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The dynamics of the onset of stochastic oscillations in Josephson tunnel junctions is investigated 
in a wide range of external microwave fields. The experimental data are compared with analytic 
and numerical calculations of the conditions of the formation of stochastic oscillations. The 
calculations are carried out within the framework of the resistive model of the Josephson junc- 
tion. 

1. INTRODUCTION 

Much attention is being paid in the past few years to 
nonlinear dynamic systems in which stochastic oscillations 
(SO) of high intensity can be caused by the appearance of 
complicated trajectories-strange attractors-in phase 
space (see, e.g., Refs. 1 and 2). These oscillations have a 
broad spectrum and are practically indistinguishable from 
fluctuations of the system. 

Stochastic oscillations produced in Josephson tunnel 
junctions by the action of an external microwave signal were 
analyzed in Refs. 2-8. Their spectrum and the ranges of vari- 
ation of the junction parameters, as well as the characteris- 
tics of the microwave action under which stochastic oscilla- 
tions take place, were determined by numerical calculations 
and by analog simulation. No analytic expressions, however, 
were obtained for the conditions under which the stochastic 
oscillations set in. 

In a preceding paperg we reported experimental obser- 
vation of stochastic oscillations in Josephson tunnel junc- 
tions, although without a detailed analysis of the conditions 
for the onset of these oscillations. In the present paper we 
report the results of an experimental and theoretical investi- 
gation of stochastic oscillations in such junctions and com- 
pare the experimentally observed regions where these oscil- 
lations appear with the results of the analytic and numerical 
methods. 

2. THEORY 

In calculations of the processes that give rise to stochas- 
tic oscillations in Josephson tunnel junctions it is customary 
to use3-' a resistive model,1° according to which the current 
through the junction can be represented as a sum of the cur- 
rents I, sin O, through an ideal Josephson junction, and also 
in terms of its normal resistance, V/RN, and the capacitance 
Cd 'V/dt ' (I, is the critical current and V is the voltage 
across the junction). Using the customary normalization for 
Josephson junctions, the equation for the phase difference g, 
at an external-microwave frequencyf, takes the form 

qi-p-'"@+sin cp=ia+ii sin cot. (1) 

Herep = 2eIc RN C / f i  is a parameter indicative of the damp- 
ing of the plasma oscillations in the junction, io = IJIc, and 
i1 = Il/Ic,  where I, is the direct current through the junc- 
tion and I, is the microwave current amplitude; o =f, /f, , 

where f, = (2~)- '(2eIC )/Tic)'''. The time is measured in 
units of (2a& ) -  l .  

2.1. Separatrices of the system 

For future convenience, we rewrite (1) in the form of a 
system of first-order equations: 

Q=u, 

zi=-sin cp-p-'"v+i,+i, sin z ,  i=o. (2) 

A t p  -'IZ = io = i, = 0 the system (2) describes autonomous 
oscillations of a physical pendulum in a gravitational field. 
The phase portrait of these oscillations is well known (see, 
e.g., Ref. 11). In view of the cylindrical symmetry of the 
system it is convenient to choose the phase plane to be the 
developed surface of a cylinder ( - a < g, < T), on which 
there is one stable point (a center with coordinates B0(0,0) 
and two hyperbolic points (saddles B ,, - , (0, f T), Fig. 1. The 
saddles are joined by separatrices (dashed lines in Fig. I), 
which are described by the equations 

v=*2 cos ( ( ~ 1 2 ) .  (3) 
At i, # O  the phase trajectories of the system (2) depend 

also on a third coordinate z. To analyze the phase portrait of 
the system (2) in this case one can use the mapping of the 
plane z = const over the period of the external action. At 
small perturbations (P - 'I2 = io,il(l) this mapping has im- 
mobile hyperbolic points close to the points 8 ,, , the stable 
and unstable manifolds1' of which differ little from the un- 
perturbed separatrices. 

