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The kinetics of carriers in 1D and quasi-1D systems with a pronounced disorder is analyzed. It is 
assumed that as the carriers interact inelastically with, say, phonons they can hop between deeply 
localized states. The ~esulting conductivity is analyzed over the entire frequency range on the 
basis of exact equations derived by the Berezinskii method [Sov. Phys. JETP 38,620 (1974)l. An 
exact asymptotic expansion is derived for a in the limit of small w .  Resummation of this expansion 
gives rise to a paired (two-site) approximation. The results are compared with the various approxi- 
mations. Possible applications of the model to real systems are pointed out. 

1. INTRODUCTION 

It was shown previously1 in a calculation of the state 
density that the technique developed by Berezinskii2 can be 
used to sum all the perturbation-theory diagrams in a disor- 
dered 1D system. It thus becomes possible to analyze the 
effects of disorder in the fluctuation region. Classical diffu- 
sion in a random chain is another case in which no finite set 
of diagrams is sufficient. Here again it is necessary to sum the 
entire perturbation-theory series, since this problem has 
nothing analogous to a quantum-mechanical parameter 
such asp, 1) 1. 

Classical diffusion in a 1D system can be described by 
the equation 

where W,, is the probability for an electron to hop from the 
m-th site to the n-th site or for a transition from a localized 
state centered at the point r, , say, to a state centered at the 
point r , .  The probability W,, depends on the distance 
r = Ir, - r, 1 between sites and also on the positions of the 
local energy levels of these sites. This probability can be 
found by the "golden rule" of quantum mechanics. The 
quantity Pnno (t ) in (1.1) is a conditional probability; i.e., 
Pnno (t  ) is the probability that an electron will be at site n at 
the time t if at the time t = 0 it was at the site no 
[Pnn, (0) = Snn,, I. 

In the absence of collective effects, the hopping trans- 
port described by Eq. (1.1) is the only conductivity mecha- 
nism which can operate in a 1D system, since an electron in a 
1D system is localized regardless of the degree of d i~order .~  
In the case of a slight disorder (Mott localization due to 
above-barrier reflection) it can be assumed that an electron is 
localized wherever it originally happens to be. In this case 
Eq. (1.1) can be solved immediately, as was demonstrated by 
Gogolin et u I . , ~  who also derived Eq. (1.1) from microscopic 
theory. 

Hopping transport becomes more complicated if the 
disorder is pronounced and a localized electron is concen- 
trated primarily at a strong fluctuation of the random poten- 
tial (deep Anderson or classical localization, p,lS 1). The 

hopping probability Wnm is a random function in this case 
since it depends on the random distance between sites n and 
m. Since the localization is exponential we can set 

w=Wnm=v ( T )  e-ZBrl r= 1 rn-rml (1.2) 

wherep - ' is the localization radius, and the parameter v(T) 
is determined by the particular mechanism which causes the 
hops. We will not need the explicit function v(T) below, al- 
though it has already been calculated for certain  model^.^-^ 
We will also ignore a possible energy disorder, assuming that 
kTis much larger than the width of the local levels. We will 
therefore assume that v in (1.2) is an average over the energy 
position at the n-th and m-th sites. It may be assumed in 
general that in the case of a pronounced disorder the fluctua- 
tional properties are statistically independent, so that the 
random variable r in (1.2) obeys a Poisson distribution; i.e., 

II (r) dr=exp ( 4 1 )  drll, (1.3) 

where I is the average distance between sites (or between 
states). 

The phenomenological model introduced here [Eqs. 
(1.1)-(1.3)] may thus be valid for describing the kinetics in 
systems with a pronounced nondiagonal disorder. The prob- 
lem of impurity-band conductivity could be taken as a classi- 
cal example of the application of this model.7 In this case 
I = l/c, where c is the impurity concentration, P - ' is the 
first Bohr radius of the wave function, and the parameter v is 
approximately equal to the phonon frequency. It is assumed 
that k T  is greater than the width of the impurity band. 

