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The dependence of the conductivity on the wave number q in a ID conductor is calculated and 
analyzed with account taken of electron localization and of the fluctuations of the electron colli- 
sion frequency. Geometric-resonance oscillations of the dissipative conductivity are predicted at 
low frequencies; these are due to the hopping character of the electron motion in an inhomogen- 
eous wave field, with a fixed hop length. At high frequencies, the imaginary part of the conductiv- 
ity is described by the Drude formula, and the real part is influenced by localization and differs 
substantially from the Drude formula. 

1. INTRODUCTION 

The dependence of the complex conductivity a(w, q) of a 
one-dimensional ( lD  ) conductor on the frequency w under 
conditions of localization of the electronic states has been 
sufficiently well investigated in a uniform electric field 
(q = 0), in the limiting cases of high and low frequencies.'+ 
At low frequencies, when wr2(l (7, is the electron back- 
scattering time), a one-dimensional system of electrons is 
more readily a dielectric than a semiconductor, in view of the 
localization, and the real part of the conductivity is small 
compared with the imaginary part. The behavior of the func- 
tion Re u(w, q) in this frequency region can be determined 
with the aid ofthe qualitative arguments advanced by MottS5 
Berezinskir's theory2 confirms Mott's conclusions and per- 
mits in principle to determine the conductivity of 1D con- 
ductors even in inhomogeneous fields. Berezinskii, however, 
uses complicated finite-difference equations, for which 
asymptotic solutions could be obtained so far1-' only in the 
limiting cases of high and low frequencies and only for a 
uniform field, when the parameter K = 91, is equal to zero (q 
is the external wave vector, I, = VT2, and v is the Fermi veloc- 
ity). For this reason, there are no results whatever at present 
concerning the effect of spatial dispersion on the conductiv- 
ity of a 1D conductor. 

Yet the spatial dispersion of the conductivity is of pri- 
mary interest for the investigation of the propagation of 
waves of various types in 1D conductors. This pertains first 
and foremost to the propagation of sound, since q12)wr2 for 
a sound wave. 

It is that localization of electronic states in 
disordered systems is due to anomalously large fluctuations 
of the phases of the electron wave functions. A brilliant 
mathematical formalism that embodies this physical idea 
was developed in the book by I. Lifshitz, Gredeskul, and 
Pasturl (see also the review by Abrikosov and Ryzhkin4). 
Phase fluctuations lead in fact also to another important ef- 
fect-fluctuations of the frequency of the electron relaxa- 
tion, the latter a macroscodc kinetic characteristic. This ef- 

localization and fluctuations of the free path time of the elec- 
trons. 

We derive in this paper for the conductivity u(w, q) a 
relatively simple interpolation formula that gives correctly 
the functional dependence both on w and on q at arbitrary 
frequencies and wavelengths. A relatively small error occurs 
only in certain numerical coefficients, while the others are 
obtained accurately. The correct values of these coefficients 
are determined below for various limiting cases. 

2. SELF-SIMILAR APPROXIMATION 

The conductivity ~ ( w ,  q) of a 1D conductor (at T = 0) as 
a function of w and q can be calculated according to Ref. 2 
from the formula 

Here a, = ne2r2/m is a factor that coincides formally with 
the static conductivity of a 3 0  metal (n is the number of 
electrons per unit volume and m is the electron effective 
mass), while Q, (w, q) and P, (w) are functions that depend 
only on the dimensionless parameters x and x which corre- 
spond tow and q. The parameter corresponding tow is cho- 
sen to be 

and when solving the equations we shall regard x as real and 
positive, x > 0. This corresponds to a choice of w on the axis 
Im w > 0 in the upper complex w half-plane. In the final re- 
sults an analytic continuation is carried from the axis Im 
w>O to theaxisReo>O. 

The fact that (2.1) contains the even-in-q part of Q, (w, q) 
is the result of averaging over the electron-velocity direc- 
tions, i.e., over the Fermi surface, since Q, depends only on 
the product qv. 

The function P, (x) is equal to2 

fect was predicted theoretically by one of us.6 0 

The purpose of the present paper is an investigation of Pn ( x )  =r J d t e - ~ ~ t ~ ( i + t )  -"-', (2.3) 
the Berezinskii equations at finite values of the parameter x, o 

and a calculation of the conductivity under conditions of and Q, (w, q) is determined from the finite-difference equa- 
strong ( x s l )  and weak (x(1) dispersion with allowance for tion' 
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The boundary conditions are that Q, be finite at all n = 0, 1, 
2, ... and that they decrease rapidly as n+ + w, so that the 
series 

n-0 

converges in the circle lzl<O. 
We consider first the region of low frequencies, wr2( I. 

