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We consider the two-dimensional problem of the onset of a convective instability in a tempera- 
ture-gradient field (the thermoconvective effect) in a nematic liquid crystal (NLC) whose director 
n is inclined to the surface. At an arbitrary orientation of the vector n, a relation is obtained for the 
threshold temperature gradient of the stationary PC (q,q,) and o ~ c i l l a t o r y P ~ ( ~ , ~ )  convection, where 
q is the wave vector of the modulated structure and q, is the inclination angle of the director to the 
NLC boundary. It is shown that the PC (q,w) spectrum has singular discontinuities that separate 
the regionsp, > 0 andPC < 0, and a classification of these discontinuities is presented. A numeri- 
cal calculation for MBBA has shown that a limiting angle p0z75" exists such that stationary 
convection is produced at a minimum gradient IDc I by heating from below when the director 
orientation is OO(p < p O  and by heating from above at p0 <p(90". 

INTRODUCTION 

The hydrodynamic instability observed in nematic liq- 
uid crystals (NLC) when a cell with the liquid crystal is 
placed in a temperature-gradient field was described with 
the aid of an anisotropic mechanism based on the Helfrich- 
Carr approach. The theoretical investigations dealt mainly 
with planarly and homeotropically oriented NLC, owing to 
the relative simplicity of the initial models. It was noted even 
in the early that an important role is played by the 
boundary conditions on the director orientation, whereby 
the boundaries of the NLC are not equivalent. An expression 
was obtained in Ref. 3 for the spectrum of the threshold 
gradient (q) at q, = 0" and 90"; this expression had a simple 
pole q# 0, a fact not discussed further. The existence of posi- 
tive and negative branches of (q) becomes particularly in- 
teresting if account is taken of the oscillatory instability con- 
nected with the development of inverse b i f~rca t ion .~-~  A 
transition from planar (p) to homeotropic (h  ) orientation is 
accompanied by a change in the pole position from q, to 
qh - 10% ; the absolute minima of the threshold of gradients 
p, and ph become comparable in magnitude. These last cir- 
cumstances lead us to expect in the intermediate region of 
the director-orientation angles a more complete picture of 
the thermal convection, including several simple or degener- 
ate poles qi # 0 in the P (q) spectrum. 

The purpose of the present paper is to find the spectrum 
of the threshold temprature gradient of the stationary 
PC (q,q,) and the oscillatory Po (q,p) convection in NLC with 
oblique orientation sf the director at the NLC boundaries. 

1. FORMULATION OF PROBLEM 

We consider in this paper thermal convection in NLC 
within the framework of the Boussinesque approximation,' 
neglecting terms of second and higher orders of smallness 
relative to the variations of the temperature and hydrody- 
namic variables. In addition, we confine ourselves to the sin- 
gle-constant approximation of the Frank elasticity theory, 
which preserves the main features of the hydrodynamics of 

an obliquely oriented NLC. The two-dimensional model of 
thermal convection turns out in this case to be complete 
enough3 for the investigation of the Benard-Rayleigh prob- 
lem in NLC, in contrast to the one-dimensional 

Consider an NLC with a direction no, making an angle 
q, with the boundary of the NLC layer. The nonstationary 
flow in the NLC is described by a system of four differential 
equations for four unknown functions: V, and V, , the com- 
ponents of the velocity vector V of the points of the medium; 
the angle 6 (xq) of deflection of the director n from its unper- 
turbed position no; the deviation T (xq) of the temperature in 
the NLC layer from a homogeneous distribution p,, where 
p = A T/L is the temperature gradient and L is the thickness 
of the NLC layer. 

The continuity equation for an incompressible liquid is 

The heat-conduction equation is 

pCgVz+ f x s  (p+"+pl") +x.(p. cos cp+pz sin 9) '1 T 

=x,g ( p .  cos 2qi -pz  sin %) 8+pCptT. (1.2) 