One result of this study is that the low-frequency con- 
ductivity of the system is ultimately determined exclusively 
by the w distribution. In other words, it can be assumed that 
the sites or states are arranged in a regular manner spatially, 
while the hopping probabilities w remain random indepen- 
dent variables which obey some specified distribution p(w). 
This circumstance raises the hope that the model may apply 
to a broader class of disordered systems. To calculate the 
corresponding distribution functionp(w) from a microscopic 
model is a separate problem. One particular approach is de- 
scribed by Berezinskii and G ~ r ' k o v . ~  

The model of this paper may be pertinent to research on 
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the transport properties of systems with a short mean free 
path @,1 S I), e.g., the salt Qn(TCNQ), with radiation de- 
fects,'~~ ion c o n d ~ c t i v i t y , ~ ~ ~ ~ '  and polyacetylene (see Ref. 12, 
where it is assumed6 that the electrons hop between soliton 
states whose spatial positions are random). 

Equations of the type in (1.1)-(1.3) also arise in many 
physical problems (see the review by Bernasconi et al."), in 
particular, in a study of a random ferromagnetic chain in the 
random-phase approximation.".13 In this case the role of 
RnnO (t ) is played by a Green's function 

and that of W,, in (1.1) is played by exchange integrals. It 
was shown in Refs. 4 and 5 that a similar model can describe 
the thermodynamics of a weakly interacting Fermi gas with 
a slight disorder at low temperatures. The corresponding 
parameters in this case are 

where lo and r a r e  the mean free time and mean free path of 
the electron, and gee is a dimensionless interaction constant. 

Hopping conductivity has already been analyzed in this 
model by a variety of methods, including the binary and 
cluster approximations, the effective-medium approxima- 
ion, a similarity hypothesis, etc., (again, see the review by 

Bernasconi et al."). All such methods, however, are based to 
some extent or other on unverifiable approximations or hy- 
potheses. The 1D case requires a special approach, since 
there is no small parameter which can be used as the basis for 
an approximation. We would thus like to derive an exact 
solution for this model and compare the results with those of 
the approximate approaches. 

2. BASIC EQUATIONS 

The dynamics of the electrons in this model can be de- 
scribed completely by the Green's function 

where P,, (t ) is the solution of Eq. (1. I), and the angle brack- 
ets denote a configurational average. In particular, the con- 
ductivity can be expressed in terms of G (q, s) as follows: 

where n = noe -p'kT is the carrier density. 
Exact equations for the average Green's function G (q, s) 

can be derived by the BerezinskiI method,' as was shown in 
Ref. 14 (see also Ref. 1). The equations found as a result may 
be written in the form 

where Goo(s) = (Poo(s)) is an autocorrelation function, and 
the functions @ and F satisfy the equations 

( I - x )  [ I +  ( 1 - X )  @ ( x ) ]  =pQ) ( x / ( I - x ) - s I w ) ,  (2.5) 
( 4 - 2 )  [ F  ( x )  +xcD ( x )  - I ]  =pe-'qrF ( X I  (1-1)  - s / w ) .  (2.6) 

Here the operator j averages over r  with distribution func- 
tion (1.3). We recall that w depends on r, according to (1.2). 
Equations (2.5) and (2.6) are supplemented with the normali- 
zation condition 

We seek the frequency dependence of the conductivity. 
Using the expansion 

F (x ,  q )  =-0 ( x )  +iqA+'/a(iq)2B+. . . , 
we find directly the following expression for a(@): 

where the functions A and B are to be found from the equa- 
tions 

We begin the solution of Eqs. (2.5)-(2.9) by noting that 
in the absence of disorder the solution of (2.5) is 

with a similar result for (2.9). It is thus natural to adopt the 
following form for the solution in the case of a disordered 
system: 

(2.11) 
We then find the following equations for the distribution 
functions of the poles from (2.5) and (2.9): 

.D 

j d y f ( y )  [-- .-I/ , J w (X-Y  ( i - ~ ) )  W P  ( w )  dw - S ( I - X )  l o ,  (2.12) 
0 

m rwdw 
= J j ( y ) d y J p ( w )  w ~ x - y ( l - x ) ) - s ~ l - x )  (2.13) 

