the absence of energy loss, leads to a breakdown in the sense 
that the probability for transmission through a long chain 
does not depend on its length. Hypothetically, there is the 
exceptional case of 6-shaped centers, for which we would 
have R,  cc l/k 2. In this case the integrals diverge logarithmi- 
cally, and (ln(l/T)),  for example, increases logarithmically 
with increasing length of the chain, and from (33) at large z 
we find an analog of Eq. (1 8) for (T  ) : 

where a = eE / 4n~ , .  In deriving this expression we assumed 
R , = E, /E, where E is the kinetic energy of the electron, and 
E, is determined by the strength of the center (the Born ap- 
proximation for 6-shaped centers). 

An expression very similar to (35) was derived by Prigo- 
din26 for the density-density correlation function in a white- 
noise potential. The exponent in Prigodin's expression, how- 
ever, is (1-u)2/8a instead of the 1/16a in (35); Prigodin 
pointed out26 that his expression was valid only for a < 1. 
Furthermore, he suggested that the field corresponding to 
a = 1 is a threshold field and that the electron states become 
delocalized at a > 1 (Ref. 26). Our result (35) shows that there 
is no singularity in the average transmission coefficient at 
a =  1. 
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W. EXACT RESULTS FOR (a), Cg), and <1/T) 

Equation (5) can be used to find exact expressions for 
certain expectation values at arbitrary values of k. To illus- 
trate the procedure we will calculate the expectation values 
of a and 8. For this purpose it is sufficient to determine 
(Y+) and (Y-) under the boundary conditions Y+(O) = 0 
and Y-(0) = 1. From (1 3) we see that we have 

in this case. In finding ( a )  and (B ), we might note, we are 
finding the expectation values of l/t and r/t, since a = l/t * 
andB = - r*/t * (rand tare the reflection and transmission 
amplitudes of the chain). We multiply Eq. (5) by a +  and a-  
and integrate over a. In the first term on the right side we 
switch to an integration over the variables 3, and we use 
transformation (3). We then find a system of linear equations 
with constant coefficients for ( a )  and (B ) : 

1 d(a)'  - - = p i * ( ~ ) + ( a i * - l - i k n - i )  (a ) ' ,  
n dz 

which are to be solved under the boundary conditions 
( a )  = 1 and (B) = 0 at z = 0. As a result we find 

where v, and v, are the roots of the characteristic equation 

We see that (a) and (B) may either increase or decrease 
with increasing z. This result should be interpreted as evi- 
dence of a competition between two factors: Anderson local- 
ization, which should cause ( la 1 ) and ( I ) to increase with 
increasing z, and the transition of the phases of a andP to a 
stochastic state. Interestingly, in the simplest case of S- 
shaped centers we would have 7 = O, and under the condi- 
tion k2n-2 + 2kn-'Ima, >O (which holds for attracting 
centers and also for repelling centers if they are not too 
strong) these factors cancel out exactly, on the average, so 
that the roots v,,, = * i(k 'n-' + 2kn-'Im are pure- 

- ly imaginary. 
In the short-wave limit, expression (36) can be derived 

directly from Eq. (3). Taking an average of (3) over the posi- 
tion ofthe  center,^,, we find ( a_ )  = a:(a-). It follows that 
the expectation value of the amplitude a ,  at the end of a 
chain containing N centers is (a:) - ,, , SO that we have " 
( a )  = a: exp (ikz). After taking an average over N with a 
Poisson distribution, we find from this expression 
( a )  = exp [a, - 1)nz + ikz], which agrees with (36) at large 
k. 

In a similar way, we can evaluate the expectation values 
of quadratic combinations of a and 8. For 

( I > = ( ( Y + 1 2 > + ( I Y - 1 2 > ,  q = ( Y + Y - * > ,  

for example, we have 

1 d<Z> --- 
n dz -2 ~ P I  12<Z>+ai~i'q+at'~iq',  

--- I dq -ai$i(I)+(ai'-1+2ikn-i)q+pi2p*. 
n dz 

Assuming all the expectation values to be proportional to 
exp (vnz), we find the characteristic equation 

vS+4[1-  (Re ai)'] v2+4 [k2n-'+2 ( R e  ai)  (Im ai)  kn-'+I 

- ( R e  ai) '1 v-81 pi  1 2k2n-2=0. 