The Navier-Stokes equation in an anisotropic NLC is 

-!- Y a  sin 2rp8,j)z 

The equation of motion of the director, neglecting the 
small specific moment of inertia J of the liquid (J+L ') is: 

x ~ . V , +  yz sin 2qpZVz+ 
7i+y,  cos 29 

2 p z  v. 
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The following notation is used in (1.1)-(1.4):$, ,$, ,$, are the 
differential operators 3, = d/dt, $, = d/dx, 3, = d/dz, al- 
gebraic actions on which being understood in symbolic 
sense, e.g., $f = d2/dx2 etc.; p is the NLC density; g is the 
free-fall acceleration; a is the coefficient of thermal expan- 
sion of the NLC; x, = x,,  - x,, where xl l  and x ,  are the 
principal values of the diagonalized NLC thermal-conduc- 
tion tensor, C is the isobaric specific heat, K is the Frank 
elastic constant in the single-constant theory, yi and Bi are 
linear combinations of the Leslie viscosity coefficients a i ,  
defined as follows: 

Bs=nmr [ain2+ ' / z  (az+ccs+ad- aa) I ,  

Bs=nrnr [ a ,  (n2-2%') 4- '/a (aa+as-3as+aa) 1 7 (1.5) 
B,=M,  [ai (n2-2n,2) +'/z (a2+a3-3ar+ad 1, 

B8=n.nr [ain.2+i/2 (a2+as+as+ae) 1 , 
npc=cos q ,  nr=sin q.e 

The coefficients Bi are a generalization of the known 
Miesowicz viscosity coefficientss to include the case of an 
obliquely oriented NLC. 

For the solution to be unique, Eqs. (1.1)-(1.4) must be 
supplemented by boundary conditions for the functions T, 6, 
V, , V, on the NLC boundary: 

2. THRESHOLD GRADIENT OF THERMOCONVECTIVE 
EFFECT 

Solution of the system (1.1)-(1.4) with the aid of Fourier 
transformation of the functions T, 6, V,, V, leads to a sys- 
tem of four homog~neous linear algebraic equations, from 
which we can obtain a characteristic third-degree equation 
for the perturbation decremtnt. 

For convective instability to occur it is necssary that at 
least one of the solutions Ai of the characteristic equations 
have Re A>0. With the aid of the Routh-Hurwitz theorem 
we can obtain an expression for the threshold temperature 
gradient of the stationary convection (Im A = 0). 

and of the oscillatory convection (Im A = w #O) 

the threshold frequency of the oscillatory convection being 

In these equations q, and q, are the components of the wave 
vector q, m is the number of the Fourier representation, 

l',=B2qz4- (BsfBa) q,8qz+ (Bi + Bc) qtq,' 

(qr2+q:) f %a (qz COS (p f  qI sin q ) ' ,  

Fa= (yi+yz cos 2 q )  9:-2yuqxq, sin 2q+ (7,-y ,  cos 2q )  q2,  

I"=%, (q ,  cos 2q+ q, sin 2 q ) ,  

Di=yi [m41'iI'2-p2CagBq21 
+Km4p (q2+q,2) [Cr i+  (92+q:) r , ]  -il,mkI'zI'32, 

Dz=yip2C (q2+ q,Z), 

M=yi [ r i+p  (q,2+qz2) r z ]  -,/J'92, 

E=Kp (q,2+q,2)Z, Q=ytrira, 
P=K (q2+q;) [ri+p (q:+q:) r2] - ~ / 4 r 2 r 3 2 1  

s='tZp (q2+qz2) r3r4. 
To stabilize the initial orientation of the director, a 

magnetic field H is sometimes applied parallel to n.295 This 
increases the threshold in accord with the law P- [ l  + (H / 
Ho)2], where Ho is a field that coincides with the threshold 
field in the Freedericksz effect in a magnetic field. This de- 
pendence can be easily obtained also in the case of an ob- 
liquely oriented NLC, by introducing in Eq. (1.4) a term 
p, H 26 connected with the variation of the free energy of the 
NLC in a magnetic field, where p, is the anisotropy of the 
NLC magnetic susceptibility. 

The wave-vector component q, is usually close to v / L .  
It can be found more accurately by numeric methods3 frsm 
the solution of the system (1.6). 

It is therefore easy to ascertain that (2.1) and (2.2) are 
the conditions for the critical Rayleigh numbers 
R = ( pgap /YX)L (Ref. 7), where Y = a4/p and x = x/pC 
are respectively the coefficients of the kinematic viscosity 
and of the thermal diffusivity of the NLC. 