According to the results of symbolic dynamics (see, e.g., 

FIG. 1.  Separatrices of the system (2). Dashed-unperturbed separatrices, 
solid-mapping of stable and unstable manifolds of the points 8 ,, - , at 
i, $0. 
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Ref. 12) the sufficient condition for the onset of stochastic 
oscillations in a perturbed system is an intersection of the 
stable and unstable manifolds of the perturbed points 8 ,, - 
at nonzero angle (see Fig. 1). Since the unperturbed system 
has a first integral 

H = l / L v Z - ~ ~ ~  (P, (4) 

a sufficient condition for the intersection of the correspond- 
ing stable and unstable manifolds of the points 8, and 8-, is 
according to Ref. 13 the possession of a simple zero by the 
function 

00 

J ( r )  = 5 B(v(.) (t) ,  q(#) ( t ) ,  t+~ )d t ,  
-m 

(5) 

where H is the derivative of H with respect to t along the 
solution of the perturbed system, and p(") (t ),v'") (t ) are the 
unperturbed asymptotic solutions that pass through the hy- 
perbolic points 8, and 8-, (dashed in Fig. 1): 

(~ (~ )= -n+4  arctg ( * t ) ,  v(")=*2 ch-' t. (6) 

Substituting (6) in the expression for J(T) and integrating, we 
obtain 

I (T)  =8p-'h*2nio+2nil ch-I (no/2) sin oz. (7) 
Consequently J(T) has a simple zero if the condition 

I -4/ni3'"*io 1 <il ch-' (no/2) (8) 
is satisfied; this is the sought condition for the onset of sto- 
chastic oscillations in the system (2).2' The reversal of the 
sign of i,, corresponds to a different direction of dc current 
flow through the junction, so that in the presence of i, the 
system goes over into the stochastic-oscillation regime at 
lower values of i,. 

Relation (8) can be easily generalized to the case when a 
tunnel junction is connected in a superconducting ring with 
inductance L (high-frequency superconducting quantum in- 
terference device-HF SQUID). Equation (1) acquires an 
additional term q,/l (I = ~ITLI,  /QO, QO = h /2e is the mag- 
netic-flux quantum) due to the presence of magnetic flux in 
the ring. Proceeding in analogy with the case considered 
above, we obtain at 1)  1 the condition for the onset of sto- 
chastic oscillations: 

I -4/np'"*iO+2nm/l 1 <il ch-' (no/2), (9) 
were m = 0, f 1, f 2, . . . characterizes the number and 
direction of the quanta of the flux Q, which are contained in 
the ring. 

2.2. Kolmogorov's entropy 

The analytic expressions obtained for the regions where 
stochastic oscillations occur are valid when the system is 
close to conservative. To determine the limits of these re- 
gions under strong perturbations we have carried out a nu- 
merical calculation, and considered the following circum- 
stance. It is known that for a strange attractor to appear all 
the trajectories must enter into a certain region and at the 
same time diverge in the interior of this region.' 

For the system of equations (2) the first condition is 
certainly satisfied at all values of the parameters, since con- 
traction of the phase space takes place: 

The criterion for the divergence of the phase trajectories was 
chosen to be positiveness of the Kolmogorov entropy,15 de- 
fined as follows: 

where D (T) is the distance, at the instant T, between two 
phase points (q,,, v,) and (q,,, v,) that were separated at the 
instant T = 0 by a distanceD (0). Ifthe motion ofthe system is 
stochastic, the distance between the phase trajectories in- 
creases exponentially with time (K > 0). In the opposite case 
(K < 0) the trajectories go off to a stable limit cycle as t--t w . 

To calculate K, the system (2) was integrated by the 
fourth-order Runge-Kutta method. The integration interval 
was 1/64 of the period T of the external action. At arbitrary 
initial conditions, the system (2) was integrated to t ,  = 30T, 
when the settling process already terminated, at least for the 
region of the regular oscillations. At that instant a small 
perturbation of the coordinates q, and v was specified, such 
that (D (0) = after which the calculation was continued 
for two trajectories (perturbed and unperturbed), and D (7) 

and k (7) were determined. In the calculation of k we did not 
regard as identical the phases q, that differed by an integer 
times of 217, to avoid the difficulties connected with the fact 
that the distance between those points that do not go off to 
infinity cannot increase without limit.15 

