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We calculate the contribution made to the cross section for second-order Raman scattering of 
light (RS) by processes in which free (disregarding the Coulomb interaction) electron-hole pairs 
(EHP) participate in a strong magnetic field. It is shown that this contribution is of first order in 
the Frohlich coupling constant a of the electrons with the LO phonons, whereas in a zero magnet- 
ic field it is of second order in a .  The lowering of the order in a is due to the quasi-one-dimensional 
character of the electron motion in the strong magnetic field. For polar semiconductors with 
coupling constant a(1 (such as InSb) one should expect an abrupt increase of the secondary- 
radiation intensity when a strong magnetic field is applied. The dependence ofthe scattering cross 
section on the magnetic field H and (or) on the frequency w, of the exciting light is subject to 
oscillations caused by the fact that the density of states becomes infinite at the bottom of the 
Landau band. It is shown that in the vicinity of a number of magnetic-field values H = 2Ho/L, 
where H, = m, w,,c/leI, me (e )  is the effective mass (charge) of the electron, and L is an integer, 
the scattering cross section acquires additional contributions of interference origin. These lead to 
a resonant decrease of the scattered-light intensity. 

1. INTRODUCTION 

The secondary emission spectra of a number of polar 
semiconductors irradiated by light in the intrinsic absorp- 
tion region contain line series with frequencies 
o, = w, - NuLo, where w, is the frequency of the exciting 
light, wLo is the frequency of the longitudinal optical lattice 
vibrations, and N is an integer that reaches values 7-9 (Ref. 
1). This phenomenon is called multiphonon resonant Raman 
scattering of light (MRRSL). Contributing to the MRRSL 
are processes of two types: scattering via excitonic states and 
scattering via states of free electron-hole pairs (EHP). 

Processes in which hot Wannier-Mott excitons partici- 
pate were investigated in a number of studies (see, e.g., Ref. 4 
and the literature cited therein). This type of MRRSL can be 
qualitatively described as follows: when a primary photon 
ffw, is absorbed, a hot exciton is created indirectly (with si- 
multaneous emission of an LO phonon); the exciton next 
goes through a cascade of (N - 2) transitions through real 
intermediate states with emission of (N - 2) LO phonons 
after which, finally, it annihilates indirectly and emits the 
secondary photon fiw, and the last LO phonon." Since the 
strongest interaction in polar semiconductors is that of elec- 
trons (holes) with LO phonons, the relative (dimensionless) 
probability of the exciton emiting an LO phonon is of zeroth 
order in the Frohlich coupling constant a ,  while the contri- 
bution to the cross section of the LRRSL processes with 
participation of hot Wannier-Mott excitons is of first order 
for any scattering order N. 

Processes with participation of free electron-hole pairs 
in a zero magnetic field were theoretically investigated in 
Refs. 5-1 1. At N)4 these processes can be described as fol- 
lows: on absorption of an incident photon fro,, an EHP is 
created (e.g., directly) and then goes through a cascade of 
(N - 1) transitions through real intermediate states with 

emission of (N - 1) LO phonons, and finally annihilates in 
indirect manner. The process with indirect creation and di- 
rect annihilation of an EHP can be similarly described." (At 
N = 2 and 3 the main contribution to the cross section is 
made by processes in which all the intermediate states in the 
scattering process are virtual.) The difference from processes 
with participation of hot Wannier-Mott excitons is that in 
the course of scattering via the EHP states (N24) one of the 
transitions (creation or annihilation) can be direct, whereas 
in the MRRSL both creation and annihilation of the exciton 
can be only indirect. It is therefore to be expected that the 
contribution to the cross section from scattering via the EHP 
state (N>4) is of zeroth order in a. It was shown in Ref. 6, 
however, there is no contribution of zeroth order in a to the 
cross section. The reason for the absence of this contribution 
is that the electron and hole are separated in space after emit- 
ting a finite number of LO phonons, and the probability of 
the EHP annihilation is inversely proportional to a certain 
characteristic volume V,,, occupied by the EHP after the 
emission of N LO phonons. The size of this volume for a free 
electron and a free hole, in polar semiconductors at N>4, is 
determined by the interaction with the LO phonons (the ex- 
citon annihilation probability is inversely proportional to 
the exciton volume, a quantity determined by the Coulomb 
interaction of the electron and hole and independent of the 
interaction with the LO phonons). It was shown in Refs. 5- 
11 that for a Frohlich interaction of electrons (holes) with 
LO phonons the contribution made by processes with EHP 
participation to the cross section uN for N-th orders 
MRRLS, in the case of a zero magnetic field is a, a a2 for 
N =  2 ,u3aa31na- '  f o rN=  3, andu, aa3forN>4.  

We investigate here the contribution made to the cross 
section for second-order RRSL by processes with participa- 
tion of free electron-hole pairs in a strong magnetic field (see 
also Ref. 12). In Sec. 2 we obtain an expression for the cross 
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section for the two-phonon scattering in an arbitrary strong 
magnetic field. We show that for N-th order MRRSL (N>2) 
the scattering cross section is of first order in the Frohlich 
coupling constant a and explain qualitatively the lowering of 
the power of a compared with the case of a zero magnetic 
field. In Sec. 3 are considered interference contributions to 
the scattering cross section. These become substantial in a 
small vicinity of a discrete set of values of the strong magnet- 
ic field. 