In the short-wave limit, the real root of this equation is 
v, = 21P1 1'. The two other roots, 

~ ~ , ~ = * 2 i k n - ' - ]  pi  1 '+2 (Re  a , ) ' - 2 ,  

have a smaller real part. At large values of z, therefore, the 
behavior of the expectation values is determined exclusively 
by the root v,. 

Under the boundary conditions 1(0)  = 1 and q(0) = 0, 
the expectation value (I) is 2 ( 1/T ) - 1. Finally, we give the 
results for (1/T) for the case of scattering by 6-shaped 
centers, with a, = 1 + ik, /k and p, = ik, /k (k, is a mea- 
sure of the strength of the potential of the center). Under the 
condition 

I kb+k2/n ( C I kb (kb /n)  I 
we have 

l 'zz 1 
X [ cos ( - 2 1 )  f- ( 2 k 1 ) 2 c 0 s ( ~ - $ ) ] 7  

where 1/1= 2(kb Zn)113. In the opposite limit, 

I kb+k21n I I kb (kb/n) '" I , 
we find 

where 

ksl=l+ (k2/2kbn),  X= (8kbZnl) 'Ia. 

Only under the two conditions (kl) 1 and (k, 1I)l) is the 
following e~pression~-'*'~ valid: 

< I /T> = ! I 2  [ exp  (211) + I ]  . 

APPENDIX 1 

It is not always possible to expand the solution of Eq. (6) 
in powers of l/k. The successive-approximation procedure 
is non-contradictory and can in principle be pursued to arbi- 
trary order in l/k, only under boundary conditions of spe- 
cial form. Specifically, since w"', w"', ..., are determined 
unambiguously by the zeroth approximation, W'O', the val- 
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ues of these functions at z = 0 are thus also determined un- 
ambiguously by the boundary condition on w"'. The bound- 
ary condition for W should thus be 

where the function W'O' (I), =,  is arbitrary, and all the suc- 
ceeding terms in the expansion are expressed in terms of it (as 
it completely determined by the dependence of W 1, = ,  on p). 

Equation (8) could be derived in a different way. If we 
expand W (I,p) in a Fourier series in p,  we find from (6) a 
system of coupled equations for the Fourier components. At 
large values of k, the coupling of the zeroth component with 
all the others is weak. Ignoring this coupling, we find Eq. (8). 

APPENDIX 2 

We denote by w(y,p, , pP, z) the total probability den- 
sity for transformation matrix (12). We can then obviously 
write 

an tn r 

W(O) (I, 2,) = Jdqa J*@ Jdyw(7, 9a, 9h z)g(79 9m Pi37 I )  7 

0 0  1 

where g(y, pa ,  p8, I) is the probability that, for the given 
values of y, p a ,  and p8, the quantity / Y+ + I Y- I has the 
value I :  

g ( ~ ,  cpa, cps, I )  

Here I (y,q, , pB , q,:, I,' is determined by (7) with 
pI1fll+a, f l  and with I+ I;, @+ q; . We see that g is inde- 
pendent of pa and qB. Assuming W(~'(I,',O ) = S(IO1-I,), we 
find Eq. (14). 

''This equation can be written in the form (l/ t  ) = (l/tJN exp ( - ilu). In 
the short-wave limit the reciprocal of the transmission coefficient is thus 
multiplicative on the average. However, the same cannot be said of the 
transmission coefficient, as Thouless has done." In taking an average of 
(3) over the phase we find information only on ( l / t  )-not on (t  ). The 
reason is that the averaging in (3) presupposes that the incoming and 

outgoing fluxes at the beginning of the chain are specified, rather than 
the fluxes entering the chain at its beginning and end (which are given in 
Ref. 27). 