3. SlNGULARlTlES OF THE THRESHOLD GRADIENT OF 
STATIONARY CONVECTION 

We introduce the variable y = qx /q, and transform in 
(2.1) to PC (Y,P 1: 

ql'Bc(q, c~)=Bc(y,  ~ ) = F ( Y ,  T J ) / ~ ( . Y ,  T J ) ,  (3.1) 
where F( y, e, ) U ( y, e, ) are polynomials of 8-th and 4-th de- 
gree in y, respectively. 

A feature of the p, ( y,p ) dependence that distinguishes 
it from the analogous one for an incompressible liquid7 is the 
presence of nonzero poles y, , which are due to simultaneous 
anisotropy of the thermal conductivity and of the shear vis- 
cosity in the NLC. This leads to the presence in thePC ( y, e, ) 
spectrum of singular discontinuities that separate the re- 
gions with p, > 0 and p, < 0 and, as a consequence, to the 
existence of stationary thermal convection in the NLC layer 
when heated both from above and from below. 

We turn now to the distribution of the positive zeros of 
the polynomial U ( y, e, ), which are the poles ofpc ( y, e, ). To 
this end we use the Descartes theorem9 on the number of sign 
reversals in the sequence of coefficients of the polynomial 
U(Y, P I .  

Analaysis shows that there exist four regions of the di- 
rector-orientation angle, and the positive zeros of the polyn- 
omial U are located in them in the following manner: 

1. OO<p < a r ~ t a n ( a , / a ~ ) " ~ = e , ~ ~  (p3, =: Tfor MBBA). 
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FIG. 1 .  Plots of g(  y) for convective instability in NLC under various 
conditions of limiting orientation of the director ( 8,--continuous curve, 
8, d a s h e d ) .  

There is one nondegenerate zero yl( l  (Fig. la). 
2. p32(p(450 ". 

There are no zeros (Fig. lb). 
3. 45" < p(arctan(a,/a3) 1 ' 2 ~ p 2 3  (pZ3 =: 83" for 

MBBA). 
There is one nondegenerate zero yl  R 1 (Fig. lc). 

4a. P , ~ < Q ) < ~ ~ , x ~  >0. 
There are two nondegenerate zeros y, ( 1, y,) 1 (Fig. 
Id). 

4b. ~ 2 3  < p < 90°, xa < 0. 
The same as in case 3. 

It is known1' that in the temperature interval in which 
the liquid-crystal phase exists the Leslie coefficient a, can 
become small enough and can even vanish. This possibility 
leads to the appearance of a dimensionless parameter 
E = (K /aaa I in the problem. The number N of positive ze- 
ros of the polynomial Uis listed in Tables I and 11, forp- and 
h-orientation of the director, as a function of the magnitude 
of E and of the sign of the anisotropy of the thermal diffusi- 
vity x.. 
TABLE I. 

p- orientation 
- 

TABLE 11. 
h-7 orientation 

Special attention must be paid to the rare2) but physical- 
ly not impossible condition. 

ar=O, ~ 6 0 ,  (3.2) 

which presents an example of the appearance in the PC b) 
spectrum of a doubly degenerate pole at an orientation p0 
close to planar (0 < po < [K / 5 a a a  1 ' I 2 ) .  With further in- 
crease of the orientation angle (pO < p < [K /5a5ya ]lJ2 there 
appears in the PC ( y) a characteristic potential barrier (Fig. 
le) that becomes rapidly smoothed out and imparts toPC ( y) 
the known form (Fig. lb). 

4. OSCILLATORY CONVECTION 

It is known7 that in the classical Benard-Rayleigh prob- 
lem the vibrational perturbations of the hydrodynamic and 
thermal functions do not cause convective instability in a 
layer of isotropic incompressible liquid. In an NLC, on the 
contrary, oscillatory convective instability can develop be- 
cause of the stabilizing orientation-relaxation stabilizing 
mechanism that is typical of liquid crystals and has a charac- 
teristic relaxation time r0 = (yl/K )(L /T )~ .  A physical expla- 
nation of the oscillatory convect was proposed in Ref. 4, 
using a comparison ofr, with the time T, = X -  '(L /n), of the 
destabilizing thermal relaxation. The condition for the de- 
velopment of oscillatory convection is of the form 

and the characteristic frequency of the convection is 

For MBBA T,/T, =: lo3 and the expected oscillation frequen- 
cy for a 5-mm layer is w ~ 0 . 0 4  Hz, as confirmed by experi- 
ment.5 

For the known NLC that satisfy the condition (4. I), the 
spectrump, ( y, p), in contrast toPC ( y, p ), has no poles in the 
region O'(p(90", 0 <y. At any orientation of the director at 
the boundary, an oscillatory instability will be observed 
when the NLC layer is heated from below. The instability 
occurs physically if the corresponding stationary convection 
threshold PC >Po (Fig. If, dashed curve). 