2. TWO-PHONON RRSL IN AN ARBITRARY STRONG 
MAGNETIC FIELD 

We consider in this section the contribution to the cross 
section for second-order MRRSL (N = 2) from processes 
with participation of free EHP in an arbitrary3' strong mag- 
netic field H: 

wherew,, = IelH /m,c is the cyclotron frequency, me and e 
are the effective mass and the charge of the electron, c is the 
speed of light, and T is the electron relaxation time. The fre- 
quency of the primary emission is w,  > w, + 3wL, + weH/2, 
where &, is the band gap. For simplicity, the effective hole 
mass m, is assumed infinite, its kinetic energy is infinitely 
small, and it is clear that the hole can emit an LOphonon ony 
via a virtual transition. This assumption is justified for semi- 
conductors with large ratio m, /me under the condition that 
w ,  - w, -NoL,. In the calculation of the scattering cross 
section we use the magnetic-field potential in the Landau 
gauge A = A(O,xH,O). 

As already noted in the Introduction, there are two 
types of MRRSL in which free EHP participate: 1) scatter- 
ing with direct creation and indirect annihilation of EHP 
(Fig. la) and 2) scattering with direct creation and direct 
annihilation of EHP (Fig. lb). 

The Frohlich Hamiltonian of the interaction of elec- 
trons with LO phonons is13 

where b, (b ,t ) are the annihilation (creation) operators for 
phonons with wave vector q,r is the radius vector of the elec- 
tron, xo and x ,  are the static and high-frequency dielectric 
constants, Vo is the normalization volume. The correspond- 
ing expression for the holes differs from (2.2) in that the elec- 
tron effective mass me is replaced by the hole effective mass 
m, and that the sign of the right-hand side of (2.3) is reversed 
(it is easily seen that the interaction C, does not depend on 
the electron (hole) effective mass, even though this mass is 
contained in the definition of a). It is assumed that the tem- 
perature is much lower than the Debye temperature and that 
processes with LO-phonon absorption can be neglected. 

According to Ref. 14, the scattering cross section can be 

FIG. 1. Schematic representation of the second-order RRSL in a strong 
magnetic field with direct creation and indirect annihilation of EHP (a) 
and with indirect creation and direct annihilation of EHP (b). 

expressed in the form 

daa Voo.'o~ n ( o , )  
-=-- eaa*e.~et~elh'Scrror, 
dQ d o .  c4 n ( o l )  (2.4) 

where 0 is the solid angle, e, (e, ) is the polarization vector of 
the primary (secondary) light, n(w) is the refractive index, 
and Sarm is the fourth-rank light-scattering tensor intro- 
duced in Ref. 14. We shall neglect hereafter the dispersion 
and the damping of the LO phonons. The scattering vector 
SaypA, whose general form is obtained in Ref. 14, can then be 
written for the considered two-phonon process in the form 

where A,,(q) is the scattering amplitude (if the wave vectors 
of the primary and secondary light are neglected, the phonon 
wave vectors q, and q2 in the two-phonon RRLS process are, 
by virtue of quasimomentum conservation, equal and oppo- 
site, q, = - q2 = q). The quantity A,,(q) was determined by 
a diagram procedure that is a particular case of the diagram 
technique for the light-scattering tensor SavDA (Ref. 14) with 
dispersion and damping of the LO phonons neglected. 

All the graphs for the amplitude of the second-order 
MRRLS process are shown in Fig. 2. The solid lines above 
(below) the dash-dot line correspond to an electron (hole) and 
correspond to the expressions 

where 

are respectively the Green's functions of the electron and 
hole, n is the number of the Landau band, k, is thez-compo- 
nent of the wave vector, and y(n,k, ) is the reciprocal lifetime 
in the given quantum state. Since mh%me, we can put 
y,, (n, ,khz)(ye (ne ,k, ). The wavy (dashed) lines correspond 
to phonons (photons) and are not associated with anything. 
The light circles denote the vertices of the interaction 
between the electron subsystem of the crystal and the light. 
The vertex with an incoming (outgoing) light line corre- 
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FIG. 2. Graphs that determine the amplitude of second-order RRSL. 

sponds to the quantity 3, (9-2 ) where 

Here m, is the electron rest mass and p,, is the interband 
matrix element of the momentum operator. The dark circles 
denote the vertices of the electron (outgoing hole) line 
(n,k,,k,) and outgoing electron (incoming hole) line 
(nf,kI,,k i), the corresponding expression is 

where q, and q, = k, - kI, are the components of the 
phonon wave vector, I ,  = ( & / 2 e ~ ) ' / ~  is the magnetic 
length, L P, (x) is a Laguerre polynomial, and C, is defined in 
(2.3). The upper and lower signs in (2.8) correspond to elec- 
trons and holes, respectively. 