To obtain the principal term in the expansion of the conduc- 
tivity in this limit it is necessary to transform to the self- 
similar variable p = nx (Ref. 2) and, letting x go to zero, 
assumep to be finite. In this self-similar approximation the 
difference operator in the square brackets of (2.4) goes over 
into a differential one and the parameter x drops out of it2: 

Equation (2.6) must be solved on the axis O<p < with 
boundary conditions that Q @) decrease asp+ + co and inte- 
grability be ensured at zero.' 

A term proportional to wr2 is retained in the left-hand 
side of (2.6); this is justified if account is taken of the correc- 
tions to (2.6) from (2.4). 

The structure of Eqs. (2.4) and (2.6) allows us to call the 
operator in the square brackets of each the "collision-fre- 
quency operator"; the results that follow will justify this des- 
ignation. 

To solve (2.6) we expand Q @) in the total orthonormal 
system of eigenfunctions @, @) of the collision-frequency 
operator: 

(2.7) 
where Kip (z) is the Macdonald function and 

the eigenvalue being 

v(p) =(1+p2)/4, o<p<w, 

The functions @, @) are real at all real p and p and 
satisfy the completeness relation on the axis O<p < w : 

The first of these relations follows from the formulas for 
the Kontorovich-Lebedev t ransformati~n,~+~ a variant of 
which is \2.7), while the second can be proved with the aid of 
the Nicholson formula from the theory of Bessel functions (it 
was obtained in somewhat different form in Ref. 3). 

Substituting the expansion (2.7) in (2.6) and using (2.8) 
we get 

where pb) is the coefficient in the expansion of the right- 
hand side of (2.6) in the functions @, @): 

X 
p(p) - ~ & ~ J P ) K ~ ( ~ ~ F ) = ( P  sh xp)' sha(np/2) . 

(2.11) 

The conductivity a(w, q) in the self-similar approxima- 
tion is obtained by substituting (2.10a) in (2.1) with 
allowance for the fact that the sum over n is replaced by an 
integral with respect top, with 

Integrating with respect top, we obtain 

.. 
O O ( ~ ,  P ) - - ~ ( ~ G ) o ~  C J d p r  (p) [v(p) -i(m*qv) ~ ~ 1 - i .  , 

i o (2.13) 

The function 

is the square of the modulus of the coefficient p@) in the 
expansion of the "state function" in the right-hand side of 
(2.6) in the system of functions @, @). It is non-negative and 
normalized to unity, the latter circumstance being math- 
ematically the equivalent of the Parseval equation. There- 
fore the positive-definite eigenvalues (2.9) of the operator 
(2.8) can be interpreted in accordance with (2.13) as possible 
values of the dimensionless frequency of the collisions of the 
electron with the scatterers, where ,u plays the role of a 
"quantum number." Integration with respect to ,u in (2.13) 
corresponds to averaging of the energy denominator 
[Y - i(w - qv)]-' over the fluctuations of the collision fre- 
quency v with the probability distribution function W(Y) ob- 
tained from (2.14): 

We emphasize that the integration with respect t o p  in 
(2.13) is carried out at a fixed quantum state of the electron 
and summation over different electronic states can have no 
meaning. 

In other words, in a 1D conductor at wr,( 1 the trans- 
port frequency of the collisions of an electron having a fixed 
momentum (and spin) has no definite value and fluctuates in 
analogy with a dynamic quantity in quantum mechanics. In 
particular, the collision frequency corresponds to a self-ad- 
joint operator whose eigenvalues determine the possible col- 
lision frequencies, and the treatment of w b )  as a probability 
distribution function is based on the fact that w@) is the 
squared modulus of a coefficient in the expansion of the state 
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function P,, ( x )  in the complete system of eigenfunctions of 
the collision-frequency operator. 