139 Sov. Phys. JETP 59 (I), January 1984 V. N. Prigodin 139 



OD 

1 " wdw 
j d y b ( y )  [ - - I  P ( W )  
0 "-Y w  (2-y(1-x)) -s (1-x)  I 

wherep(w), the probability density of w, is found from (1.2) 
and (1.3) to be 

Here and below, w and s are expressed in units of v. 
A high-frequency solution of (2.12)-(2.14) can be de- 

rived directly through an expansion in inverse powers of s. 
To find the low-frequency solution we perform the scale 
transformation 

Equation (2.12) can then be rewritten as 

jay  h ( y )  
y2 (1- Ax) 

o ( x - Y )  12-Y (1-AX) ] 

Equations (2.13) and (2.14) are rewritten analogously. Now 
choosing A (s) such that in the limit s 4  we have A ( s ) 4  and 
s/A ( s ) 4 ,  we can attempt to solve Eq. (2.18) by successive 
approximations. 

3. ASYMPTOTIC SOLUTION OF THE EQUATIONS IN THE 
LIMIT w - 4  

The averaging over w in (2.18) and (2.13), (2.14) reduces 
to evaluating integrals of the type 

for which we have the following expansion in the regions 
u(l and u)l: 

J ~ = ~ U I - ~ -  $ ( u ,  1, u ) = u $ ( ~ / u ,  1, 1 -a ) ,  (3.1) 
1 2 = 1 + ~ ~ ' - a  (1-a)In u+ x2u'-a cos nu 

-$(u, 2, a) =@( l lu ,  2,2-a), (3.2) 

l s=1- ' /2~u'-a  (1 -a )  ln2u 
+ x ~ u ' - ~  (1 -a )  (In u )  cos nu-x3u'-" ( I - ' / ,  sin2 nu)  

+$(u, 3, a )  =lp(llu, 3, % a ) ,  (3.3) 
where 

I 
n (1-a) 

X =  - (-2)" 
sin nu , $(z ,  k, v) = ( ~ - a ) ~ z C  (=. (3.4) 

,I-0 

We see thus that in the limit s 4  the quantity A (s) in (2.18) 
should be set equal to 

A (g) =s(I-a)l(2-a). (3.5) 

For h b ,  S) we then find 
a l - a  

h ( y , ~ ) = h ( ~ ) + O ( s ~ ) ,  p-min 

where h b) satisfies the equation 

Here r (a) is the gamma function. Multiplying the last equa- 
tion by exp( - qx), and integrating over x along the imagi- 
nary axis, we find 

where q5 (7) is the Laplace transform of h (x). Analogously, in 
the limit s-0, we find the following equations for the La- 
place transforms ofg(x) and p ( ~ )  [u(q) and v(q), respectively] 
from Eqs. (2.13), (2.14), and (2.17): 

d  du - q - =  r (a )q l -"u-@,  
d71 dq 

d dv - q  - =r (a)  qi-91-U. 
dq 

The change of variables 
ZP 1  

p a ( $ )  , B=- , A=2B ( f l (a))% (3.11) 2-a 

reduces Eqs. (3.8)-(3.10) to Bessel's equations. The solution 
of (3.8)-(3.10) can thus be written: 

$5=NzBK8 ( 2 )  , N=2'-'lI' (p )  , (3.12) 

Substituting the solution into (2.8), we finally find the follow- 
ing expression for the conductivity a(w): 
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where 

The coefficient Co(a) in (3.15) is 
m a@ Co (a)  -2 J dzu ( z )  - . 

dz 
0 

To evaluate it we make use of the following property of Bes- 
sel functions: 

As a result we find 

xr(p+i(v+b))r(p+'d(~-p)) I'(p+iv) I ?  (3.17) 

The integral in (3.17) is a so-called Mellin-Barnes double 
integral. To evaluate it, we use the Slater theorem'' and the 
Dixon theoremI6 in succession. We find 

Here NB, the Meijer function16 with unity argument, exists 
in series form. For certain particular values of the parameter 
p we can find NB explicitly: 

etc., where rC, is the trigamma function. In the interval 1/ 
2 <p < 1 the function NB can be approximated by 

Np=O,796-0,756i3-1-0~198p'. (3.21) 

FIG. 1. Coefficient of the first term in the asymptotic expansion of the 
conductivity. Solid curve--Exact result; dashed curve-prediction of the 
effective-medium approximation. 