The conservation laws for frequency and for they- and 
z-components of the wave vector are satisfied at all vertices. 
n, = n, at the vertices of the interaction between the elec- 
tron subsystem and the light. When calculating the expres- 
sion that corresponds to a graph it is necessary to integrate 
with respect tow with weight (277)-' and sum over n, n', k,, 
and k, . 

The total amplitude of the process is expressed by the 
sum 

where each term of the sum corresponds to a graph in Fig. 2 
and to an expression in accordance with the diagram-tech- 
nique rules cited above. 

The calculation results show that the following equali- 
ties hold: 

A:: ( q )  =A$ ( -q )  , A$' ( q )  x - 2 ~ 2 ;  ( q )  , (2.9) 
whence 

Aa7 ( q )  =2[-4::6) ( q )  -A;:) (Q) I .  (2.10) 

We obtain ultimately for the total second order MRRSL 
amplitude in a strong magnetic field (as m,+co) 

X 
I 

T ~ ? l ~ ~ ~ ~  - 'ko ( n )  X i  ( n )  [ko ( n )  +ki ( n )  ] 

, -k 
ko ( n )  +A (n') 

5io (n )  ki (n')  [ ( R o  ( n )  +Xi  (n') ) '-q,lI 

where 
min (n! ,  n'!) e - x x l n - n f l  I . - ~ ' I  T (n ,  n', X )  = [Lmincn,nl) ( 2 )  I Z ,  max(n!, n'!) 

and y,(n) is the reciprocal lifetime of the electron produced 
upon absorption of a photon h, that emits s LO phonons 
and is situated in the Landau band numbered n. The first two 
terms in the curly brackets of (2.11) correspond to the contri- 
bution of processes in which both phonons are emitted (vir- 
tually) by a hole [plots 5 and 6 of Fig. 2; the first term in 
(2. lo)], with the first and second terms corresponding to pro- 
cesses with direct production and direct annihilation of the 
EHP. The third and fourth terms in the curly brackets of 
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(2.11) correspond to the sum of the contributions of graphs 
1 4  in Fig. 2 [the second term in (2. lo)], with the third and 
fourth terms corresponding to the contributions of the pro- 
cesses with direct production and direct annihilation of the 
EHP. 

We note that at n = n' and as 9-0 the contribution of 
each graph of Fig. 2, taken separately, diverges but the total 
amplitude A,, (q-0) remains finite, as can be seen from 
(2.1 l), by virtue of the mutual cancellation of the contribu- 
tions of the processes in which electrons and holes take part. 

To calculate the scattering cross section, (2.11) must be 
substituted in (2.5) and (2.4). Analysis of the resultant rather 
lengthy expression permits separation of the terms that 
make the main contribution to the cross section: 

u2=uz (o) j ~ x T  (n, n', x )  T (m, mt, x )  

x2 I, {---- xi' 
k, (n)ki (n') k,'(m) 5%,'(m1) (Bi2+x) ( ~ i ' ~ - B i ~ )  

+ x z '  
k2(n)ki (n')L2'(m)Li: (m') (p,2+d2 ( X ~ . ~ - B Z ~ )  

- x z *  

ko (n) ki (n') B' (m) kin (m') @i2+ (xz"-812) 
} (2.12) 

Xi=ko(m) +k,(m'), x2=k2(m)+%(mf),  

P i=& (n)  +Xi  (n'), B2--R2 (n) +El (n') ,  
(2.131 

The quantity oy) with dimension of cross section is of 
second order in the Frohlich coupling constant a. Equation 
(2.12) does not hold at magnetic fields H and incident radi- 
ation frequencies w, at which the electron reciprocal relaxa- 
tion time is determined, even in one of the intermediate 
states in the course of scattering, by the possibility of a tran- 
sition to a small vicinity -awL0 of the bottom of one of the 
Landau bands. To obtain the correct result account must be 
taken of the influence exerted on the excitation spectrum by 
the interaction of the electrons and holes with the LO phon- 
ons, so that the spectrum is renormalized as the result. '' We 
shall assume hereafter that w, and H are such that (2.12) is 
valid. We assume in addition that w ,  and H exclude the pos- 
sibility of an electron landing in the vicinity -awLo of the 
bottom of one of the Landau bands in the course of the EHP 
production. It can then be noted that under the condition 
n = m, n' = m' we obtainx, = p,, X, = P,, and 

$i2-Xi'2xi ko (n) +k, (n') ko (n) yi (n') +Xi  (nf ) 
( 2  14) 

