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We determine the spectrum of an electron in a semiconductor having a one-dimensional superlat- 
tice, in a magnetic field of arbitrary strength and perpendicular to the periodicity direction. The 
variation of the electron energy spectrum with change of the magnetic field strength is studied in 
the range from weak fields, in which the effective-Hamiltonian method is valid, to strong fields in 
which the field affects strongly the electronic state in certain layers of the superlattice and for 
which the effective-Hamiltonian method is not valid. 

I. INTRODUCTION 

In ordinary crystals the intracrystalline and intra- 
atomic fields exceed substantially the experimentally attain- 
able magnetic fields. The effective-Hamiltonian method can 
therefore be used in the calculations of the energy spectrum 
of the carriers. ' 

There is, however, an important class of materials in 
which both the "intracrystalline" and the "intra-atomic" 
fields are relatively weak. We have in mind semiconductors 
with superlattices, (SL), in which one-dimensional periodic 
modulation of the composition, and hence of the effective 
potential acting on the carriers, gives rise to quite narrow 
minibands of allowed energies, separated by energy gaps. 
Although these gaps greatly exceed the width of a miniband, 
they are nevertheless much narrower than the band gaps of 
ordinary semicond~ctors.~ It is precisely because of the nar- 
rowness of the minibands in these materials that the "intra- 
crystalline" fields turn out to be weaker by several orders 
than the corresponding fields in ordinary crystals. The "in- 
tra-atomic" fields are likewise weak, inasmuch as in semi- 
conductors with SL the role ofthe "atoms"is assumed by the 
effective-periodic-potential wells whose width exeeds con- 
siderably the distance between the crystal atoms. 

This raises the problem of finding the spectrum of the 
carriers in such magnetic fields, when the usual effective- 
Hamiltonian approximation no longer holds. The present 
paper is devoted to its solution. 

First, based on the one-dimensional character of the 
effective SL periodic potential, we present a symmetry clas- 
sification of the states and reduce the problem to one-dimen- 
sional. Next, using the smallness of the ratio of the allowed 
minibands to the gaps that separate them, i.e., to the weak- 
ness of the overlap of the wave functions localized in the 

weaker than those needed for a substantial change of its "in- 
tra-atomic" motion. 

II. DERIVATION OF FUNDAMENTAL EQUATION 

Consider a semiconductor located in a magnetic field 
parallel to the z axis and having a one-dimensional SL whose 
periodic potential depends on the coordinate x. The Schro- 
dinger equation obtained for the electron at the bottom of 
the conduction band after separating the motion in the field 
direction is of the form 

e ) ,  U (3) - IZ (3-4, 
1- 

where m is the effective mass connected with the motion in 
the plane of the layer, L, is the magnetic length, and U (x) is 
the periodic potential of the SL. The gauge of the vector 
potential is chosen in a form that preserves the Hamiltonian 
invariant to translation along the x axis by the SL period f. 

The symmetry of the two-dimensional Hamiltonian 
permits classification of its eige~states. The Hamiltonian 
commutes with the operator T :  of translation by the SL 
period along the x axis, as well as with the operator 

where ?Y, is the operator of translation by a segment d along 
they axis. At 

neighboring wells bf  the SL potential, we obtain the basic 
equation that yields the eigenstates of an electron in an arbi- 

the operators ?: and id commute with each other. Let us 

trary magnetic field. We shall track the manner in which the find the s!t of common eigenfunctions of the operators, &, 
carrier energy spectrum is transformed with increasing mag- 

?:, and Rd ford defined by relation (2.2). 

netic field from miniband Landau levels all the way to the The eigenfunctions of the operators ?: and id are 

spectrum of a "magnetized" carrier moving within the con- numbered by the quantum numbers k, and x, respectively: 

fines of an isolated SL potential well. WL emphasize that -n/a<k=<n/a, -G/2<x<G/2, 
owing to the narrowness of the allowed minibands compared 

(2.3) 

with the gaps between them, the electron is trapped in an where G = = ~/LH' .  The function V~, ,~(X,Y) is of the 
isolated SL potential well in magnetic fields considerably form 
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Substituting it in (2.1) we obtain the equation for FkX,x(x): 

where wH = eH /mc. We note that the energy E and the func- 
tions F,. x(x) are independent of k,, and the degeneracy in 
k, typical of motion in a magnetic field is present.' 