The origin of the fluctuations of the collision frequency 
can be understood from simple physical considerations. In 
fact, localization of the electronic states takes place in a 1D 
system because there exists a finite probability of electron 
backscattering per unit time, with an order of magnitude 1/ 
7,. On the average, the electron moves in one direction (for a 
time on the order of T,) and is then reflected backwards. But 
72 is only the average time of motion in one direction. These 
times will be different for different electrons even if for no 
other reason that only the backward scattering probability is 
specified. It is the spread of the scattering times that leads to 
the relaxation-frequency fluctuations. These fluctuations 
are phase-connected, since the finite relaxation time is due to 
fluctuations of the wave-function phases.' This is precisely 
why the collision-frequency fluctuations are of quantum na- 
turea6 

From (2.13) we obtain an expression for the static di- 
electric constant of a 1D conductor 

m 

e ( q ) - i + 4 n ~ o ~ a  dpw ( P I  2v (1.4 tva (p )  C (qI .) ' l - i ,  (2.161 
0 

which shows that ~ ( q )  is a monotonically decreasing function 
of q. At q = 0 we obtain 

in exact agreement with Ref. 7 (z) is the Riemann zeta func- 
tion, 0, is the plasma frequency of the electron, a superior 
bar means averaging with the distribution function (2.15)]. 

3. GENERATING FUNCTION FOR Q, ( w , q )  IN THE SELF- 
SIMILAR REGION 

Equation (2.13) yields the principal term of the expan- 
sion of the conductivity at wr2( 1, with full account taken of 
the spatial dispersion, while the coefficient of ( - iw) in (2.13) 
is the polarizability of the 1D conductor. To obtain the dissi- 
pative conductivity, we transform to a generating function2 
for Q, (0,q): 

The conductivity is given in terms of y(t ) by means of the 
formula2 

which is obtained by substituting (3.1) in (2.1). Here and be- 
low the symbol (q+ - g) denotes the preceding term with 
the sign of the parameter in the brackets reversed). 

An equation for y(t ) follows from (2.4) (Ref. 2): 

(3.3) 
where 

and Ei(z) is the integral exponential function. Equation (3.3) 
must be solved on the axis O(t < cu with boundary condi- 
tions thaty(t )be finite at t = 0 and thaty(t )decrease to zero as 
t+ + m (Ref. 2). It is known that it is impossible to solve 
(3.3) for arbitrary values of the parameter wr,. We consider 
first the case of low frequencies: 1. 

Weintroduce thevariable6 = x( l  + t ) andobtainy(t )in 
the self-similar region, where 6 is finite as z-0. We rewrite 
(3.3) in terms of [: 

Equation (3.5) can be solved by iteration with respect to x .  In 
the first approximation we leave out the last term in the left- 
hand side of (3.5): 

This equation is solved exactly. We seek yo({) in the form 

We substitute (3.7) in (3.6) and use the relation 

It shows that yo(6 ) is expanded in (3.7) in the eigenfunctions 
of the differential operator in the left-hand side of (3.7), 
whose eigenvalues v b )  are determined by the previous rela- 
tion (2.9). As a result we obtain an integral equation for the 
function g b ) :  

Its solution is obtained by the inversion formulag 

The integral here can be calculated exactly and is equal 
to 

Substituting (3.11) in (3.10) and next g b )  in (3.7) we ob- 
tain a generating function in the self-similar region in the 
form 
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The correction to yo(() for the discarded term in (3.5) 
can be obtained by iteration, having expression (3.12) and 
knowing the Green's function G (6, { ') of Eq. (3.6) 

We note that (3.12) can be obtained also by another 
method, using the results of the preceding section. Indeed, in 
the self-similar region we have t) 1 and from (3.1) we get 

where Q @) is given by (2.11) and Q (z) is the Laplace trans- 
form of Q (p). Calculating the Laplace transform of (2.1 1) and 
substituting the result in (3.14) we arrive at (3.12). 

The contribution from the self-similar region to u(w, q) 
is 

1 " 
u s ,  q u o z  J - s o + - q .  (3.15) 

x 

4. SPATIAL DISPERSION OF DISSIPATIVE CONDUCTIVITY 

The main contribution to Re a(@, q) is made by the re- 
gion O<t( l/x (Ref. 2). To calculate y(t ) in this region, which 
we shall name logarithmic, we use Eq. (3.3) without the last 
term of its left-hand side: 

Just as in going from (3.5) to (3.6), an error is incurred in 
the collision-frequency operator, but exact account is taken 
of the state function in the right-hand side of (3.3) (details 
follow). 