WEH ko (n) k, (n') 

with an analogous relation for 0, - x 2 

But since the reciprocal relaxation time of an electron in a 
polar semiconductor is y a a ,  it follows from (2.14) and (2.12) 

that the main contribution to the second order cross section 
a, in an arbitrary strong magnetic field is made by the first 
two terms in the curly brackets of (2.121, and this contribu- 
tion is of first order in the Frohlich coupling constant a. In 
an arbitrary strong magnetic field the third and fourth terms 
in (2.12) make a contribution of second order in a to the cross 
section, and we shall neglect them in this section (we shall 
return to these contributions in the next section, where we 
shall show that close to a number of magnetic-field values 
the contributions of the third and fourth terms of (2.12) be- 
come of first order in a). Analysis shows that in the calcula- 
tion of (2.12) the main contribution to the sum over q, in (2.5) 
is made by a small vicinity of the discrete series of values 
qz = ko(n) + k1(n1) and q, = k,(n) + k,(n'). It is imporant to 
note that expression (2.12) for the cross section o, corre- 
sponds to the third and fourth terms in the curly brackets of 
expression (2.11) for the total amplitude of the process. The 
first and second terms in the curly brackets in (2.11) corre- 
spond to processes in which both phonons are emitted by a 
hole and, as can be seen by direct calculation of the cross 
section and will be seen later from qualitative consider- 
ations, the contribution of such processes to the scattering 
cross section is of second order in the coupling constant a. 

The final form of the MRRSL cross section of second 
order in an arbitrary strong magnetic field (excluding values 
ofw, and H for which at least one transition into the vicinity 
-amLo of one of the Landau bands is possible) can be writ- 
ten as 

0 

uia' m20:" oeHS &[T (n, n', x)  ] 
0 

The first term in the curly brackets in (2.15) corresponds to 
the contribution made to the cross section for the scattering 
of processes with direct EHP creation, the second to the con- 
tribution of processes with direct EHP annihilation. The de- 
pendence of the cross section on the magnetic field H at fixed 
frequency w, (or of the frequency w, of the primary light at 
fixed H)  should exhibit characteristic oscillations (see Fig. 4 
below) the locations of whose maxima is determined by the 
condition 

n is the number of the Landau band on the bottom of which 
the electron lands after emitting s = 0, 1, or 2 phonons. 
These oscillations are connected with the increase (in pro- 
portion to k , ') of the density of states near the bottom of 
the Landau band. As already indicated, Eq. (2.15) is not valid 
in the vicinity - aHo of the values H = H,, . We note that the 
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FIG. 3. Two of the eight graphs that make the main contribution to the expressions that 
correspond to the light-scattering tensor Savm for second-order RRSL in a strong magnet- 
ic field. 

renormalization of the spectrum should lead to a smoothing The summation over k,, p,, q,, and q, involves only the 
of the oscillations. vertices and leads to the same integral as in (2.15). It can be 

Thus, when a strong magnetic field is turned on the shown that the main contribution to the sum overp, is made 
degree of the Frohlich coupling constant is lowered in the byp, -ylHm,/+ik (n) at n = m and n' = m'. The main con- 
expression for the second-order cross section for the tribution to the sum over k, and k,, is made by the vicinities 
MRRSL process (02 a a2, H = 0). We shall give below a of the poles of the corresponding Green's functions. We 
qualitative explanation of the proportionality a2 o: a in a write down the equations for the poles of the Green's func- 
strong magnetic field. We use for this purpose a diagram tions in cuts 2 and 2' of the diagram of Fig, 3a: 
technique for direct calculation of the scattering tensor hkiZ2/2m,+ (nl+'lz) oex+ iy, (n')/2=o1-a,-oLo, 
Say,, (Ref. 14). For a second-order scattering process the 
tensor SayoL has only eight graphs corresponding to cross- A (klztp,)2/2m.+ (m'+i/2) o , ~ - i y ,  (m1)/2=a1-08-oLO. 

section contributions of first order in the coupling constant Under the conditions n'  = m' and p, - yl, m,/m<(n) these 
a. All these graphs correspond to processesinwhichthehole poles are equal to within a quantity of the order of the reci- 
emits not more than ne phonon (these graphs can be picked procal relaxation time y. Similarly, if n = m and 
out by calculating the cross section as a function of the scat- pz , yl,m,/+ik (n), upon integration with respect to k,, , the 
tering amplitude). Figures 3a and 3b show two of the eight poles of the Green's functions in the cuts 1 and 1' for the 
graphs of this type. The rules of the diagram technique for process with direct creation of EHP and in cuts 3 and 3' for 
these graphs, neglecting dispersion and damping of the LO the process with direct annihilation of EHP are equal to 
~honons, differ from the corresponding rules for graphs tor- within a quantity of the order of y. If the cuts 1 and 1' are 
responding to the scattering amplitude (see Fig. 2) only in resonant (this corresponds to direct creation), the cuts 3 and 
that all the relations set in correspondence to all the Green's 31 are nonresonant (indirect annihilation), and vice versa. 
functions and vertices to the right of the section f that corre- ~h~ described equality of the poles corresponds to the fact 
sponds to the final state in the scattering Process (see Fig. 3) that the main contribution to the second-order scattering 
are the com~lex-conjugates of (2.6)-(2.8). The graph in Fig. cross section is made by processes in which two out of three 
3b corresponds to interference between Processes with dif- states that are intermediate in the scattering process are real. 
ferent sequences of LO-phonon emission. P takes then the form (n = m, n' = m'; p, - yl,m,/Wc (n)): 