The problem reduces thus to finding the spectrum and 
the eigenfunctions in a one-dimensional potential that is a 
superposition of the initial periodic potential on the quadrat- 
ic potential due to the magnetic field. The energy spectrum 
in such a potential is discrete and the levels are numbered by 
the quantum numbers n = 0,1,2, . . . . The energy depends 
on the position of the minimum of the quadratic potential, 
- xL 5 ,  within the limits of the unit cell. To each quantum 

number there corresponds therefore an energy band 
E = E,  (x). We shall call these bands magnetic. Clearly, as the 
periodic-potential amplitude tends to zero the magnetic 
bands contract to Landau levels with energy +bH (n + 1/2). 

So far, the potential U(x) was perfectly arbitrary. We 
now recognize that the influence of the SL potential on the 
electronic properties is most substantial when the widths of 
the allowed minibands obtained on spreading of the levels of 
the isolated potential wells on account of the tunneling are 
small compared with the energy gaps between them. This 
situation corresponds to a weak overlap of the wave func- 
tions of the electrons localized in neighboring potential 
wells, and are consequently well described in the tight bind- 
ing approximation. Since the magnetic field compresses the 
wave function of the electron in the layer, the approximation 
becomes better the stronger the field. This circumstance per- 
mits (2.5) to be solved in the tight-binding approximation. 

We represent the function F:,, (x)in the form 

where fK(x) is the eigenfunction of the level v = 1,2,3, . . . of 
the one-dimensional Schrodinger equation with potential 
U(X) + muH '(x + KLH2)*/2; this eigenfunction corre- 
sponds to an energy Ev (K ). This is the equation to which is 
reduced the problem of motion of an electron in an individ- 
ual layer, with a momentum y-component equal to fiK. The 
resultant new quantum number Y is analogous to the number 
of the miniband. By the customary algebra of the tight-bind- 
ing approximation we obtain an equation for the coefficients 
b :,n (1 1: 

are resonant integrals that decrease exponentially with in- 
creasing lpl and have the property 

B d ( K )  = B - d ( - K ) .  (2.9) 

Included in the energy Ev (K ) is an additional term equal to 
P,'=o(K). 

We have thus obtained the fundamental equation (2.7), 
which makes it possible to find the energy spectrum and the 
eigenfunctions of the electron in arbitrary magnetic fields. 
The explicit expression for the eigenfunction (2.4) is 

X e x p [ i ( k p - G y )  (I-r) I fx',,, (x-al)  . (2.10) 

Ill. SOLUTION OF FUNDAMENTAL EQUATION 

When the main contribution to the wave function (2.10) 
is made by states of individual layers, for which the influence. 
of the magnetic field on the electron motion inside the layer 
can be neglected, the fundamental equation is equivalent to 
the Schrodinger equation of the effective-Hamiltonian 
method. In this case the Ev (K ) dependence takes the form 

E, ( K )  ~s,+Fi2K2/2m, (3.1) 

where E, is the energy of the level v in the potential u(x), and 
the resonant integrals do not depend on K, since the individ- 
ual-layer eigenfunctions that coincide with the eigenfunc- 
tionsfY (x) corresponding to H = 0 do not depend on K. The 
summations over rand 1 in (2.10) become separated, and the 
wave function takes the form 

I$,, %, n ( x ,  Y )  = exp ( ~ x Y I L H ~ )  g;%, X ,  n ( Y )  (P;~-U/L~Z ( 1 ) ~  (3.2) 

where 

qzs ( 2 )  = ($) 2 exp (ik=al) P (x-al)  (3.4) 

is the Bloch function of the miniband v. The function 
glx,, , (y) satisfies the equation 

and the boundary condition 

g,:.x,n ( y + 2 n ~ , ~ / a )  =exp ( 2 n i x ~ , ~ / a )  g:x,x,, ( y )  , (3.6) 

which follows from the definition (3.3). Equation (3.5) was 
obtained as a result of substituting the coefficients b z , ,  (r),  where 
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expressed in terns ~fg;~,%,n@), in the fundamental equation 
(2.7). 

Equation (3.5) is equivalent to the Schrodinger equation 
of the effective-Hamiltonian method3 for a particle with a 
dispersion law 

fi2 0 

eV (k) = - (kv2+kz2) +2 C bpv Cos kzap 
2m (3.7) 

the gauge of the vector potential being chosen in the form 
A = ( - H,, ,0,0). I t  is of the form of the Schrodinger equa- 
tion for a particle moving in a periodic "potential" whose 
role is played by the dispersion law in the miniband v. 