To solve (4.1) we use the Mehler-Fock integral transfor- 
mation'' and represent y,(t ) in the form of an expansion in 
cone functions: 

OD 

si ( t )  =J d P - , i + , ,  (4+2t)f  ( p ) .  (4.2) 
0 

We substitute (4.2) in (4.1) and use the fact that the cone 
functions are eigenfunctions for the differential operator in 
the left-hand side of (4.1): 

Substituting here yo(( ) from (3.12), we find (4.3) 

OI 

IT'" 
with eigenvalues (2.9). For f (p) we obtain the integral equa- 

US. (a ,  9 )  - T O O X ~ ~  J tion 
* 0 - 

j d p ~ - ~ , + , ~ ~ ~ ~ ( 1 + 2 t )  [ v (p ) - i (w-qv )  ~ l f  ( F ) = X P O ( ~ ) ,  
p  sh (npi2) 1 f 5 e-v2~i , , l (3  . 

* ch2(np/2) v ( p ) - i ( a * q v ) ~ ~  E 
0 (4.4) 

(3.16) Its solution is given by the inversion formula1' 

The principal term, linear in x, of the expansion of f ( p ) = -  x ~ t h ( n l l / 2 )  p . (p ) ,  
ass (w, q) coincides with the function (2.13). Since the right- 2 v  ( p )  - i (a -qv )  z2 

(4.5) 

hand side of (2.4) is taken into account exactly and not ap- .. 
112 

proximately as in (2.13), the function uss(w, q) contains also po ( p )  -- J d t e ~ " + ~ )  Ei(-x(i+t))P-(,+{,,),(1+2t) - (1) 
terms of higher order of smallness in x. The fact that the x 

0 

lower limit of the integral with respect to { differs from zero e"12 
allows us to obtain for Re a(@, q) an expression that coincides ch(np12) (4.6) 
in form at q = 0 with that obtained in Ref. 2, but having 
different numerical coefficients. Substitution of (4.5) in (4.2) yields the expression 

In the principal approximation, we assume a zero lower (nx)  " " p sh (np12) KtMl2 (212) 
limit of the integral with respect to { in (3.16) and obtain yl ( t )  = - eSl2 

J d p  c h 2 ( n p / 2 )  v ( p ) - i ( a - p v ) ~ .  
0 

0;:) (a ,  q )  = + x 6 ~  cipw(h) [ v (p ) - i (a*qv )  T ~ I - ~ .  

* 0 13.171 

It was noted above that terms of order higher than the 
first in x can be retained in (3.17), strictly speaking, only if 
account is taken also of the corrections for the terms discard- 
ed in the calculation of (2.17), as will be done below. 

At large values of 91, we obtain from (3.17) the asympto- 
tic form of the term linear in x 

which is used to monitor the accuracy of the expansions ob- 
tained below. 

In the logarithmic region it approximates well enough 
the true generating function y(t ). We note that (4.2) can be 
regarded as an expansion of yl(t  ) in the complete orthonor- 
malized system of the eigenfunctions p, (t  ) of the operator 
(4.3): 
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The first of the completeness relations (4.9) is a conse- 
quence of the Mehler-Fock transformation  formula^,'^ and 
the second (which is given in a different form in Ref. 3) can be 
proved with the aid of (2.13) and of the known integral repre- 
sentation of the cone function: 

The Green's function 9 (t, t ') of Eq. (4.1) 

makes it possible in principle to find the corrections to yl(t  ) 
by iterating with respect to the term discarded in the left- 
hand side of (3.3). 

The error incurred in the calculation of the conductiv- 
ity with the aid of yl(t ) [Eq. (4.7)] can be estimated by com- 
paring the two approximate expressions for y(t ): from (3.12) 
and from (4.7). We see first that the two coincide at t = 0. 
This means that yo(0) = yl(0) is the exact value, for all w and 
q, of the true generating function at this point. On the other 
hand, it follows from the definition (3.1) that y(0) is equal to 
Qo@, 9). 

Thus, the exact value of Qo(w,q) is 

( n x )  'I* * p  sh ( n p / 2 )  Kip/,  (x/2) 
Qo ( a ,  9 )  = -eSl2 

2  Sd\h'(np/2) v ( p ) - i ( o - q u ) ~  

(4.12) 
In particular, in the high-frequency case x)  1 

Qo ( o , q )  

n ' p  sh ( 4 2 )  
=- J* 

2  ch2 ( n u / 2 )  v ( p )  -i ( 0 - O V )  Z~ 

(4.13) 

We compare next yo(g ) and yl(t  ) in the logarithmic re- 
gion. To find the asymptotic form of yl(t ) [Eq. (4.7)] in this 
region we use the expression for the cone functions in terms 
of hypergeometric functions: 

and the ensuing asymptotic expression for large t: 

l - i p  1 x [ I + T - -  I f t  (4.15) 

Substituting (4.15) in (4.7) we obtain yl(t ) at x = 0 in 
terms of the variables <: 

where C is Euler's constant. Transformation in (4.16) to a 
new variable u = xt followed by differentiation with respect 
to u makes the expression in the curly brackets equal to the 
corresponding expression of Ref. 2. 