Figure 1 shows the function C,(a) calculated from (3.18)- 
(3.21). 

We also find an expression for autocorrelation function 
(2.4) in the limit s+O: 

G~~ (s) =s- i / (2-al  [B2r (a ) lBr (2 -B) l r ( l+B) .  (3.22) 

The s dependence of Goo is of course the same as that derived 
by Kirkpatrick'' by Dyson's approach. An expression for 
the coefficient in (3.22) was not found in Ref. 17. 

4. INTERMEDIATE AND HIGH FREQUENCIES 

It can be seen from (3.15) that our expansion for u(w) 
holds if 

In the case of pronounced disorder, (1 - a) ( l ,  condition 
(4.1) corresponds to extremely low frequencies, so there is a 
rather broad frequency range in which the subsequent terms 
of the expansion in (3.15) must be taken into account. The 
corresponding coefficients can be found by the method de- 
scribed above. If (1 - a)ln(v/w)( 1, i.e., if 1 - a( 1 and w ( ~ ,  
the asymptotic expansion in (3.15) should be revised. In this 
frequency interval we have, according to (3.1)-(3.3), 

Using (4.2) and proceeding by analogy with the approach 
above, we find from (2.12) and (2.13) 

f ( y ) = b ( y - I ) ,  E=(I -a ) ln (v /o ) ,  
b ( y )  ='/8lzE36 (y-'lz), a ( y )  ='/rlt26 (y-'12). 

Again substituting the solution into (2.8), we find the follow- 
ing expression for the conductivity in this frequency range: 

This result corresponds to the so-called binary approxima- 
tion.'' 

In the case of a slight disorder (a(1) the first term in 
(3.15) is the dominant term if 

'lza In ( v l o )  W l ,  o$v .  (4.4) 

If la ln(v/w)( 1, we have an expansion in the following form 
for the right side of (2.18) and Eqs. (2.13) and (2.14), accord- 
ing to (3.1)-(3.3): 

Ji=u ln ( l lu ) ,  12=J,=I. (4.5) 

We then find the following asymptotic solution of Eqs. 
(2.12)-(2.14): 

A2 ( s )  ln ( 2 / s ) ,  h=g=rp=G ( y - l )  . (4.6) 

In turn, the conductivity turns out to be 

A high-frequency expression for the conductivity can 
be derived by expanding in inverse powers of s. Retaining 
only the first few terms of the expansion, we find 
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5. QUALITATIVE SOLUTION AND COMPARISON WITH 
OTHER METHODS 

We can derive a simple qualitative solution of the origi- 
nal equations. We write the unknown solution in the form 

where the effective parameters x,, a, and b are found by 
substituting (5.1) into (2.12)-(2.14) and then settingx = 0. As 
a result we find the following general expression for u(o): 

where x, satisfies the equation 
xc=(sl(x,w+s) >. 

These equations differ from the corresponding effective-me- 
dium equations only in details.' '.179'9 For distribution (1.2), 
(1.3), Eqs. (5.2) and (5.3) can be rewritten as 

where Ji are the same integrals as those in the exact equa- 
tions [see (3.1)-(3.3)]. A point worth noting is that it is the 
nature of the expansion of these integrals Ji which ultimate- 
ly determines the nature of the expansion of the conductivity 
in w. The qualitative solution thus yields the correct asymp- 
totic dependence of u on w. According to (5.5), in the limit 
s 4  we have 

and for the conductivity we then find expansion (3.15) with 
the coefficient 

c (,) ,x-z/(a-a). 
eff (5.7) 

Figure 1 shows the value of Ceff (a) for comparison with the 
exact result. The coefficient Ceff also differs from the exact 
coefficient by a factor of 2 in the case of expansion (4.3) at 
intermediate frequencies. 