We shall demonstrate the calculation of such graphs 
using 3a as the example. The integration with respect to the m.2L13 70 (n) ZH P= - 
frequencies w and w' is elementary. Next, from the forms of 2ntt2wLo2 dpz[ ( ~ k ~ ( n ) p ~ m . ~ ~ ) ~ + r ~ ' ( n )  ko (n) 
the expressions that are set in correspondence with the lines 

-I- 72 (n) "] 
and vertices of the graph it is clear that the summation over (hk2 ( n ) ~ ~ l m ~ l ~ ) ~ + 7 ~ ~ ( n )  k2 (n) 
k,, k,,, andp, reduces to calculation of the expression 

yi  (n') lx x (2.16) 
P= z[z G.(n, KO.; m,)G.(n, koz; m1-2m~0) (hk, (n')pzlm.lH) '+y,2 (n') k1 (n') ' 

R k 

I where L,L,L, = V,. It can be seen that Pa y-' a a-', and 
x.G: (m, k,,+p,; mi) G,' (m, ko,+pz; @I-~@LO) 

I 
when a2 is taken into account we obtain from the vertices of 

G,(n', k, ,;  aI-mLo) G,'(m', kl,+p,; ~ Z - O ~ ~ )  . the electron-phonon interaction that a, o: a. 

h" 
In processes in which both phonons are emitted by a 
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hole, all the intermediate states in the scattering process are 
virtual (we recall that the hole can emit an LO phonon only 
as a result of a virtual transition, since m,  +a ), therefore 
the contribution of such processes to the cross section is of 
second order in the coupling constant a. 

Calculating the contribution of the interference graph 
(Fig. 3b), we can see that if the LO-phonon damping is ne- 
glected this contribution is exactly equal to the contribution 
of graph 3a [this is a direct consequence of the first equality 
of (2.9)]. A doubling of this type when allowance is made for 
graphs with crossing phonon lines was obtained in Ref. 14 
for RRLS processes of second order in the case of scattering 
via excitonic states in a zero magnetic field. It can be shown 
that the contribution of any of the six remaining graphs for 
two-phonon scattering differs from the contribution of the 
graph of Fig. 3a only by an integer factor, and for four out of 
the six graphs it differs in sign; when added up, these six 
graphs make a zero contribution [this cancellation of the 
contributions follows from the second equality of (2.9)]. The 
final result coincides with (2.15). 

We can now show, without resorting to quantitative re- 
sult, how the scattering cross section for an N-th order pro- 
cess with N)2 depends on the coupling constant a. We con- 
sider a graph of the ladder type (Fig. 3a for N = 2). In 
analogy with the two-phonon process it can be shown that 
the main contribution to the sum over p, corresponds to 
pz -*/IHm,/Wc (n), n, = m, ,and that increasing the order of 
the scattering by unity adds each time to P an additional 
factor in the form 

X 
r*(rb.) l x  

4- 

(Rk. (n.) pz/m.la) '+y.2 (n.) k, (n.) ' 

This factor a y-' a y-I. Ifaccount is taken of the additional 
factor a a from two vertices, it is clear that an increase in the 
order of the scattering does not change the dependence of the 
scattering cross section on a. We note that at 
pz -&me/* (n) and n, = m, the poles of both Green's 
functions in the additional factor of P agree accurate to - y. 
Therefore in N-th order MRRSL (N>2) in a strong magnetic 
field, N out of the N + 1 intermediate states are real and one 
intermediate state (in indirect creation or in indirect annihil- 
ation) is virtual, and a, a a ,  N)2. We note for comparison 
that in the case of a zero magnetic field N out of N + 1 inter- 
mediate states are real and a, a a3 at M>4 (see Ref. 11). 

We now shed light on the physical reason why the de- 
gree of the Frohlich coupling constant a is lowered'' in the 
cross section for the MRRSL process when a strong magnet- 
ic field is turned on. It was shown in Ref. 11 that at H = 0 
real wandering of the electrons over the crystal takes place in 
MRRLS of N-th order (N>4) when N out of the N + 1 inter- 
mediate states are real. The MRRLS cross section is propor- 
tional to the probability of return of the electron to the EHP 
creation point after emission of N - 1 LO phonons (the 

heavy hole remains at the point of EHP creation). It is shown 
in Ref. 11 that the probability of electron return to the EHP 
creation point is directly proportional to the cube of the cou- 
pling constant a ,  therefore the cross section is a, a a3 for 
N)4. In other words, at N)4 the characteristic volume" 
VEHp occupied by the EHP created by the light is propor- 
tional after emission of several LO phonons to the cube of the 
mean free path, and since the mean free path in polar semi- 
conductors is inversely proportional to the first power of a ,  
we have VEHp a a-3 and the EHP annihilation probability is 
a V;dp a a3. For N = 2 or 3 the main contribution to the 
cross section is made by processes in which all N + 1 inter- 
mediate states are virtual, so that a, a a2 for N = 2 and 
d a a 3 1 n a -  1 fo rN=3 .  

