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The possibilities of the observation of universal types of stimulated sound scattering (SS) in homo- 
geneous viscous liquids are investigated theoretically. The threshold pumping intensities, the 
intensity and pulse duration of the scattered wave are calculated for both the stationary and the 
nonstationary regimes. The conditions are estimated under which the competing processes of 
harmonic generation, overheating, and forced convection are suppressed. 

1. INTRODUCTION 

Only the elastic mechanism of nonlinearity has been 
studied in detail in the acoustics of normal liquids ("the scat- 
tering of sound by sound").1s2 This mechanism guarantees 
the direct dependence of the sound velocity on the amplitude 
p of the sound pressure. Much less is known about other 
mechanisms of nonlinearity, connected with the excitation 
of modes of a nonacoustical nature ("the inelastic scattering 
of sound"). Stimulated sound scattering (SS) in a liquid, for 
example, has not been investigated experimentally up to the 

the assuring of conditions under which the investigated pro- 
cess (in our case, stimulated scattering) develops over scales 
L, that are less than L,. In practice, this reduces to the 
choice of the medium and to the optimization of the geome- 
try of the experiment. Questions of optimization form the 
subject of a separate paper. In the present paper, we shall 
calculate the amplification parameters for different types of 
stimulated scattering of sound and estimate the conditions of 
suppressing competing processes-harmonic generation, 
heating of the liquid, convective mixing. 

present time, although there exists no bbstacle to it in-princi- 
2. MECHANISM OF STIMULATED SCATTERING OF SOUND IN ple. At the present time, it is clear that the SS of sound should LIQUIDS; OF 

bear important information on the liquid structure and the THE SCArrERING 
dynamics of its internal motions. The prospects in this sense 
do not differ from those realized in nonlinear optics, where 1. A closed description of the nonlinear acoustic effects 

the investigation of Raman light scattering has already be- in a liquid is provided a set 

come one of the most successful methods of molecular sDec- including the equation of continuity 

troscopy and where practically all forms of SS (Raman, 
Mandel'shtam-Brillouin, Rayleigh) find application in the 
optical transformations of frequency and in the elements of 
optimization of powerful lasers. 

The fundamental obstacle in the way of experimental 
investigation of stimulated sound scattering in a liquid is 
connected with its large quadratic nonlinearity. This per- 
tains also to the observation of other nonlinear acoustical 
effects (for example, the self-action of sound beams), the 
magnitude of which is proportional to the intensity (and not 
to the amplitude) of the sound wave. Such a nonlinearity, in 
the absence of the frequency dispersion that is a characteris- 
tic of the frequency range up to 1-10 GHz, leads to the effec- 
tive generation of harmonics that form a shock wave, and 
which roughly speaking does not leave energy for other non- 
linear processes. We note that the situation is directly the 
opposite in the nonlinear optics of  liquid^.^ In the first place, 
there is the anomalously small nonlinearity, which is qua- 
dratic in the electric field intensity E, and which in such 
media can be assured only by a relatively weak spatial disper- 
sion. Second, the strong frequency dispersion in the optical 
system destroys the phase agreement in the processes of fre- 
quency multiplication. 

The narrow band nonlinear transformations in acous- 
tics can be realized by introducing artificial dispersion (pos- 
sible methods have been described in Refs. 1 and 2), i.e., by 
extending the spatial scale L, that characterizes the effec- 
tiveness of harmonic generation. An alternative to this lies in 

dtp+db (pub) =O, ( I )  

the equation of balance of forces 

@ (dt+vdb) Va+aap-qdb2vaf (g+q /3 )  d,dbvb, PI 
the equation of entropy production 

pT(dt+v&'b)Y 

=xdb2T+g (dbvb) '+qdavb [da~b+db~~-26~d ,ve /3 ] ,  (3) 
and the equation of state. The latter isolates a pair of inde- 
pendent thermodynamic variables: p = p(Y,p), T 
= T ( p , Y ) .  Herep, Y and Tare the density ofthe liquid, its 

specific entropy, and the temperature; v, is the local velocity 
of the liquid, q, 6 and x are the coefficients of shear viscosity, 
bulk viscosity and thermal conductivity. 