Figure 2 shows the dependence of k on the number N of 
the oscillation periods of the external action, for three initial 
conditions: q,(O), v(O), and i, = 0.8, with the remaining pa- 
rameters fixed at w = 0.52, p = 0.25, and i, = 0. It can be 
seen that in the range of large N the value of k depends little 
on Nand at arbitrary initial conditions k (N ) tends to a posi- 
tive limit k with increasing N, the obtained value of K being 
also independent of the specified perturbation D (0). This 
means that the distance D (T) between the initially close 

FIG. 2. Dependence of the characteristic exponent k on the number Nof 
periods of the external signal for a junction with p= 25, i, = 0, o = 52, 
D (0) = 10-'at two external signal amplitudes: 1 )  i, = 0.8 for initial condi- 
tions v(0) = 0 and q(0) = 0 (dash-dot curve) v(0) = 10 and q(0) = 10 (solid 
curve), v(0) = - 10 and q(0) = - 10 (dotted); 2) i, = 0.4 for all initial 
conditions. 
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FIG. 3. a) Structure of shift mapping at i, = 0.8, i, = 0, P = 0.25, and 
o = 0.52; b) fragment of mapping shown framed in Fig. 3a. 

points increases exponentially with time. Figure 2 shows 
also the k (N)  dependence for i, = 0.4 when there were no 
stochastic oscillations in the system (2). It can be seen that in 
this case k (N)  < 0.  

The Kolmogorov entropy was used by us to determine 
the regions where stochastic oscillations set in. At a fixed 
frequency w of the external action the value of i, was in- 

creased from zero, and at each i, step we determined the 
value of k at N- 100 T. The appearance of a positive sign of 
K was evidence of the onset of stochastic oscillations. 

To confirm this, we analyzed in the region K > 0 the 
phase trajectories of the system, using the shift mapping. " 
We analyzed the coordinates of the points on the [p, v] plane 
for each period of the external action. Figure 3a shows the 
shift mapping of the phase trajectories of the system (2) at 
i, = 0.8, i, = 0 ,  P = 25, and w = 0.52 for a realization con- 
sisting of lo3 T points. It can be seen that many oscillations 
exist in the systems (harmonics and subharmonics of the ex- 
ternal signal), each characterized by a separate point. These 
points do not lie on a line, but occupy a certain band, thus 
attesting to the onset of a strange attractor' in the system (2). 
Local analysis of the shift mapping shows that the set of 
points in the cross section v = const corresponds to a Cantor 
set, which is a feature of the strange attractor (Fig. 3b). We 
note that in a wide range of variation of the parameterP> 25 
the structure of the stranage attractor changes little within 
the region where the stochastic oscillations appear. 

3. EXPERIMENT 

3.1. Investigated samples and experimental technique 

As shown by the theoretical analysis, stochastic oscilla- 
tions should manifest themselves most strongly for transi- 
tions with high values of the parameter f l  in response to 
microwaves of frequency close to the plasma frequency f, . 
When microwave signals in the millimeter band are used, 
these conditions are satisfied by Josephson tunnel junctions 
of the Nb - Nb, 0, - PbBi type manufactured by the pro- 
cedure described in Ref. 16. The parameters of the investi- 
gated junctions are listed in Table I. The linear dimension of 
the junction (plan view) is much smaller than the character- 
istic depth of penetration of the magnetic field, so that uni- 
formity of the current distribution over the entire junction 
area S is assured. This was tentatively confirmed in Ref. 16 
by the dependence of the critical current I ,  on the external 
magnetic field, so that the coordinate dependence of the 
phase difference p could be neglected. The value of I, and 
the normal resistance RN of the junction were determined 
from the current-voltage characteristic (CVC) of the junc- 
tion measured with direct current. The junction capacitance 
was calculated from the formula C = ~ S / 4 1 ~ d  using the fol- 
lowing empirical relation" for the thickness d of the oxide 
layer of tunnel junctions based on niobium: 

a ,  
- e [ A ]  =1,4-0125 lg j q p  

TABLE I. 
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1 
2 
3 
4 
5 
6 

440 
32 
115 
225 
522 
30 

19 
21 
38 
14 
13 
11 

1,3 
8.1 
4:6 
6.2 
1 
18 

103 
35 
37 
90 
132 
38 

3.2 
22 
5,1 
2.2 
2.3 
1,6 

7 
14 
40 
56 
4 
48 



with the current density j,, determined from the current 
jump on the quasiparticle branch of the CVC. The values of 
f ,  and p were calculated using the equations given in Sec. 2 
above. 