In the case of a strong magnetic field, as already noted, 
N out of the N + 1 intermediate states are real in an MRRSL 
of N-th order (N)2), and we can use the cited qualitative 
arguments connected with random walk of the electron over 
the crystal. In the language of helical quasiclassical electron 
trajectories in a strong magnetic field, it can be stated that 
when a strong magnetic field is turned on the electron mo- 
tion becomes quasi-one-dimensional: the motion remains 
free along the field but is bounded in a plane perpendicular to 
the H direction. The character of the distribution in the rela- 
tive distance between the electron and the hole is different 
along thezl(H axis from that in the plane perpendicular to H. 
The z-projection of the vector relative to the distance 
between the electron and the hole after emission of several 
LO phonons is on the average proportional to the mean free 
path, i.e., a a- ' ,  and with increasing number N of emitted 
phonons it increases only numerically. In a plane perpendic- 
ular to the H direction, the relative positions of the electron 
and hole after emission of a finite number N of phonons de- 
pends only on the number of phonons emitted, but not on the 
probability of emitting an LO phonon (and hence also on a ) ,  
inasmuch as in each collision with a phonon the position of 
the electron-orbit center changes jumpwise (the hole is im- 
mobile), while in the interval between the collisions with the 
phonons the electron revolves around the center of the orbit 
and its average distance to the hole does not change. The 
area occupied by the EHP in the plane perpendicular to H is 
bounded and does not depend on the strength of the interac- 
tion of the electrons and holes with the LO phonons. With 
increasing number of emitted phonons this area increases 
only numerically. Consequently VEHp a a- ' and a, a a for 
N)2 in a strong magnetic field. In other words, the probabil- 
ity that the electron will return to the EHP creation point 
after emission of (N - 1) LO phonons is directly proportion- 
al to the coupling constant a ,  hence a, a a. 

Comparison of the expression for second-order 
MRRSL in a strong magnetic field (2.15) with the corre- 
sponding expression in a zero magnetic field shows that if 
we, -w,, turning on a strong magnetic field can increase 
the scattering intensity by a-' times. For a polar semicon- 
ductor such as InSb(az0.013) in a field -30 kG one can 
expect the scattering to be increased by approximately 100 
times. For N-th order MRRSL (N>4) the scattering can be 
expected to increase by a-2 times, i.e., by lo4 times for InSb. 
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3. INTERFERENCE EFFECTS IN TWO-LEVEL RRSL IN A 
STRONG MAGNETIC FIELD 

It was shown in Fig. 2 that in an arbitrary strong mag- 
netic field the main contribution to the cross section for two- 
phonon RRSL is made by processes in which two out of the 
three intermediate states in the scattering process are real, 
and that this contribution is of first order in the coupling 
constant a. The main contribution of the processes in which 
two intermediate states are real corresponds to the main con- 
tribution made to (2.12) by the term with n = m and n' = m'. 
Contributions to (2.12) from terms with n # m and (or) n #m' 
are of second order in a and are negligibly small in the con- 
sidered case a( 1. An analysis of the graphs for the scatter- 
ing tensor SavoA has shown that the main contribution to the 
scattering cross sections is made by graphs of two types: of 
the "ladder" type shown in Fig. 3a and of the "fan" type 
shown in Fig. 3b and corresponding to interference of pro- 
cesses with differing order of LO-phonon emission. Neglect- 
ing the LO-phonon damping, the contributions from both 
graphs are equal in size. We turn anew to expression (2.12) 
for the scattering cross section. It turns out that the interfer- 
ence effects in two-phonon RRSL are not restricted to the 
fact that when the damping of the LO phonons is neglected 
the fan graph for the light-scattering tensor leads to a dou- 
bling of the cross section. Assume that the magnetic field is 
subject to the following condition: 

OLO ~ . C O L O  1 Ho - = L ,  H = - - - - . - = -  
O C H  l e l  L L ' (3.1) 

where L = 1, 2, 3 ,... . 
An analysis of expression (2.12) shows that under the 

condition (3.1) there appear a number of additional contribu- 
tions to the cross section u2 which is of first order in the 
coupling constant a. If m' = n - L, m = n' + L we have 
x;' - P : - y [cf. (2.14)], and this corresponds to a contribu- 
tion of first order to the cross section of first order in a from 
processes with indirect creation and indirect annihilation of 
EHP. If m l = n + L ,  m = n l + L  we havex?-P:-y, 
which corresponds to an additional contribution, of first or- 
der in a, from processes with direct creation and direct anni- 
hilation of EHP. In an arbitrary strong magnetic field the 
third and fourth terms in the curly brackets of (2.12) made a 
contribution of second order in a, which was neglected. If 
the condition (3.1) is satisfied, the contribution of these 
terms also becomes of first order in the coupling constant a. 
We consider those terms of the sum for which m = n + 2L, 
m' = n' or m = n' + L, m' = n + L; for any pair of condi- 
tions the third term in the curly bracket of (2.12) makes a 
contribution of first order in a to the cross section. This 
contribution is negative and there is no interference of pro- 
cesses with direct creation and direct annihilation of EHP. A 
similar contribution is made by the fourth term in the curly 
bracket of (2.12) at m = n - 2L, m' = n' or m = n' - L, 
m' = n - L. It can be seen from the conditions m = n + 2L, 
m' = n' or m = n - 2L, m' = n' that negative cross-section 
contributions of first order in a occur not only for fields 
determined by integer L in (3.1), but also for fields deter- 
mined by half-integer L. To describe more lucidly the cause 