The dispersion equation for the system (1)-(3), linear- 
ized about the equilibrium state (we shall denote the equilib- 
rium values by the subscript "O"), has five plane-wave solu- 
tions, ki = ki(w), ki are the wave numbers, w is the 
frequency. For a liquid with moderate viscosity and thermal 
conductivity, at real values of the parameters, two of these 
five modes are acoustic, with mutually opposed directions of 
propagation. The three remaining modes are diffusive in 
character. The three possible forms of the stimulated scatter- 
ing of sound are due just to their excitation by sound. This set 
of stimulated scattering, which is complete for the single- 
component homogeneous liquid, consists of the stimulated 
scattering from temperature waves (STW), the stimulated 
scattering by vortex waves, which has a purely hydrodynam- 
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ic origin, and stimulated scattering by waves of longitudinal 
acoustic flow (WLAF). The first common feature of these 
types of stimulated scattering is the direct connection with 
dissipative processes, either through the sound absorption 
coefficient S or directly through the viscosity. The second 
common feature is the phenomenological closeness to the 
Rayleigh stimulated scattering of light-the small frequency 
shift, and a linewidth Aw that is close to it in order of magni- 
tude. 

In the first theoretical works only the stationary ampli- 
fication coefficients were considered and estimated for the 
stimulated scattering via the vortex5 and temperature6" and 
arbitrary flow8 mechanisms. Only in Refs. 7 and 8 was a 
procedure indicated for nonstationary calculations. How- 
ever, as shown in Ref. 9 by the example of another effect that 
is cubic in the amplitude-the self-action of a sound beam- 
the characteristic times of the nonlinear processes here are 
such that with modern sound sources the effect can be ob- 
served more readily just in the nonstationary regime. There- 
fore, along with a consistent account of dissipation, we shall 
take explicitly into account the finite rates of development of 
the stimulated scattering. 

2. As in the analysis of self-a~tion,~ we shall use a qua- 
dratic expansion of the equation of state in the departures of 
p and T from their equilibrium values. The relative estimates 
of the individual terms of this expansion are taken from Ref. 
9. The term corresponding to harmonic generation (-pZ) is 
omitted, since we have in mind a comparison, at the end of 
the calculation, of the corresponding scale L, with the in- 
verse growth rates of the amplification. 

We represent the sound field by the superposition of the 
pump wave (p, ) and the scattered wave (p,): 

p= (pp /2 )  exp [i (op t -kpr )  ] + (p. /2)  exp [ i  (cost-k,r) ] + C .  c .  (4) 

We also represent the nonacoustic modes in the form of 
traveling waves with frequency R = w, - w, and wave vec- 
tor q =  k, - k,: 

T-To= ( T f / 2 )  exp [i(Qt-qr) ] +c. c. ,  (5) 
and similarly for the velocity of the longitudinal flow u (curl 
u = 0) and amplitude of the vortex mode w = curl u. 

The standard truncation procedure4 yields, first, an 
equation describing the amplification of the scattered wave 
in the field of the given dissipating pump (for definiteness, 
propagating along the x axis): 

i { ( k . V )  +(o, lcO2)BlBtf  6'k,)p,=- (opp,/2c02) (k,ua) 

+ (yo ,2p , /4~,2)  T'*- ( i /4cO) (k ,  [ k p y  w*] ) ; 

pP=po (t-xlc,) exp (-62). (6)  

Here y = (a In c;/dT), . Second, all the truncated equations 
for T', u and w are of the diffusion type: 

( a l a t - 2 ~ q V + ~ q ~ + i Q )  T'=26p,p.*lpo2coCp, 

(Bldt-2v'qV +v'q2+iQ) u  

Here 
X = x  ( p o ~ ,  j-', Y'= (c+4r1/3)lp0, v=r1 /~0 .  

Account of thermal broadening leads to the appearance on 
the right sides of Eqs. (7) of additional terms that are propor- 
tional top, p, *. However, they are very small in comparison 
with those written down in (7). Thus, in the second equation 
of (7), the source connected with the thermal broadening is 
aSvc,,/C, times less intense than the fundamental. Here a is 
the coefficient of volume thermal expansion, C, is the specif- 
ic heat at constant pressure, c, is the velocity of sound. In 
liquids with a measured viscosity (77- lo-' P), this relation 
amounts to lo-'; even in very viscous liquids such as glycer- 
ine, it does not exceed lop5. Here and everywhere we shall 
give our estimates at the frequency of 1 MHz. 

The estimates of Ref. 5 show that the hydrodynamical 
mechanism of excitation of the vortex mode in normal li- 
quids, taken into account in Eq. (7), is a weak one and can 
appear only in gases. For this reason, we shall consider be- 
low only scattering from temperature waves (STW) and 
waves of longitudinal acoustic flow (WLAF). 