The samples investigated were placed transverse to a 
flattened (h = 0.6 mm) 8-mm-band waveguide equipped 
with a short-circuiting piston and a post. With microwave 
radiation of frequency f, = 20-80 GHz applied, we mea- 
sured simultaneously the CVC and the junction voltage in 
one of the following frequency bands: a) Fl = 100 Hz-100 
kHz with controllable band AF, = 1 %, lo%, and 100% of 
F,; b) F2 = 47 MHz with band AF, = 45 MHz; c) F, = 470 
MHz with AF, = 450 MHz. In addition we plotted the time 
dependences of the junction voltage U in the absence of dc 
through the junction. 

3.2. Experimental results and their discussion 

Figure4 shows the U (t )plots obtained forjunction No. 6 
at different external-microwave radiation levels at a frequen- 
cyf, = 52.6 GHz and at I, = 0. It can be seen that at certain 
microwave power levels Pe the value of Uexceeds that corre- 
sponding to the noise of the measuring amplifier (P, = 0). 
This increase of Uis observed in all the bands of the frequen- 
cy F, thus indicating that the signal Uis broadband at least in 
the frequency range F = 0 to 500 MHz. The appearance of 
such a signal could be due to the presence of Josephson gen- 
eration, which also has a broad spectrum. In our case, how- 
ever, there was no dc voltage across the junction ( V  = O), and 
consequently no Josephson generation took place. Nor does 
usual detection of a microwave signal with finite spectral 
width take place here, in view of the symmetry of the junc- 
tion CVC.16 At the same time, according to  calculation^,^ 
the stochastic oscillations in Josephson tunnel junctions 
have a very broad spectrum from low frequencies tof , ,  so 
that the observed increases of the alternating voltage U can 
be identified with the stochastic oscillations. Favoring the 
last statement is also the fact that, in accord with the calcula- 
t i ~ n , ~  a nonmonotonic change of U was observed when Pe 
was varied, but for a junction with a low value of the param- 
eter p 5 15 the nonmonotonicity led to an alternation of re- 

FIG. 4. Dependencesof U ( r  ) forjunction No. 6 a t o  = 0.84, io = O,/3 = 34, 
and F = F, for different levels of damping introduced in the channel. 

FIG. 5. Horizontal segments-experimental bands of frequency in which 
stochastic oscillations were observed for the junctions listed in the table. 
The upper frequency limit for the observation of stochastic oscillations for 
junctions 2, 3, and 6 reached =: 1.5. Vertical segments-lower amplitude 
limits of the stochastic oscillations for junction No. 6 at i, = 0 and F = F,. 
Solid curve-limit of existence of stochastic oscillations, calculated nu- 
merically for io = 0 and P = 50. Dash-dot-limit obtained from Eq. (8) 
under the same conditions. 

gions with and without the signal U (Ref. 9). The estimated 
maximum value of U, with allowance for the strong mis- 
match of the impedances of the junction and of the measur- 
ing amplifier, yields an equivalent noise temperature 
T,, - lo4 K, which is close to the theoretical 

Figure 5 shows the amplitude-frequency plane [i,, w] of 
the external-action parameters. The horizontal segments 
mark the frequency bands in which stochastic oscillations 
appear for the junctions listed in Table I. It can be seen that 
in the investigated junctions the stochastic oscillations occur 
in a wide range of variation of the normalized external-signal 
frequency, so that in practice these oscillations occur in the 
investigated frequency band in all junctions with high value 
of the parameter p > 10. The restrictions of the normalized 
frequencies, shown in Fig. 5, represent not vanishing of the 
stochastic oscillations, but limits of the experimental setup. 
The vertical lines show for junction No. 6 the initial sections 
where stochastic oscillations appear when the normalized 
amplitude of the microwave signal is varied at a fixed fre- 
quency. The normalized values of i, were determined from a 
comparison of the experimental and theoretical depen- 
dences of the critical current on the amplitude of the micro- 
wave current. 