of the additional contributions to the cross section of first 
order in a under condition (3. l), we turn to the graphs for the 
scattering tensorSavm. In an arbitrary strong magnetic field 
the main contribution to the sum over p, was made by the 
region p, - ylHm,/W (n). In formal language this means 
that the integral with respect to p, was taken over the poles 
and only pure imaginary poles p, -iy led to cross-section 
contributions of first order in a. It can be shown that under 
condition (3.1) an important role is assumed by a host of 
poles that differ from the preceding by a real part -k (n). 
Their contribution to the scattering cross section under con- 
dition (3.1) is found to be of first order in a. These poles can 
be easily taken into account by making the change of vari- 
able pi  =p, + k, + k,, in the expressions that correspond 
to the graphs for the tensor SavoA (e.g., to the graphs of Fig. 
3). The main contribution to the integration with respect to 
pi  is then made by the poles p i  -iy. 

We have already shown that the additional contribu- 
tions to the cross section (corresponding to the contribution 
of the poles with large real part) under conditions (3.1) be- 
come contributions of first order in the coupling constant a.  
One can expect two out of the three intermediate states in the 
scattering process to be real. Let us verify this. We write 
down the condition for the vanishing of the denominators of 
the Green's function for the graph of Fig. 3a (after making 
the change of variable p,-+pi) for a process with direct cre- 
ation: 

hkOz2/2m,+ ( n f  I / , )  oeH+iy0 ( n )  /2=co1, 

A (-ki,+p,')2/2m.+ (m+1/2 )  oaH-iyO ( m )  /2=01.  

All these equations are compatible at p i  - ylHm,/Wc (n) and 
n = m' + L, n' = m - L. We can similarly obtain all the 
conditions on n, n', m, and m' if (3.1) holds. These conditions 
separate the main contribution of first order in a and corre- 
spond to interference of processes in which two out of the 
three intermediate states in the scattering process are real. 
The interfering processes can differ only in the order of the 
emission of the LO phonons, but also in the partition of the 
energy among the longitudinal and transverse motions in 
real intermediate states. This can be easily seen by analyzing 
the expressions of type (3.2) (the interference contributions 
considered in Sec. 2-fan-type graph on Fig. 3b-- corre- 
spond to interference of processes that differ only in the se- 
quence of the emission of the LO phonons). In addition, con- 
tributions of first order in a come also from interference of 
processes in which EHP are directly created and annihilat- 
ed. 

Let us explain why contributions corresponding to in- 
terference between the direct creation and direct annihila- 
tion processes are negative. We note for this purpose that, for 
example for a process with direct production, each of the two 
electron Green functions corresponding to a virtual state of 
the EHP will yield a factor ( - 1/20,,), and (1/2w,,)2 in 
the result. For the contributions corresponding to the inter- 
ference of processes with direct production and direct anni- 
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hilation of EHP, the virtual state of one of the interfering 
processes yields a factor (1/20,,) and that of the other 
( - 1/20,,). The resultant factor - (1/(2~, , )~)  differs in 
sign from the corresponding factor for processes with direct 
creation (or with direct annihilation) of EHP. 

We have considered the interference contributions to 
the scattering cross section of first order in a under condi- 
tion (3.1) for the graphs on Figs. 2a and 3b. In analogy with 
the case of an arbitrary strong magnetic field it can be shown 

-1 

that if the LO-phonon damping is neglected the additional 
interference contributions are the same for both graphs, and 
the contributions of the same character from the remaining 
six graphs differ from the contribution of the graph of Fig. 3a 
only by an integer factor and are of different sign, thus add- 
ing up to a zero contribution. 

Denoting by oib) the interference contributions to the 
cross section 0, (2.12), which were obtained in this section 
under condition (3. I), we can write 

OI 

$" =2"0?.,a dx { c b 

T (n, n' x) T (nf+L, n-L, x) fo (n, n', x) 

L<n<sr 
i/2[yo (n'+L) +y i  (n') lko(n) +'/2[70(n) + (12-L) lki (n') 

T (n, n', x) T (n'-L, n+L, x)f2(n, B', x) +C ./ [ ( O<n<#, y i  n') +y2 (n'-L) 1k2 (n) +'Iz1[ y i  (n+ L) + 72 (n) I ki (n') 
L<n'Gaz 

T (n, n', x) T (nJ+L, n+ L, x) f2 (n, n', x) 
- 2  O<n<a, ~1/2Lyo(n~+L)+yi~(nr)lk2(n)~1/2~yi(n+L)+y2(n)lk~(n~~ 

O<n'<aa 

T (n, n', x) T (n+2L, n', x) f2(n, n', x) - 
7i (n')k2 (n) f i / ~ I y 0  ( n + 2 ~ )  +l,(n) lki (n') 

O<n<as 
O<n'<aa 

The first term in (3.3) corresponds to interference of pro- 
cesses with direct EHP production, the second to interfer- 
ence of processes with direct EHP annihilation, and the re- 
maining terms correspond to interference processes with 
direct creation and direct annihilation of EHP. 