3. For the stationary regime, setting the time derivatives 
in (6) and (7) equal to zero and neglecting small changes in 
amplitude in near-boundary layers with thickness of the or- 
der of a wavelength [i.e., VT '=: 0, V X u =: 0 in (7)], we find 

I pa(@, Q )  I = I  paoI ~ X P  (g (0 ,  Q )  J(L)L-GL) .  (8) 
Here 0 is the angle between k, and k,, L is the thickness of 
the liquid layer in the direction of propagation of the scat- 
tered wave, p, is the input amplitude of the signal at the 
frequency w, (or the mean-square noise amplitude). The fac- 
tor J (L ) is proportional to the intensity I = ~ ; / 2  p4 ,  of the 
pump and depends on the geometry of the experiment: 

l ( L )  = (Il26L 1 cos 0 I ) {I-exp (-26L I cos 0 I ) ). 
In the case of low absorption and in a transverse geometry of 
the pump, J (L )=I;  with account of finite absorption, J (L ) 
has an upper bound I /2SL. 

The frequency-angle dependence of the amplification is 
determined by the factor g(6,R ). For STW, the derivative of 
the Lorentz contour determines the line shape: 

g ~ - -  (y6klxq2) (Q/xq2)  [ I f  ( Q l ~ q ~ ) ~ ]  -', (9) 
q z 2k sin(@ /2), k, =: k, z k. Thus, the amplification is a 
maximum at the shifted frequency R = x q2 5 1-10 Hz. 

The SSAF line has the Lorentzian shape 

g,= ( 4 t l ~ ~ ~ ) - ~  [ I f  (Q/v'qZ) 'I-' (lo) 
with half-life AR = v'q2 up to 100 Hz in liquids with large 
viscosity. 

The vanishing of the total amplification coefficient de- 
termines the threshold intensity of the pump. For a frequen- 
cy R corresponding to maximal amplification, 

IT=8xolco 17 1 ,  1,=4qco26. (11) 

Typical values of the threshold intensities at w / 2 r  = 1 MHz 
are the following: IT(W.cmZ) = 75 (acetone); 83 (benzene); 
180 (water); 390 (glycerin); I, = 0.014; 0.4; 0.17; 5.2X lo3. 
The thresholds (1 1) increase with increase in the frequency; 
however, they do it at different rates: IT -0, I, -aZ. Conse- 
quently, the WLAF dominates at low frequencies w <a* .  
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Assuming a classical absorption mechanism, we obtain 
w* = 3% p,,/ y 1 q2 for the limiting frequency w*. In benzene, 
for example, the WLAF is the basic form of scattering up to 
frequencies of the order of 10 GHz. 

3. CALCULATION OF THE PARAMETERS OF 
NONSTATIONARY STIMULATED SCATTERING OF SOUND 

1. The characteristic "proper" times of the processes of 
diffusion of the acoustic flow velocity and temperature are 
estimated from (7) as T, - ( ~ ' q ~ ) - ~ - ( l O - ~  - 1) s and T, 

- ( x  q2)-'-(lo-' - 1) s (all for a frequency of 1 MHz). 
However, it is not possible to assume that they are the only 
factors determining the rate of growth of the stimulated scat- 
tering, since the external source also participates in it (a 
strong sound wave). Furthermore, experiments on the obser- 
vation of the phenomenologically close STW of light show lo 

that the pulse of scattered radiation was frequently shorter 
than the pump pulse, and, as a rule, a decrease of the intensi- 
ty of the scattering already occurs at the maximum of the 
Pump. 

For definiteness, we turn to the nonstationary WLAF 
in backscattering geometry, 0 = 180" (generalization to an 
arbitrary geometry follows directly). We assume that the 
pulse length of the pump, r ,  is greater than the time of flight 
of the sound through the liquid layer: T > L /co- s at 
L - 10 cm. Upon satisfaction of this condition, which is nat- 
ural for the proposed acoustic experiment, the only spatial 
scale of amplification in the subthreshold regime is the reci- 
procal growth rate G -' = ( g J ) - ' .  The growth rate of the 
stimulated scattering in time is determined by a still un- 
known scale ?. It is intuitively clear that the coordinate de- 
pendence of the amplification is basically established by the 
fast acoustic mode, and the spatial dependence by the slow 
barotropic mode. Relative estimates of the space and time 
derivatives in (6) and (7) show that this takes place at 

The coefficient on the right in (12) at w / 2 ~  = 1 MHz ranges 
from 10' (acetone) to lo2 (glycerin). Thus, both these in- 
equalities must be satisfied; the left differs little from the 
stimulated scattering threshold condition, the right is violat- 
ed only at intensities exceeding the threshold of cavitation. 