On the other hand, the asymptotic form (3.12) of y o ( l )  
takes in the same region the form 

Expressions (4.16) and (4.17) have in common only the 
principal terms ln21 and In& of their expansions, i.e., they 
agree only with logarithmic accuracy. Calculations with the 
aid of the function yl(t  ) can yield the coefficient of x2 in Re 
a(w, q) only near its sigularity, i.e., only with logarithmic 
accuracy. In other words, the use of (4.7) as the generating 
function for the calculation of the conductivity leads to an 
error on the order of xZ in Re u(w, q). To determine the cor- 
rect numerical coefficient of x2 we must take into account 
the correction for the discarded term in (3.3). 

The condition for the applicability of the expression ob- 
tained for Re u(w, q) by using the function (4.7) is thus that 
the coefficient ofx2 in Re u(w, q) (which depends on w and q) 
be large compared with unity. 

Finally, in the self-similar region (t- l/x) the relative 
difference between the functions yo( l  ) and yl(t ) becomes of 
the order of unity. Therefore calculation of the principal 
term of the conductivity (polarizability) at wr2(l with the 
aid of (4.7) leads to a relative error of the order of unity in the 
numerical factor (see below). 

Estimating the error incurred by the use of (4.7), we 
substitute y,(t ) in (3.2) and calculate the conductivity 

(4.19) 

The approximate expressions (3.16) and (4.19) will be 
discussed below. At present we calculate the asymptotic val- 
ue of ul(o, q) as x-+O. At small x, 

We substitute this expansion in (4.19) 

1 ' p  ( ~ / 4 ) ~ * ~ - '  ( l + i p / 2 )  
4 -- - J d p  0)  a h ( n p / 2 ) c h 2 ( n p / 2 )  [Y ( p )  - i ( u + q u )  r2]  

The first term of (4.21), as shown by comparison with 
(3.17), is the contribution made to u(w, q) by the self-similar 
region and taken into account in al(w, q) with the aid of 
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expression (4.7) for the generating function. It can also be 
seen that the error was reduced only to an inaccurate deter- 
mination of the collision-frequency distribution function: 
(4.21) contains in place of the correct function (2.14) the 
function ~ ( l  + cosh ~ p ) - ' .  The use of the latter leads to a 
relatively small numerical error. Thus, at w = qv  = 0 we ob- 
tain from (4.21) the result (2.17) in which < (3) is replaced by 
5(2) ( z  1.553)). 

Thus, even if (4.7) is used outside the range of its appli- 
cability (in a "foreign" region), only a relatively small nu- 
merical error is incurred. This indicates that the results have 
relatively low sensitivity to the exact form of the collision- 
frequency operator and are determined mainly by the state 
function in the right-hand side of (3.3), which is taken into 
account exactly both in (3.16) and in (4.19). Consequently 
both (3.16) and (4.19) can be used as interpolation formulas 
for the complex conductivity a(w, q) at all w and q and for 
arbitrary relations between them and 7,. 

The dissipative part of the conductivity is obtained 
from the second term in (4.21) 

A-A (x) =(1+4ix)Ih, Re A>O. (4.22) 

The asymptotic form of the integral in (4.22) as x+O is 
determined by the integrand pole closest to the real axis in 
the lower half of the complex p plane. 

Ifx = 0, this is the third order polep = - i. In this case 
(4.22) duplicates exactly Berezinskii's resultZ 
Re a ( a ,  q)  =-oox2 {lnZ I x I + (2C-3) In I x I fconst) SO (xS) . 

In the case x # O  the pole p = - i becomes of second 
order, since the first-order pole p = - iA is separated from 
it and moves down and to the right from the point p = - i 
with increasing x; allowance for the contributions of these 
two poles yields 

The analytic continuation x+ - 2iw7, results in 

The dissipative conductivity is then found to equal 
-1 

Re o(0, q) = 2 ~ ( a T 2 ) ~  

~ ( ~ ) - i  n s P 2  (1+A (x) /2) 

+Re[(%) 4cosa(nA(x)/2) 1) , (4.26) . ,. . . 