Equation (3.3) determines the interference contribution 
to the scattering cross section only in a discrete set of mag- 
netic-field values determined by the condition (3.1). A more 
detailed analysis shows that the dependence of the contribu- 
tion dt) on the value of H at a fixed frequency w, has the 
character of resonances of width -aHdL.  

We have so far neglected throughout the dispersion of 
the LO phonons on the interference contributions uib), we 
turn, for example, to expressions (3.2) and replace the limit- 
ing frequency a,, in them by o,, + A (q), where A (q) is the 
dispersion. For Eqs. (3.2) to be compatible to within values of 
the order of y at arbitrary q we must have then 
A (q) 5 y -aw,,. It can be shown that in the processes con- 
sidered the significant phonons are those with wave vectors 
Iql - ( 2 m , ~  where E is the electron energy reckoned 
from the bottom of the conduction band. At E- 1 eV we 
have Iql-lo6-10' cm-' (me/m,-0.1-O.Ol), or -0.014.1 
of the characteristic dimension of the first Brillouin zone. 
One can expect A (q) to be small and the effect of the disper- 

r-- 
contribution dt) (3.3) to the scattering cross section at L = 1 
and L = 1.5 is about 40% of the contribution of at' (2.15) 
and is negative, i.e., a resonant decrease of the cross section 
takes place in the vicinity of magnetic field values defined by 

sion to be negligible in this case. FIG. 4. Results of numerical calculations for the dimensionless quantity 
Figure 4 shows the results of a numerical calculation for = + L o / e H  vs H / H , ,  H, = mecoL0/lel at 

the dimensionless quantity (a(,") + dt1)awL0/2~,,d!), car- or - o, = 3 . 8 ~ ~ ~ .  The positions of the maxima of the oscillations con- 

ried out for the model ~ ~ ~ i l ~ ~ ~ i ~ ~  ofthe interaction ofelec- nected with the singularities of the density of states near the bottom of the 
Landau bands are determined by the condition H / H o =  H,,, 

trons and holes with LO ~honons.' This Hamiltonian does = ((, ,  - 08)/oL0 - s)/(n + 11, s = o , ~  or 2, depending on the number of 
not depend on the phonon wave vector (to transform to the emitted phonons, and n is the number of the Landau bands. The dashed 
modelifRef. 7 it to put f, =f, (2.15) and (3.3)). ~t linesshow the resonances connected with theadditional interference-type 

contributions to the scattering cross section in a small vicinity -aH, of 
was assumed in the that the discrete set of magnetic-field values determined by the condition 
w, - w, = 3.801,~. It was found that the total interference H = H f l ,  where M = 0.5, 1 ,  1.5,2,2.5, ... . 
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condition (3.1). At L = 1.5 all the interference contributions 
are negative. For L = 1 there are both negative and positive 
contributions, the latter amounting to approximately 100% 
and the former to about 60% of the 0-1") (2.15) contributions. 
In the case of the Frohlich interaction (2.2) at 
o, - o, = 3w,, and L = 1 the numerical estimates show 
that the interference contributions lead to a resonant de- 
crease of the scattering intensity, by =: 60% of the contribu- 
tion (2.15). To obtain more complete information on the rela- 
tive values of the positive and negative interference 
contributions to (3.3) and concerning their sum as a function 
of the values of o, and L, detailed numerical calculations are 
necessary, with the true Frohlich Hamiltonian of the inter- 
action of the electrons and holes with the LO phonons. But it 
can be seen even from the cited numerical estimates for the 
simplest case that the interference effects can lead to a sub- 
stantial decrease of the scattering intensity in a small vicinity 
-aH,,/L of the discrete set of the magnetic-field values de- 
termined by condition (3.1). The interference contributions 
(3.3) are shown in the figure by dashed lines. It is important 
to emphasize that these additional interference-type contri- 
butions to the scattering cross sections are in no way con- 
nected with the infinite density of states at the bottom of the 
Landau band. The condition for the resolution of resonances 
with different values ofL coincides with the strong-field con- 
dition. We note also that with changing frequency of the 
primary radiation o, a change takes place also in the position 
of the oscillation maxima on the plot against the magnetic 
field, whereas the positions of the negative interference-type 
resonances (3.3) do not depend on o, and are determined by 
condition (3.1). 

"It is assumed for simplicity that in the last real state that precedes the 
annihilation the exciton has a kinetic energy sufficient for the emission of 
one LO phonon. 

"In the described process, the intensity of the scattered light is linear in the 
intensity of the exciting radiation. Only processes of this type will be 
considered hereafter. 

"By arbitrary strong magnetic field will be meant here a field subject to 
conditions no other than (2.1). 
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