The effective-medium approximation [Eqs. (5.2)-(5.5)] 
thus reproduces the correct asymptotic frequency depen- 
dence of u. A disadvantage of this approximation can be seen 
by comparing (5.1) and (2.11). According to the exact solu- 
tion, the functions f h),  ah) ,  and b h) are definitely not S- 
functions, even in the limit s 4 .  Consequently, the Green's 
function found in the effective-medium approximation 
(-0, q-01, 

may not correspond to reality. Working from the exact solu- 
tion, we might instead expect G (q, s) to be represented in the 
form 

where again R (x) is not a 6-function. If we assume that in the 
limit s 4  we have 

we would have a situation corresponding to the similarity 
hypothesis of Bernasconi et aL20 

As might be expected, the cluster appro~imation'~.~'  
gives the correct dependence u(w) in the limit of pronounced 
disorder, 1 - a(1, where we have 

(I/(I~= ( i o / v )  l-tl@l; 

here Dl) 1. 

6. DISCUSSION OF RESULTS 

The static conductivity of a 1D system with pronounced 
disorder thus remains equal to zero at a nonzero tempera- 
ture. The physical reason is the large fluctuations of the ran- 
dom potential, which come close to amounting to breaks in 
the chain. By virtue of the one-dimensional nature of the 
motion, a carrier cannot circumvent these parts of the path, 
and it is forced to spend most of its time overcoming them. 
Nevertheless, the carriers do not become localized, as can be 
seen from (3.22). It is correct to say that the carrier mobility 
p eventually approaches zero. The derivation of u(w) carried 
out above is in fact a calculation ofp as a function of the time. 

Comparison with the results of the approximate meth- 
ods shows that the effective-medium approximation correct- 
ly reproduces the asymptotic behavior of u at low frequen- 
cies w. This fact is itself particularly interesting, since in 
terms of diagrams this approximation would correspond to 
the summation of only those diagrams which lack intersec- 
tions (it would correspond to simply a gathering of beams in 
the "cross technique"). This result may mean that, if the 
nucleating Green's function is chosen appropriately for this 
approximation, (5.8), then the usually dangerous interfer- 
ence diagrams will make the same contribution to the con- 
ductivity as do the diagrams without intersections. As a re- 
sult, only the coefficients in the asymptotic expansion will be 
determined by the sum of all the diagrams. It is actually a 
rather complicated mathematical problem to evaluate the 
coefficient of the first term in (3.15), and the result cannot be 
expressed in terms of elementary functions, in contrast with 
Ceff (a). 

When these results are applied to real systems it is nec- 
essary to consider the possibility that electrons will hop 
between chains. Such a hopping would lead to new terms of 
the type 

on the right side of Eq. (1.1). Here the superscripts i ,  io, and 
i + j specify the chain, and wf+' is assumed to be nonzero, 
equal to w, , only for nearest chains, packed in a 2 0  lattice, 
say. Allowance for the departure term in (6.1) after the trans- 
formation to the Laplace time representation reduces to the 
substitution s-s + 4w, on the left side of (1.1). The arrival 
term in (6.1) can be studied in the ladder approximation, 
whose validity depends on the number of nearest neighbors. 
As a result, we find the following expression for the Green's 
function: 
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GSdqi (Q, S) =GLd-i ( s + ~ w A ,  Q.) - 2 ~ 1  (COS Q.~+COS qua). (6.2) 

For the conductivity we thus find 

The effective probability for hops between chains can be esti- 
mated from 

wL=v exp{-2 ( ( d ~ L ) 2 + f z ~ 2 )  ' h ) ,  (6.4) 

where d is the distance between chains, andfl, is the localiza- 
tion radius of the wave function in the direction transverse to 
the chains. The quasi-1D situation, which is the situation to 
which Eqs. (6.1)-(6.4) apply, strictly speaking, corresponds 
to the case dp, )ID, i.e., to the case of rare hops between 
chains. In this case we may ignore the fluctuations of w,. 

According to (6.3), the static conductivity of a quasi-1D 
system depends strongly on w, : 

-2 =co (a) (?) , 
0 0  

In the region w 2 w, , there is again a strong frequency depen- 
dence, which can be seen most easily in the relaxation of the 
current upon the sudden application of an electric field E: 

j- 

ds o b )  E. 
I ( t )= J Ge8'T 

Substituting in (6.3), we find 

j ( t )  - je=joe-w~t/  (tv) ', 

where jc = udc E and jo = a&. The steady state is thus 
reached in a basically power-law fashion, since w, may be 
extremely small, according to (6.4). It has been pointed out 
previ~usly'~ that the asymptotic behavior j(t ) found on the 
basis of the linear conductivity is valid at the times t(tc, 
where 