Let us discuss the characteristic features of the spec- 
trum €;(%). It is convenient for this purpose to transform to 
the dimensionless coordinate = ya/L, and represent Eq. 
(3.5) in the form 

where H r is the "intracrystalline" field connected with the 
miniband v; 26, is the width of this miniband; mv = fi2/ 
a2Av is the effective mass in it. 

In this equation the quantity (H Y/H)' plays the role of 
the dimensionless mass and the amplitude of the periodic 
"potential" is equal to unity. When H < H ;  the dimension- 
less mass is large, the particle is "heavy," and behaves almost 
as a classical one. At low energies it is localized mainly in one 
of the wells of the periodic "potential." In this case one can 
use the tight-binding approximation to analyze Eq. (3.8), i.e., 
the levels in the isolated wells of the "potential" are found, 
and account in then taken of their spreading into magnetic 
bands because of the finite penetrability of the barriers. The 
"potentia1"near the minima is then approximated by a qua- 
dratic expansion, corresponding to the use of the effective 
mass approximation in the miniband. The spectrum ob- 
tained thereby describes miniband Landau levels smeared 
out because of the periodicity of the "potential"': 

xLirZ 
env (x) =ev-Av+fioEv (nSi/,) - (-1) "qnV COQ 2n - 9 

a 

where wHV = e ~ / c ( m m , ) " ~ ; 2 ~ , "  is the width of the nth 
magnetic band in the miniband v. 

In this case the magnetic bands are narrow compared 
with the energy bands between them. 

For high energies ~ ; ( x )  the equidistance of the levels in 
the isolated wells is violated on account of the deviation of 
the "potential" of the isolated well from quadratic, and their 

smearing increases, since the overlap of states localized in 
neighboring wells increases. These factors can be neglected 
for those n which satisfy the inequality. 

This inequality can be rewritten in the form 

env (x) <ev. (3.11) 

For energies E; ( x )  > E,  + Av the periodic "potential" in 
(3.8) becomes a small perturbation and one can use the weak- 
binding approximation. This is equivalent to reducing the 
infinite system of coupled equations obtained for the coeffi- 
cients b x ,  n(1) from (2.7) to a single equation, when ~ ; ( x )  is 
located in the interior of the magnetic band, or to a system of 
two equations when E ; ( x )  is located at the edge. In this case 
the spectrum is of the form 

enV(x)=Ev(k(x, n ) ) ,  (3.12) 

where 

k (x, n) =x+Gp (x, n), 

for energies in the interior of the nth magnetic band and 

* [ [~ , (k (x ,  n)) -Ev(k (x, n+l)) 12+4(~,',a)21"a) (3.13) 

for energies at the edges of the (n + 1)st gap that separates 
the magnetic bands n and (n + 1). The spectrum comprises 
broad magnetic bands separated by narrow gaps. At almost 
all energies the dispersion law E; (x) coincides with the corre- 
sponding section of the dispersion law Ev (K ) of an electron 
in an isolated layer. Exceptions are narrow intervals near the 
gaps. 

From the condition for the applicability of the weak 
coupling approximation follows the inequality 

which determines the numbers n of the magnetic bands for 
which the apprcximation is valid, and the satisfaction of the 
inequality for n = 1 means that the approximation is valid 
also for n = 0. In the derivation of the inequality (3.14) we 
have assumed that 

since the resonant integrals decrease exponentially with in- 
creasing n. 

When H > H 7, the dimensionless mass in (3.8) is small, 
the particle is "light," and the energy needed for its localiza- 
tion over a length on the order of the period of the potential 
becomes larger than the amplitude of the potential. In this 
case the weak binding approximation is valid for all energies 
E ; ( x )  in accord with (3.14). In these magnetic fields the mini- 
band character of the energy spectrum is violated, since the 
neighboring-layer states, the tunneling between which leads 
to the dispersion law in the miniband, go out of resonance. 
The electrons are trapped by the magneiic field inside the 
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layers corresponding to the wells of the SL periodic poten- 
tial. 