A (x) = (1+16x2)" exp ('lZi arctg 4%). (4.27) 

The validity of (4.26) is restricted by the already indicat- 
ed condition under which the expression in the curly brack- 
ets is much larger than unity, i.e., x(  1. At the same time, the 
range of validity of Berezinskii's result (4.23) is determined 

by the possibility of expanding the expression in the square 
brackets of (4.26) in powers of (A - 1) and turns out to be 
much narrower: 

At x( l  we obtain from (4.26), at the required accuracy 
LRe d o ,  q) 

0 0  

-- 2(a")z{1-e-"e [cos xr.+2x ( ~ + l n  4-1) sin x i ] ) ,  
x2 (4.29) 

z,=2 1 ln (o.cz/2) I. 

Under the condition (4.28), this expression goes over directly 
into (4.23). In the region xZz, < 1 < xz, the conductivity ex- 
ecutes oscillations 

The period of the oscillations with respect to x is 2.rr/z,, 
the relative amplitude is of the order of 2/xZz,, and the value 
at the minimum is 2(w~,)~z,.  In the region l/z, 5 x2 < 1 the 
oscillating terms attenuate exponentially and 

Let us clarify the physical nature of the oscillations. 
Equation (4.30) shows that in the inhomogenous field of the 
wave there appears a characteristic electronic length I$, 
that determines the period of the oscillations. It is easily seen 
that this length can be treated as fixed (for a given w) length 
of the electron hop between two localized states that differ in 
energy by w. Indeed, in accord with Ref. 5 the low-frequency 
conductivity can be estimated in order of magnitude with the 
aid of the equation 

Reo(o, q)/ooxID(a, q) I z ,  (4.31) 

where D (w, q) is the dimensionless Fourier transform of the 
matrix element of the momentum operator 

between the wave functions of the localized states 
qep(C) =exp(--I 91/21 E ~.,+.(%) -exp(-l%-z.l/2). 

(4.33) 

The maxima of these functions are separated by z, because 
their energies differ by an amount w( 1/7, (Ref. 5). At small 
x the main contribution to (4.32) is made by the region 
0 < <z, . Elementary calculation yields 

sin2 (xzJ2) - ( 2 ) ' XZ. 
ID (a, q) I8=e-'a sina - 

2 
(4.34) 

xa 

which agrees, apart for a numerical factor, with the first 
term of (4.30). 

The oscillations obtained are thus due to the oscillatory 
dependence of the transition matrix element on the wave 
phase shift xz, over the electron hop length lzz,, 
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FIG. 1. Dependence of 9 ( x )  on x for the linear relation o ( q )  = sq at s/ 
= 2x 

At x - 1 we have in order of magnitude 

Re o (a, q)  - Y J O ( ~ / P V ) ~ .  (4.35) 

' It is simplest to obtain the asymptotic value of Re a(w, q) 
at x) 1 by direct iteration of (3.3) [or (3.91 about the princi- 
pal term i(w - qv)r9. Straightforward but somewhat 
lengthy calculations yield 

The imaginary term in (4.36) coincides with (3.18) and 
contains only corrections from powers of xP2;  the same 
holds for the corrections to Re a(w, q). 

Figure 1 shows the x dependence of the function 

where Re u(w, q) is given by (4.29). We have assumed in the 
calculation that the frequency w is linear in q, and that the 
phase velocity w/q = s is small compared with the Fermi 
velocity v. Under the same assumption 9 ( x )  describes the 
frequency dependence of the damping of a slow wave (e.g., 
sound). Figure 1 shows distinctly the first oscillation of the 
conductivity. The succeeding periods do not appear because 
at the typical values s/v--,2x even in the second peri- 
od, we have z, = 21n(v/sx)--,20, the parameter x ap- 
proaches unity, and the amplitude of the oscillating term in 
9 ( x )  becomes quite small ( -  

5. INTERPOLATION EQUATION FOR THE COMPLEX 
CONDUCTIVITY 

Equations (3.16) and (4.19) lead to the conclusion that 
the exact value of the conductivity a(w, q) of a 1D conductor 
should be, at all values of w and q, of the form 

The summation in this equation is over the electronic states 
on the Fermi surface of the 1D conductor ( k p , )  with an 
electron momentum distribution function equal to 1/2. 