At t)tc, the nonlinear effects become important. '4.22 

The model of this paper might be applied, in the form 
outlined above, to a physical system such as polyacety- 
lene.6.12 The kinetics of polyacetylene is presently interpret- 
ed on the basis of a 3 0  model ofhopping cond~ctivity.~ The 
anisotropy of the conductivity of polyacetylene, however, 
has not been measured directly. Data on spin diffusion24 im- 
ply" that the anisotropy could be extremely great (lo6), so 
that our model might apply. Measurements of u(w) in polya- 
cetylene have been carried out over the frequency range from 
10 to lo6 s-' (Ref. 12). The results reveal no variance at room 
temperature, while they reveal a strong dependence 
gAc a wY (yz0.6) at temperatures on the order of 100 K. 
Hopping transport could have a power-law dependence 
UAc (w) in a quasi-1D system, as was shown above, while this 
dependence would not hold in the 3 0  case6 (see also Ref. 12). 

According to (6.3) and (4. I), the power-law dependence 
a,,(o) in a quasi-1D system is restricted to the frequency 

range 4w, (T)(w( exp[ - 1/(1 - a)]v(T). Estimates in Ref. 
6 and experimental data12 on udc(T) [see (6.5)] reveal 
v(T) = 1017 (300 K/T)% s-l, where x = 14.7. According 
to (6.4), the T dependence of w, is of the same nature, 
w, (T )  = wy(300 K/T)", and wy can be estimated from data 
on spin diffusion,24 wy = 4.5.107 s-'. With these param- 
eters, Eq. (6.3) gives a qualitatively correct description of the 
experimental dependence u(w) in polyacetylene.12 Accord- 
ing to (6.6), the values of the parameters Y, w,, and y also 
correspond to a pronounced anisotropy. The value of the 
exponent y, however, corresponds to too high a soliton con- 
centration, if we use Eq. (3.15). Noting that6 P-' = 7a, 
where a is the lattice constant, we conclude that the value 
y = 0.6-0.8 corresponds to a degree of doping C = 7-3%. It 
may be that the hops not only occur betwen soliton forma- 
tions but also involve other defects, since a similar depen- 
dence, a,, a LVO.~, has been observed in an isomer of polya- 
cetyleneI2 in which there are no soliton states. A final 
conclusion will require an experimental study of u(w) over a 
broader frequency range and at various degrees of doping. 
The model discussed above might apply at any rate to polya- 
cetylene with a high degree of d ~ p i n g . ~  

Another system in which the power-law dependence 
studied here might be seen is Qn(TCNQ),. According to 
Refs. 4, 5, and 25, the low-temperature ( T S  10 K)  phase of 
Qn(TCNQ), can be described by a model of spins with a 
random exchange interaction. Using (1.4) and the model of 
this paper, we find the spin-wave component of the heat ca- 
pacityl ': 

CcnT(i-a)/(2-a) (6.8) 

This result becomes the same as that found by the cluster 
approach5 if we set a =: 1. The NMR relaxation time depends 
on the magnetic field in accordance with 

where the parameters a and Y were determined in (1.5). Mea- 
surementsZ5 reveal a value of 0.73 for the parameter a 
(g,, = 1/5), while the parameter T in (1.5) can be estimated 
from25 1/r = 0.7.1014 s-', so that we would have 
Y = 1014 S- '. An estimate of w, can be found from data9 on 
spin diffusion at T =  30 K: w, = 3.4.107 s-' K). 
This value of w, is also in agreement with data on the anis- 
tropy (a, /u, = 2500) if we use (6.6). According to (4. I), the 
upper frequency limit on the region with a power-law depen- 
dence is w, = exp[ - 1/(1 - a ) ] ~  = 2.5.1012 s-' (18 K). 
Consequently, the behavior in (6.8) and (6.9) corresponds to a 
quasi- 1D situation. 

I wish to thank V. V. Bryksin, A. N. Samukhin, and Yu. 
A. Firsov for a useful discussion of these results. 

"The inference could be justified on the basis that potential impurities 
would trap charged and neutral solitons in an identical way.23 The 
charge and spin transport mechanisms might therefore be the same. 
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