So far we have neglected the possible influence of the 
field on the state of the electron in an isolated well of the SL 
potential. This is justified when the magnetic fields and the 
energies of the electron are not too large. The values of the 
numbers n of the magnetic bands at which this is valid satisfy 
the inequality 

n<2 ( H Z v / H )  [ I -  (H/HZv) ' 1  '", HzV= ( ~ ~ ~ 6 8 ~ l e ~ ~ )  'la, 
(3.15) 

where Hz is the "intra-atomic" field connected with the lev- 
el Y :  SE, is the modulus of the energy difference between the 
level v and the level closest to it in energy;Et is the mean 
square of the coordinate x in the vth state at H = 0. It can be 
seen from (3.15) that the fields H > H z influence substantial- 
ly the vth "atomic" state. From the definitions of the fields 
H 7 and Hz it follows that 

Hzv=HiV ( 6 ~ ~ l A ~ )  'la ( a z / Z )  ''>Hiv, (3.16) 

since a2 >X: and S&,)AV. It follows from (3.14)-(3.16) that 
in those cases when the influence of the field on the state of 
the electron in isolated wells is substantial, the infinite sys- 
tem of coupled equations for the coefficients b ;,, (I ), which is 
obtained from the fundamental equation (2.7), reduces to 
one equation or to a system of two equations, depending on 
the electron energy. The E, (x) spectrum is defined as before 
by expressions (3.12) and (3.13), in which, however, the 
E, (K ) dependence is no longer described by expression (3.1) 
but is obtained from the solution of the problem of the isolat- 
ed layer in a magnetic field. In addition, the resonant inte- 
grals depend now on they component of the electron mo- 
mentum fiK in the layer and of the magnetic field, so that 
f l ;  + in (3.13) must be replaced by /3; + , ( - G (n + 1)/2). 
Since the magnetic field clamps the wave function of the 
electron in thewell, enhancing its localization, the resonance 
integrals decrease exponentially with increasing field 
:/3 a exp[ - H /(fic/ea2)], and consequently the gaps 
between the magnetic bands decrease. 

If the layers that produce the wells of the LS periodic 
potential are so wide that the localization length of the vth 
state in the well exceeds the localization length 2L, ( 2 ~ ) " ~  of 
the state of the Landau oscillator in the attained magnetic 
field, the isolated layer contains Y intralayer Landau levels in 
such a field. This means that for the first v states of the layer 
at small K the energies Ev (K ) do not depend on K and are 
equal to %, (v - 1/2). It follows therefore [see (3.1 I)] that 
for these Y the E; (x) spectrum in the first miniband (n = 0) 
contains an interval of values of x near the origin, on which 
E; = ,, (x) = hH (Y - 1/2). 

IV. CONCLUSION 

We have thus arrived at the following picture of the 
energy spectrum of an electron in a magnetic field perpen- 
dicular to the direction of the periodicity of the SL. The 
entire field-variation interval is divided into three regions by 
two characteristic magnetic fields:"intracrystalline" H; 
and "intra-atomic" H i  (see Fig. 1). When H < H r, the EL(%) 
spectrum has four characteristic regions. This spectrum 

constitutes the miniband Landau level for magnetic bands 
belonging to the region I, corresponding to 

n<HiV/H-1.  
Corresponding to region 11, which is a transition region, are 

In regions I11 and IV the E ; ( x )  spectrum coincides at almost 
all energies with the spectrum of an electron in an isolated 
layer. Pertaining to region I11 are magnetic bands for which 
the influence of the field on the states of the electron in an 
isolated layer is negligibly small. Here 

(H: /H)  '<n<2 (Hzv lH)  X [ I -  (HIH,') z ]  'h. 

The influence of the field on the state of an electron in an 
isolated layer is substantial for magnetic bands of region IV, 
to which correspond 

When HIv < H < H2', the first two regions are absent and 
only the last two are present. When H >  Hl  only the last 
region remains. 

The theory expounded above is applicable not only to 
semiconductors with SL, but also to layered and intercalated 
crystals. A distinguishing feature of these materials is a 
strong anisotropy of the conductivity; the conductivity 
along the layer is several orders larger than the conductivity 
in the direction perpendicular to the layers. This is due to the 
weak overlap of the wave functions of the electrons localized 
in the neighboring layers. As a result of this circumstance, 
the intracrystalline fields connected with the motion of the 
electron in this direction are weak, meaning that the charac- 
teristic magnetic field H, is weak, and the electrons can be 
trapped in the layers by a magnetic field parallel to the planes 
of the layers. On the other hand, the characteristic intra- 
atomic fields in these materials are strong, - 10'-lo9 Oe, as 
in ordinary crystals, since the layers corresponding to the 
wells of a one-dimensional periodic potential are atomic in 
size. 
')The subscript k, will be hereafter omitted wherever this leads to no 
misunderstanding. 
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