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The conditions of localization of excitations on charges in He I1 are calculated. The strong 
attraction produces around the charge a macroscopic region of radius 50-70 A with a high 
concentration of excited atoms. The two-dimensional bound states that result from the interac- 
tion between charges localized near the surface of He I1 and ,He surface impurities are consid- 
ered. 

1. At macroscopic distances, the energy of a bulk impu- 
rity excitation in He I1 in the field of a charge at rest is, in the 
main approximation, equal to 

where e is the charge of the ion, xi is the polarizability of the 
impurity particle, N, is the atomic density of ,He, A is the 
binding energy of the quasiparticle in He 11. The change SN, 
of the density in the electrostatic field is determined from the 
condition of thermodynamic equilibrium 

p,-x,e2/2f =const, (2) 

where p4 is the chemical potential of 4He. Obtaining SN, 
from (2) and substituting the result in (I),  we get 

Here m, is the mass of the ,He atom, so is the velocity of first 
sound in pure ,He, vi and v, are the volumes per impurity 
particle and ,He atom, respectively. If ,He atoms are the 
impurity particles, then x, -,x, and v, = 1 . 2 8 ~ ~  so that y < 0 
and the potential (3) corresponds to repulsion everywhere, 
which excludes the possibility of formation of bound states.' 
The relation v, > v, is due to the fact that the amplitude of the 
zero-point oscillations for the lighter ,He impurities is 
greater than for the ,He atoms. 

The situation changes if we are dealing with neutral ,He 
excitations in superfluid helium. Actually, for not too highly 
excited states (when the electron is localized near the nucleus 
at distances of atomic dimensions and cannot by itself form 
bubbles) vi -v, while xi )x,, since the mean distance from 
the electron to the nucleus in the excited state of the atom is 
greater than for the ground state. Thus, for example, for an 
atom of ,He in various states, we have2: 

xr('S) =0.205 AS; x4 (23S) =46.8 A'; xi(2'S) =I19.0 AS. 

Thus, the interaction between the charge and the neutral 
excitation corresponds in this case to attraction between 
them, y > 0. For definiteness, we consider the interaction of 
an excited ,He atom with a positive charge. 

The spectrum of localized states of the neutral quasi- 
particle ,He is determined by the solution of the Schrodinger 
equation with the potential 

where R is the radius of the solid sphere formed by the posi- 
tive charge in helium. One can determine the energy E  of the 
shallow S level in the potential field (4) by analytic means. At 
large distances, where I E  I ) 1 U (r) 1 ,  the wave function falls off 
rapidly in exponential fashion: 

(r) ( a )  e v ,  v2=2ME/h2, ( 5 )  

where M is the effective mass of the excitation. It is not diffi- 
cult to establish the fact that at small distances, where 
( E  141 U (r)/ ,  the Schrodinger equation has (at E = 0) a solu- 
tion that satisfies the boundary condition $(R ) = 0 and has 
the form 

Matching the values of $ and $' at some r,, so that 
P(rl(v-', r l  > R, we find the energy of the ground state 

Equation (7) agrees with the assumptions that have been 
made if 

Here Y = P - '6 2, while the minimal values of y at which the 
first discrete level appears in the potential (4) is equal to 
ymin = (TAR )2/2M. 

The existence of an attraction field U (r) leads to a signif- 
icant increase in the concentration of neutral excitations 
near the charge. If the lifetime of the excited state is large in 
comparison with the momentum relaxation time of the 
quasiparticles then, from the conditions (2) and the relation 

we obtain, in the Boltzmann region, 

Ni (r) =Ni  (a) exp (y/r4T) =Ni (m) ( I f  y/r4T). (8) 

The value r = r, at which the argument of the exponential in 
(8) becomes equal to unity turns out to be very large. Thus, at 
T = 0.5 K for ,He(2lS), the value is r, = 67 A. Therefore, 
even at macroscopic distances, r 5 r, , the density of the ,He* 
particles grows rapidly in exponential fashion, the ideal-gas 
approximation of the quasiparticles becomes inapplicable 
and the macroscopic structure of the charge is determined 
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by the phase diagram of the concentrated solution 4He*-4He 
(in principle, such a solution, can, for example, be stratified 
at distances r 5 r, ). Since v i  ~ v , ,  it follows that for any form 
of the phase diagram of the 4He*-4He mixture a crystalline 
region is formed around the charge with dimension of the 
order of 10 A and with a large concentration of excited 
atoms. It is obvious that all that has been said about the 
structure of the charge is also valid for an electron at dis- 
tances r, < r 5 r,, where r, is the dimension of the bubble. 
We note that because of the high concentration of 4He* at 
r 5 r, , recombination and de-excitation of the excited atoms 
will take place precisely in these macroscopic regions around 
the charges. If a phase transition takes place within the re- 
gion r 5 rc , then the radius of the droplet of the new phase 
that is formed can turn out to be much smaller than r, be- 
cause of effects connected with the surface tension of the 
interface. 

2. Very interesting bound states arise upon interaction 
of charges located near the surface of liquid He IIls3 with 3He 
surface impuritiese4 

The energy of the localization of the ion near the surface 
(in the Coulomb field of the image) and the binding energy of 
the surface impurities considerably exceed the potential of 
the polarization charge-impurity interaction. In this case we 
can show that the relative motion of particles parallel to the 
surface is described by a Schrodinger equation with the in- 
teraction Hamiltonian U,, ( p), which constitutes the energy 
of interaction of the quasiparticles with the charge, averaged 
over the motion of the perpendicular surface (along the z 
axis). The change in the energy of the surface quasiparticle is 
composed of the polarization term - xi e2/2r4 and terms 
due to the deformation of the surface in the electric field of 
the ion; the latter terms we shall neglect in what follows. 
This neglect is valid if the radius of the two-dimensional 
bound state (for motion along the surface), calculated in this 
approximation, turns out to be much smaller than the radius 
characterizing the deformation of the plane surface (the ra- 
dius of the dimple). Because of the large value of the capillary 
constant in liquid He, this condition is practically always 
satisfied if the charge is separated from the surface by a mac- 
roscopic distance. If the ion is in the interior of the liquid and 
is localized near the surface of the clamping electric field,' 
then the potential U,, ( p) for motion of the lighter surface 
impurity has the form 

where $o(z) is the unperturbed wave function of the quasipar- 
ticle for motion along the z axis. The potential (9) always has 
discrete levels. At fi2/Mzi (x3e2/z;, where z, is the mean 
distance from the ion to the surface, there are deep levels 
which are classified the same as the spectrum of a two-di- 
mensional oscillator 

The region of applicability of (lo) turns out to be rather 
narrow: 

where R is the macroscopic dimension of the ion. At z, z 30 
A we have h z 0 . 0 6  K. Thus, the ion and the 3He surface 
impurity form a two-dimensional bound state and carry out 
finite relative motion parallel to the surface, even if they 
move here in different "planes" separated by a macroscopic 
distance 2,. For motion of the electron over the surface of 
liquid He I1 in the attracting field of the surface quasiparticle 
3He, the opposite case is realized: #/mzi ) 1 U,, I, where m is 
the mass of the electron, m/M( 1. The energy of the bound S 
state turns out then to be exponentially small in 
J; Uer ( p) pdp (Ref. 5) and is equal to 
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