2. Upon satisfaction of (12), making the substitution 

p s = p  exp [6 (L -x )  - (v'qZ-in) t ]  

we get the following equation from (6) and (7): 

[d2/dxdt+R exp (-26x) ] p=0, R=o2I/pOco4. (13) 

In the approximation (12), any of the forms of stimulated 
scattering enumerated above is described by a similar equa- 
tion (in general, with a complex coefficient R ). Satisfaction of 
the inequality r > L /co guarantees the possibility of substitu- 
tion of the arguments: 

t 

t= { i - exp [ -26  (L-3) 11/26, 8 = Jdt' R, (14) 
U 

which reduces (13) to an equation of the Riemann type with 
constant coefficients. The Riemann problem for this equa- 
tion is solved exactly in quadratures. In the case of a small 
excess over threshold (I = Z I ~ ,  where Zu is not more than 

several units), the self-similar substitution r = 2({8 ) I t 2  im- 
mediately gives sufficient accuracy. It reduces (13) to the 
Infeld equation of zero order: 

Choosing its solution to be bounded at zero, we obtain the 
result that the total amplification coefficient K (t ) over the 
length L amounts to 

K ( t )  = lp,(O, t)/p,,I =Io [r(O, t ) l  exp(-6L-v'q2t),  (15) 
I, is the Infeld function. In the nonstationary regime of am- 
plification, a pulse of scattered wave is thus formed. Its max- 
imum is reached at t = .?., when dK /dt = 0. It is just this scale 
? that determines the nonstationary processes: its approxi- 
mate value is 

Z-6L (III,) (cO2/8v 'o2) .  (1 6) 

At the frequency 1 MHz and at L = 10 cm, the threshold (1 1) 
is exceeded by a factor of 1.5-2 and ? changes from 

s in low-viscosity liquids (acetone, benzene, water) to 
10-5-10-6 s in liquids of the glycerin type. Substitution of 
(16) in (12) reduces the latter, according to these estimates, to 
the requirement lo-' < GL < lo4; therefore, the approxima- 
tion assumed in our calculation can be regarded as sufficient- 
ly confirmed. 

We note that Eq. (16) allows us to calculate with less 
difficulty the energy of the measured scattered wave, 

E-S7p8,2 I K ( 7 )  I /2poco 

(S is the area of the transverse cross section of the scattered 
beam). 

3. For the description of a pair of SS mechanisms that 
are close in effectiveness, we must generalize the results ob- 
tained above. Such a situation (two forms of SS with similar 
thresholds), in addition to WLAF and STW at w ~ w * ,  is 
characteristic for SS near phase transitions of the liquid. As 
the transition point is approached, the frequency shift tends 
to zero as also the threshold of SS by oscillations of the corre- 
sponding order parameter (the density in a gas-liquid mix- 
ture," the concentration in a stratifying s~lut ion '~);  thus 
these forms of SS are "compared" here with the effective 
universal mechanisms (WLAF and STW). 

Analysis of Eq. (6), jointly with two equations of the 
system (7) (simultaneous closeness to one another of three SS 
thresholds in a homogeneous liquid is not realistic) can be 
carried out in the approximations of Sec 3, par. 2, by a meth- 
od that directly generalizes the method applied there, pre- 
cisely for the important case )Iu - I, )/(Iu + 1,)(1. The 
basic qualitatively new result here is connected with the 
beats of two modes that have close quality factors. The total 
amplification coefficient of the scattered wave, i.e., the one 
corresponding to the simultaneous action of two SS mecha- 
nisms, is equal to 

K ( t )  = M o  [2H ( t )  g'" ( O ) ]  exp [ - 202  (x+vf  ) t/co2-6L] 

XCOS [ 202  ( v f - X )  t/co2]. (17) 

Here Mo(z) is the modulus of the modified Bessel function of 
zero order. The coordinate dependence of ( x )  in (17) is the 
same as in (14). The time dependence in (17) is different than 
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under the action of a single SS mechanism (15). The time 
argument of H (t ) is determined by the differential equation 

H~zH/&? 

