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Boundary conditions for the nonequilibrium magnetization of conduction electrons at the junc- 
tion of two metals are derived from a model tunnel Hamiltonian. The magnetization fluxes across 
the interface depend on the electronic properties of metals in the same way as the tunnel current. 
The spectral characteristics of conduction-electron spin resonance in a bimetallic plate are calcu- 
lated. It is indicated that the method of conduction-electron spin resonance might be used to 
study superconductors and metals having a short spin-relaxation time. 

1. INTRODUCTION nance across a tunnel junction, through the use of one of the 

~ ~ ~ ~ ~ i ~ ~ ~ t ~  have recently been reported on the con- metals, in which the resonance is clearly observable, as a 

duction-electron s ~ i n  resonance in bimetallic probe. 

When electrons tunnel across an interface they mix the non- 
equilibrium magnetizations of the metals; the mixing is seen 

2. BOUNDARY CONDITIONS 

experimentally as changes in the shape, width, and g-factor We describe the bimetallic system by the model Hamil- 

of the resonance line. These effects are customarily de- tonian 
scribed by introducing phenomenological boundary condi- . , &%=%i+%24-%T; 

Here 8, and R2 are the Hamiltonians of the individual 

-Din,Vm+ (r, a) I~-,~=E bijmj+ (ra,  a), (1) metals, and 
j -1  

8,- C T p q h o + b , +  C.C. 

which relate the nonequilibrium magnetization flux m+ P , ~ , Q  

(i = 1,2) across the interface r = r, to the values of m t  at the 
interface through certain coefficients b,. In (I),  Dl is the 
diffusion coefficient of the conduction electrons, and ni is 
the normal to the interface directed away from the i-th met- 
al. By solving Maxwell's equations and the Bloch equations 
for the metals along with (I), one can calculate the spectrum 
of conduction-electron spin resonance and then compare the 
results with experiment to determine the values of b, for 
various pairs of metals: Li-Cu (Refs. 1-3), Cu-Ni and Cu-Fe 
(Ref. 4), and Cu-Nb (Ref. 5). Graham and Silsbee5 have ob- 
served that the coefficients b, decrease sharply after the nio- 
bium becomes superconducting. At present we lack a suit- 
able theoretical interpretation of a temperature dependence 
of this sort. 

A question which arises in connection with these ex- 
periments is that of the microscopic "structure" of the coef- 
ficients b, . In other words, what information can we obtain 
from measurements of bii for different junctions? It is clear 
that the coefficients b, must depend not only on the proper- 
ties of the interface itself but also, and strongly, on the elec- 
tronic spectrum of the metals themselves. 

In this paper we offer a microscopic derivation of 
boundary conditions (1). It turns out that the b, depend di- 
rectly on the electronic structure of each of the metals, in 
much the same way as the tunnel current across the junction 
does. We show that this circumstance adds substantially to 
the list of materials (superconductors and metals with a 
short spin-relaxation time) whose physical properties might 
be studied by the method of conduction-electron spin reso- 

is the tunnel ~amiltonian,' which describes transitions of 
electrons from one metal to the other through the barrier at 
the junction. The electron creation and annihilation opera- 
tors a s ,  a,, and b &, b,, in (3) correspond to the first and 
second metals, respectively (u is the spin index), and the ma- 
trix element T,, is proportional to the overlap integral of the 
wave functions of the electrons from the two metals. 

To calculate the magnetization flux across the junction 
we use the method of a nonequilibrium statistical o p e r a t ~ r . ~  
We are interested in the behavior of the system over long 
times and over long distances: t, (r/vf ))rr,, where r,, is the 
transport relaxation time and vf is the Fermi velocity. The 
magnetizations of the two metals can then be described by 
the Bloch hydrodynamic equations. Under these conditions 
the relationship between the quasi-integrals of motion 
m,+(r,t) and the conjugate thermodynamic parameters 
F' (r,t ) is a local relationship: 

B F$* (r, t )  = -(mi* (r, t )  >. 
2% 

(4) 

Here p is the reciprocal temperature, xi 
=xi+ - (w  = O ) z  ( m f ) d H ,  are the transverse static sus- 
ceptibilities of the conduction electrons, and (mf), is the 
equilibrium expectation value of the longitudinal magneti- 
zation in the external magnetic field H,. The magnetization 
flux density across the junction, j+ (r), is determined by the 
time evolution of the magnetic moment of the metal due to 
electron tunneling: 
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whereS is the surface area of the junction, and the junction is 
assumed to be homogeneous. 