'I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Vvedenie V teoriyu 
neuporyadochennykh sistem (Introduction to the Theory of Disordered 
Systems), Nauka, Moscow, 1982. 

'V. I. Klyatskin, Stokhasticheskie uravneniya i volny v sluchainoneod- 
norodnykh sredakh (Stochastic Equations and Waves in Randomly In- 
homogeneous Media), Nauka, Moscow, 1980. 

3P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. 
Rev. B22, 3519 (1980). 

4E. Abrahams and M. J. Stephen, J. Phys. C 13, L377 (1980). 
5V. I. Mel'nikov, Fiz. Tverd. Tela (Leningrad) 23,782 (1981) [Sov. Phys. 
Solid State 23,444 (1981)l. 

6A. A. Abrikosov, Solid State Commun. 37, 997 (1981). 
7J. Sak and B. Framer, Phys. Rev. B24, 1761 (1981). 
'P. Erdos and R. C. Herndon, Adv. Phys. 31,65 (1982). 
9N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961). 
1°V. L. Bereziknskii, Zh. Eksp. Teor. Fiz. 65, 1251 (1973) [Sov. Phys. 

JETP 38, 620 (1974)l. 
"A. A. Abrikosov and I. A. Ryzhkin, Adv. Phys. 27, 147 (1978). 
"V. L. Berezinskiiand L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 77,2498 (1979) 

[Sov. Phys. JETP 50, 1209 (1979)l. 
13A. A. Gogolin, Phys. Rep. 86, l(1982). 
14R. Landauer, Philos. Mag. 21, 863 (1970). 
15M. Ya. Azbel, Phys. Lett. 78A, 410 (1980). 
I6D. C. Langreth and E. Abrahams, Phys. Rev. B24,2978 (1981). 
17D. J. Thouless, Phys Rev. Lett. 47, 972 (1981). 
18R. Landauer, Phys. Lett. 85A, 91 (1981). 
l9H.-L. Engquist and P. W. Anderson, Phys. Rev. B24, 1151 (1981). 
''A. Erdtlyi (editor), Higher Transcendental Functions, McGraw-Hill, 

New York, 1953 (Russ. trans]. Nauka, Moscow, 1973). 
'lV. I. Perel' and D. G. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz. 37, 539 

(1983) [JETP Lett. 37, 644 (1983)l. 
"I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Predstavleniya gntppy 

vrashchenii i gruppy Lorentsa, ikh primeneniya (Representations of the 
Rotation and Lorentz Groups and Their Applications), Fizmatgiz, Mos- 
cow, 1958. 

23M. E. Gertsenshtein and V. B. Vasil'ev, Radiotekh. Elektron. 4, 611 
(1959); Teoriya veroyatnostei' i ee primeneniya (Probability Theory and 
Its Applications), Vol. 4, 1959, p. 424. 

24A. A. Gogolin, Zh. Eksp. Teor. Fiz. 76,1759 (1979) [Sov. Phys. JETP 49, 
895 (1979)l. 

Z51. M. Lifshitz and V. Ya. Kirpichenkov, Zh. Eksp. Teor. Fiz. 77, 989 
(1979) [Sov. Phys. JETP 50,499 (1979)l. 

Z6V. N. Prigodin, Zh. Eksp. Teor. Fiz. 79,2338 (1980) [Sov. Phys. JETP 
52, 1185 (1979)l. 

"D. J, Thouless, in: Physics in One Dimension. Proceedings of the Inter- 
national Conference Fribourg, Switzerland, 1980 (ed. J. Bernasconi and 
T. Schneider), Springer-Verlag, Berlin, Heidelberg, New York, 1981, p. 
306. 

Translated by Dave Parsons 

211 Sov. Phys. JETP 59 (I), January 1984 V. I. Perel' and D. G. Polyakov 21 1 