It can be seen from Fig. 5 that the experimental values 
i';'" of the limits of the regions where stochastic oscillations 
occur lie above the theoretical values obtained from Eq. (8). 
This relation between the analytical theory and experiment 
should be regarded as satisfactory, since Eq. (8) was derived 
under the condition of small perturbation and can serve as a 
lower bound of i';'". A qualitative correspondence is also ob- 
served between the experimental data and the computer cal- 
culation, namely: the fact that i';'" (w) has a minimum at 
w ~ 0 . 8  and that i';'" increases with increasing w. For transi- 
tions with small p < 15 at w > 1 the bands in which the sto- 
chastic oscillations set in shrink into points. However, the 
observed minimum of i';'" is shifted towards larger w, and the 
band in which the stochastic oscillations appear is substan- 
tially broader than that calculated. The deviation of the ex- 
periment from the numerical calculation is apparently due 
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FIG. 6. Plots of U(1,) and initial sections of the CVC (dashed) at different 
damping levels for junction No. 6 with/3 = 60 and o = 0.69. 

to the fact that the properties of a real junction differ strong- 
ly from those predicted by the resistive model, say because of 
the nonlinear voltage dependence of the junction quasiparti- 
cle current. We note that the discrepancy between the ana- 
lytic theory and the calculation can be due to the fact that 
according to the analytic calculation the phase-space region 
in which the solutions of the system (2) behave in a compli- 
cated manner (see Fig. 1) is quite small (its measure is 
-i,(l). If this region is not attracting,'' its presence is not 
revealed by the calculations. As a result, stochastic oscilla- 
tions appear at large amplitudes of the external signal, i, - 1, 
when the validity of the derived Eq. (8) is not rigorously 
verified. 

Figure 6 shows the dependences of the amplitude U at 
the frequency F 2  on the dc current I, flowing through the 
junction at various applied microwave powers P, at a fre- 
quency w = 0.69 and at f i  = 50; also shown are the initial 
sections of the CVC. It can be seen that the presence of non- 

FIG. 7. Dependence of normalized critical current on the microwave cur- 
rent amplitude i ,  (points) in the region of appearance of stochastic oscilla- 
tions in the presence of direct current through junction No. 6 withp = 50, 
o = 0.69 (vertical arrows). The solid curve is the numerically calculated 
i, (i,) dependence, the dash-dot curve is the stochastic-oscillation existence 
limit obtained from (8). 

zero I, gives rise to stochastic oscillations at lower values of 
i,. This "stimulation" of the stochastic oscillation by direct 
current agrees with the theoretical (8). Figure 7 shows the 
experimental dependence of the normalized critical current 
on the microwave amplitude i,. The solid line is the theoreti- 
cal ic (i,) dependence obtained with a computer within the 
framework of the resistive model. The vertical lines show the 
regions of the onset of the stochastic oscillations at a fixed 
value of i,. The dash-dot line is the stochastic-oscillation 
onset boundary calculated from Eq. (8). It can be seen that, 
just as at i, = 0, the boundary (8) passes below the experi- 
mental values. At the same time the numerically calculated 
boundary of the onset of stochastic oscillations coincides 
with the ic (i,) dependence. It must be noted that for junc- 
tions with small valuesp < 10 deviations of the boundary of 
the region of the onset of the stochastic oscillations from that 
for junctions with large fl were observed.19 

4. CONCLUSION 

The analytic expression obtained in this paper gives the 
lower bound of the experimentally observed limits of the 
onset of stochastic oscillations in Josephson tunnel junc- 
tions, and describes qualitatively the changes of these limits 
when the parameters p, o ,  and io are varied. Numerical cal- 
culations within the framework of the resistive model de- 
scribe well a number of peculiarities experimentally ob- 
served in the junctions, such as the clearly pronounced 
minimum of the frequency dependence of the limiting signal 
amplitude i';'" (o), the nonmonotonic dependence of the sto- 
chastic-oscillation level on the external signal amplitude, 
and others, although they yield larger values of i';'" than ob- 
served in experiment. The discrepancy between the calcula- 
tion and experiment is probably due to failure to take into 
account the nonlinear voltage dependence of the quasiparti- 
cle current through the junctions, which is observable in real 
junctions, but which was not considered in the resistive mod- 
el used in the calculations. 
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numerical calculations. 
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