Using the nonequilibrium statistical operator to aver- 
age Eq. (5) by the standard method,' 

+Fi+ (r, t )  mi- (r) 
(6)  

0 
- J dt'elet z[Fi- (r, t+tf) mf (r, t') 

Q=Sp exp {. . .); m(t) =exp (i%t) m exp (-%t) ; e*fO 

we easily find the following expression for the magnetization 
flux across the junction: 

f 

where 
&ji= [%T, Inj*] . 

In (7), j+(w) and m+(w) are Fourier components of the expec- 
tation values ( j+(t )) and ( m + ( t  )), respectively. In deriving 
(7) we also assumed that the overlap region of the electron 
wave functions (the "thickness" of the junction) is no greater 
than u~T,,  . For this reason, the magnetizations which appear 
on the right side of (7) are the magnetizations at the junction 
itself. 

From Eq. (7) we can immediately find boundary condi- 
tions of the type in (1) for the magnetization, since we can use 
ji+ (r,w) = - D, . n, Vm' (r,w) in a hydrodynamic descrip- 
tion. The kinetic coefficients b, can be expressed in accor- 
dance with (8) in terms of the equilibrium correlation func- 
tions of the magnetic moment fluxes of the metals. 
Expression (8) for the b, is analogous to the corresponding 
expressions for the transport coefficients in the Kubo the- 
O ~ Y . ~  

If we restrict the discussion to second-order perturba- 
tion theory in A?,, we can express the correlation function 
in (8) in terms of the products of the imaginary parts of one- 
particle retarded Green's functions G ;(k,w) of the conduc- 
tion electrons from the two metals.'' Ignoring the depen- 
dence of the matrix elements T,, on the absolute values of 
the momenta, and assuming w~ , ,  4 1, we then find 

do' 
(pwti2) &[p (of-o) /2,j-[Ni"(01-o)N2-(of) 

-OD 

+N,- (o f )  N,+ (a'-o) I, 

I ' ~ e b , j ( w ' ) ~ ~ , .  
(9) 

Im b{j(o) = J o-of 
-DD 

Here g, is the g-factor, p, is the Bohr magneton, 

is the expectation value of the square of the tunnel matrix 
element over the Fermi sphere, and 

is the state density of the conduction electrons of metal i with 
spin c = f 1/2. 

The kinetic coefficients b,(o) are thus expressed in 
terms of the state densities of the metals. We can show that 
the Re bg determine the broadening of the conduction-elec- 
tron spin-resonance line, while the Im b, determine its shift. 
The off-diagonal terms of the matrix of coefficients b,- 
which determine the mixing of the magnetizations of the two 
metals-are related by the Onsager relation9 

Since the Hamiltonian (3) conserves the total spin of the sys- 
tem, we can also write 

a) We assume that the bimetallic system consists of nor- 
mal metals (an N - N junction) with a state density Ni(0) 
which is constant near the Fermi level on scales larger than 
f l - ' (  = T) and w. It then follows from (9) that 

where RN is the junction resistance in the normal state, given 
by7 

1 

The imaginary part of b y -  is of order (w/D )Re b y- (D is 
the width of the conduction band), and the shifts of the reso- 
nant frequencies are inconsequential. 

b) Now assuming that one of the metals is a supercon- 
ductor, we have a situation in which the gap A in the energy 
spectrum causes the electronic excitations of the normal 
metal with energies below A to undergo Andreev reflection 
from the junction, and mixing of the magnetizations at the 
N - Sjunction will be "frozen" at low temperatures. In fact, 
substituting in (9) the BCS state density in a magnetic field 
Ho 

we find 

where wi = q,p, Ho is the Zeeman frequency of the conduc- 
tion electrons. The width of the conduction-electron spin- 
resonance line of the normal metal due to the outflow of 
magnetization into the superconductor at a rate Re b K-S 
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thus falls off exponentially with the temperature, as has been 
found in experiments on the resonant transparency in the 
Cu-Nb ~ y s t e m . ~  Furthermore, the strong frequency depen- 
dence of the state density of the superconductor gives rise to 
a significant imaginary part: 