Its solution is expressed in terms of the reciprocal error func- 
tion of imaginary argument and increases with increase in t 
more rapidly than8 "'(t ), i.e., the envelope ofthe pulse in (17) 
has a steeper leading edge than in ( 15). 

Observation of the temporal oscillations [with period 
m:/a2(v' - X) ] of the amplification coefficient in SS of 
sound represents an attractive method of fixing the instant of 
turning-on the additional SS mechanism in the measurement 
of external parameters. This method can be used, for exam- 
ple, for observation of SS near phase transitions. In binary 
liquids, the threshold of concentration SS is quite high under 
ordinary conditions, but tends to zero at the critical point of 
stratification1'; it becomes comparable with the thresholds 
of the universal mechanisms (STW and WLAF) in a pre- 
transition region of width (10-'-lo-') K. Under the condi- 
tions of strong linear scattering, the procedures necessary 
for the investigation of SS in this region are not connected 
with the absolute measurements of the pressure or the inten- 
sity of the sound. One of such methods can be based exactly 
on the noted effects of the beating of the scattering modes. 

4. COMPARATIVE ESTIMATE OF THE EFFECTIVENESS OF 
PROCESSES COMPETING WITH THE STIMULATED 
SCAlTERlNG 

The results of Sec. 3 show that the threshold parameters 
of STW and WLAF are such that these effects can be ob- 
served using existing sound sources in liquids, whose choice 
is not so difficult. Competing sound-induced processes im- 
pose more stringent requirements on the parameters of the 
source and of the investigated medium, either by diverting 
the energy of the pump or by distorting its frequency-angle 
spectrum. The cavitation thresholds in normal liquids are 
much higher than the SS thresholds, which are estimated by 
Eq. (1 1). The effect of the stimulated convection here is the 
same as in the observation of the self-action of sound.'' 
There remains the necessary estimate of the generation of 
harmonics by the elastic nonlinearity and the superheating 
of the liquid. 

The generation of harmonics does not change the obser- 
vation of the SS if the amplification coefficient of the test 
wave K (i) at L = Lh is larger than a certain value KO > 1 
determined by the sensitivity of the receiving apparatus (the 
condition SL, < 1 is satisfied for the entire set of liquids cited 
by way of example, in the frequency range up to 10 MHz). 
The length Lh is inversely proportional to the amplitude of 
the pressure of the pump wave: 

E is the coefficient of elastic nonlinearity. Using the asympto- 
tic representation of the Infeld function in (15), we arrive 
with the aid of ( 1  1) and (16) at the required inequality 

or 1 2  I, = 32(Koqo~)Z/poco. For STW, it is necessary to re- 
place I,, by I ,  in the inequality (20). The inequality (20) is 
stronger than the threshold condition (1 1)-the quantity I,, 
for example, for acetone, amounts to (0.2K0)2 W . C ~ - ~  at a 
frequency of 1 MHz. There is an obviously pronounced 
weakening of (20) with decrease in the frequency: I, -a2. 

Since I,  > I ,  at the frequencies of interest to us, it is 
necessary to carry out an estimate of the heating of the liquid 
by the sound pump, assuming I = I,  in the equation of ther- 
mal conduction. We require that the increase in the tempera- 
ture within the time 7 not exceed a certain value AT (that 
does not change the phase state of the liquid). This yields 

A typical value (for acetone) is Th = 6 K : ( 6 q ~ g ~ / ~ ,  C') 
~ 3 . 1 0 - ~ K :  deg. 

Thus, all the conditions (1 I) ,  (20) and (21) that are neces- 
sary for the observation of WLAF and STW of sound are 
actually satisfied in liquids with moderate viscosity with the 
use of pulsed sources whose intensity is of the order of 1-100 
W-cm2 at a frequency of 105-10-6 Hz. 

A scheme with transverse pumping (scattering at 90") is 
more realistic for the observation of universal SS of sound 
under these stringent conditions, although the growth rate G 
is less by a factor of fi than in the backscattering scheme. In 
the first place, we can use cylindrical focusing of the pump 
with a caustic length h < L,, which makes (20) unnecessary 
and leads to an easing of the condition (21) in the case of a 
decrease in ?. Second, the background contribution of the 
multiply reflected pump is lower. Third, use of a resonator is 
possible, which greatly lowers the threshold intensity. And, 
finally, the requirements for coherence of the pump are mo- 
derated. 
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