; 5. NUMERICAL CALCULATION 

We present in this section the results of a numerical 
calculation of the threshold temperature gradients PC ( y, p ) 
and B0 ( y, p) for the thoroughly investigated liquid crystal 
MBBA at To = 298 K with the following parameters 3,8, 12, 
13: a, = 6.10-3 Pa-sec, a, = - 7 7 ~ 1 0 - ~  Pa.sec, 
a, = - 1.2.10-3 Passec, a, = 83-10-3 Pa.sec, 
a, = 46.10-3 Pa-sec, a, = - 3 4 ~ 1 0 - ~  Pa-sec; 
K = 6.5.10-l2 N; x I, = 1.54.10-' m2/sec; X, = 0.93.10-' 
m2/sec ;~  = 1088 kg/m3; a = 4.92.10-, K-'. 

In (2.1) and (2.2), q, , is assumed equal to n/L. For com- 
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lation threshold is w = 0.05 Hz. The values cited agree well 
with the data of Ref. 5, namely y = 1, Po = 1.2 K/mm, and 
w = 0.06 Hz. 

Figure 2 shows plots of the absolute extremum ofPC (p ) 
at the extremum point yc and of the corresponding wave 
vector q, = y, r / L  against the angle p. In the angle range 
20'40" the PC (p ) curve has a weakly pronounced minimum 
smaller by a factor of two than the threshold gradient in the 
case ofp orientation. 

We note that thermal convection with minimum exter- 
nal energy loss (/PC / is a minimum) is produced in MBBA by 
heating from below for a limiting orientation of the director 
0"<p 5 75" and by heating from above at 75" 5 p(90°. The 
proximity of the limiting angle 75" to the homeotropic orien- 
tation is due to the large value of the ratio a2/a3. 

The authors thank A. Yu. Matulis for a discussion of 

FIG. 2. Dependence of the threshold temperature gradient D,(q ) and of 
the work. 

the wave vector q, (q ) of the periodic structure on the angle q, in MBBA. 

parison with the experimental data,'s5 we used LC = 1 mm 
for the calculation ofPC ( y, p ) and Lo = 5 mm for Po ( y, p ), 
respectively. The calculation was performed for m = 1. As 
expected, PC ( y, 0" takes, in accord with the results of the 
preceding sections, the form shown in Fig, l a  with a mini- 
mum of the positive branch P, = 3 K/mm at y = 0.8 and 
with a maximum of the negative branch - 3 X 10' K/mm at 
y = 0.08. For homeotropic orientation (Fig. If, solid curve) 
the maximum of the negative branch /3, = - 4 K/mm oc- 
curs at y = 0.7, and the minimum of the positive branch 
P ' = 7 X lo4 K/mm occurs at y = 10. The values presented 
fora,, andP, are in good agreement with the known experi- 
mental data.' At the same time, the anomalously large 
threshold gradientP ' in the sideband explains why it was not 
observed in experiments5 on oscillatory instability. 

We note that since P aL -4, the negative branch of 
P ( y,V) could be observed in experiment when the cell thick- 
ness LC was increased to 3 mm, but the resultant modulated 
stationary structure would then have a period of 3 cm. 

The calculation of the oscillatory instability in MBBA 
shows that only in the vicinity of the homeotropic orienta- 
tion (89" < p(90") does the oscillatory branch play a domi- 
nant role (Do <PC, Fig. If) when the NLC layer is heated 
from below, the minimum Po ( y, 90") = 1.5 K/mm is then 

"The exact value of the angle differs from 1r/4 by IK/a,y,  I, which 
amounts in practice to 10-2-10-3. 

2'The known NLC havex, > 0 (Refs. 5, 12), although this is not required 
by thermodynamic  consideration^.'^ See Ref. 4 as well as the papers1." 
on NLC calorimetry, in which the possibility of X ,  < O  is admitted. 
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