~ G ~ P B '  1 20 2nA 1m bz-' (a) = (l-26u)--- 1- (T ) "ae-AIT] ; 
4S%ea RN nA 

The corresponding negative shift of the g-factor of the con- 
duction electrons of the normal metal reaches a maximum at 
low temperatures; its value is on the order of w / A  ~ 0 . 1  of the 
broadening of the resonant line in the normal metal due to 
tunneling. 

It follows from (12) and (14) that the coefficients bU(w) 
are related to the parameters of the electron spectrum of the 
metals and the properties of the junction in the same way as 
the tunnel current across the junction. 

3. SPECTRUM OF CONDUCTION-ELECTRON SPIN 
RESONANCE IN A BIMETALLIC SYSTEM 

Solving Maxwell's equations and the Bloch equations 
under boundary conditions (I), we find an expression for the 
shape of the conduction-electron spin-resonance signal in a 
bimetallic plate. The general result is too lengthy to repro- 
duce here, so we will discuss only some particular cases. 

a) We first assume that the thicknesses of the metals, di , 
are small in comparison with the skin thickness Si and in 
comparison with the spin-diffusion depth 6, = ( 2 ~ ~ 7 , ) " ~  
(ri is the spin-relaxation time of the electrons in the volume 
of the i-th metal). If the magnetization-equalization rate in 
the volume of the metal is considerably higher than the rate 
at which the magnetization escapes across the junction, i.e., 
if 

DlldilBRe (b i i )  Idi, 

then the resonant part of the surface impedance is given by 

If the rate at which the nonequilibrium magnetizations 
of the two metals mix is small in comparison with the spin- 
relaxation rates in the volume and also in comparison with 
the separation of the resonant frequencies, i.e., if 

Re bPi/di+Re b i 2 / d 2 < ~ I - i + ~ I - i ,  1 m i - a 2 ! ,  

then the poles of expression (16) are 

Expressions (17) determine the renormalization of the 
widths and g-factors of the resonant lines of the two metals 
due to electron tunneling. 

In the opposite limit, 

which corresponds to a pronounced cross relaxation at the 
junction, the observed resonance signal is of a collective na- 
ture; i.e., it characterizes the resultant response of the dyna- 
mically coupled subsystems 1 and 2. The pole with which 
most of the absorption is related is 

where a,, = ( g,/gl)diyl and a,, = ( gl/g,)diy2. According 
to (IS), the resonant frequency and the line width are aver- 
ages with appropriate weights. The situation is reminiscent 
of the electron bottleneck which is observed in alloys with 
paramagnetic impurities, where the strong exchange cou- 
pling of the localized spins of the impurities and conduction 
electrons couples the motion of their magnetizations." 

b) The situation apparently of most interest for applica- 
tions is that in which the conduction-electron spin-reso- 
nance signal in the second metal cannot be observed directly 
because, for example, the relaxation times 7, are too short. If 
the thicknesses of the metals satisfy the conditions 
Sl(dl(6,, and d2%S2, the shape of the resonant signal is 
then described by 

Expression (19) corresponds to the ordinary absorption sig- 
nal of the first metal with the one distinction that the reso- 
nant frequency and line width are renormalized by transi- 
tions of electrons into the second metal, followed by spin 
relaxation with a characteristic time 7, (if the electron does 
not manage to return to the first metal over this time). 

The results expressed in Eqs. (9), (12), (14), and (19) sug- 
gest that it may be possible to use the spin-resonance method 
to study the electronic structure and spin-scattering pro- 
cesses in a wide variety of conducting media by making use 
of a junction between the medium of interest and a metal 
with good resonance lines (lithium or sodium, for example). 
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