The quantity D, (x) describes the influence of the local- 
ization of the electronic states on the conductivity. We call 
D, ( x )  the "delocalization factor." Two expressions were ob- 
tained above for D,, (x): 

according to (3.16) 

1 ' d ~  
DM ( x )  = zex - e-t/2K,,,12 (+) , 

z E" 
and from (4.19) we get 

D, (x) tends in the high-frequency limit (x+ w ) to unity, 
meaning a weakening of the influence of the localization on 
the conductivity. Indeed, from (5.3) we get 

(whereas (5.2) yields an additional correction ( - x-') to 
(5.4) and is therefore less accurate). 

Even in this limiting case, however, it remains in (5. I )  to 
integrate with respect top, which is tantamount to averaging 
of the energy denominator in (5.1) over the fluctuations of 
the dimensionless collision frequency vfp) with a probability 
distribution function equal in the high-frequency limit to 

This expression differs only insignificantly from the 
collision-frequency distribution function (2.14) in the low- 
frequency limit. 

The function (5.5) has the following properties: 
OD a 

5 dp W- (PI -1, J d~ W- (P)v(P)-~ (5.6) 
0 0 

Thus, Eq. (5.1) proves the statement made in the Introduc- 
tion that the conductivity of a 1D conductor is determined 
by the joint effect of two different factors: localization of the 
electronic states and fluctuations of the frequency of the 
electron collisions. The mutual relation between these fac- 
tors manifests itself in the fact that the function D,, (x) de- 
pends both on x and on p .  In the high-frequency limit 
( ~ 7 ~ )  1) we obtain from (5.1) with allowance for (5.4) 

This expression shows that in the principal approximation in 
wr,, when vfp) can be neglected in the denominator, the 
imaginary part of u(w, q) is given by the Drude formula (with 
allowance for spatial dispersion). As for Re a(@, q), the 
Drude formula yields an incorrect (half as large) coefficient 
in the region ql,( 1 and an incorrect dependence on w and q 
at qv)w. In this latter region the high-frequency conductiv- 
ity is determined by Eq. (4.36). This means that the condition 
for the applicability of (4.36) is (q12)2) 1 + indepen- 
dently of the value of 017,. An expression for Re a(@, q) with 

170 Sov. Phys. JETP 59 (I), January 1984 E. A. Kaner and L. V. Chebotarev 170 



allowance for spatial dispersion cannot be obtained in prin- 
ciple with the aid of the usual kinetic equation for electrons 
in a 1D metal. The results for the conductivity at high fre- 
quencies can be qualitatively obtained if the localized elec- 
trons are regarded as charged oscillators with characteristic 
natural frequency T; '. 

We note that the fluctuations of the collision frequency 
remain also in the high-frequency limit, but their relative 
contribution to the conductivity is small in the parameter 1/ 
W T ~ .  An exception is the resonance region, in which 

and it is necessary to retain the relatively small quantity v b )  
in the denominator of the integrand of (5.7). 

At low frequencies Eqs. (5.2) and (5.3) yield the follow- 
ing asymptotic expression for D,, (x): 

wherer (z) is the gamma function. The vanishing of the delo- 
calization factor as x-0 expresses the known fact that in this 
limit the localization exerts the decisive influence on the 
conductivity. l v 2  

Either of the equations (5.2) and (5.3) can serve in the 
entire frequency region as an interpolation expression for the 
factor D,, (x) with which the interpolation formula (5.1) for 
the conductivity is constructed. The use of (5.2) or (5.3) leads 

to correct functional relations in all the limiting cases and for 
all w and q, and is subject only to a certain error in individual 
numerical coefficients. 

We call attention to a unique property of 1D conduc- 
tors, namely that no collisionless Landau damping occurs in 
them. The reason is that the electrons on the Fermi surface 
actually constitute two monochromatic beams equal and op- 
posite velocities f v. As a result, the averaging over the elec- 
tronic states on the Fermi surface contains no integration 
over the velocity direction. As a result, at ql,) 1 the expres- 
sion for u(w, q) does not contain the delta function S (w - qv) 
that describes the Landau damping. Nonetheless, the effect 
of the spatial dispersion in the conductivity of 1D systems is 
much more complicated than might be expected by starting 
from an intuitive analogy with the three-dimensional case.- 
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