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The problem of nonlinear combination (Rayleigh) interaction of surface second sound with capil- 
lary waves in a weakly superfluid solution of 3He in 4He. The equations which describe three-wave 
interactions are derived. The anharmonic terms of third order are calculated, terms which are 
responsible for the scattering of surface second sound on a capillary wave, as well as the parame- 
tric decay of surface sound into two capillary waves. An estimate is obtained for possible experi- 
mental observation of nonlinear interactions of surface waves. 

In addition to the capillary waves which are fairly well 
studied and are proper also to ordinary fluids, in superfluid 
helium there can exist another type of surface excitations- 
the so-called surface second sound, which was theoretically 
predicted in a paper by Andreev and Kompaneets.' Surface 
second sound has been experimentally observed in a weak 
solution of 3He in 4He.2,3 For sufficiently large intensities of 
the surface excitations nonlinear interactions between the 
capillary waves and surface sound may manifest themselves. 
An experimental investigation of such interactions would be 
of interest, since it would yield information on the surface 
thermodynamic functions which determine the nonlinear in- 
teractions. Moreover, taking account of the nonlinear inter- 
actions would provide us with a more precise picture of what 
is observed experimentally for sufficiently large wave inten- 
sities. 

In the present paper we consider the nonlinear combi- 
nation (Rayleigh) interaction of surface second sound with 
capillary waves in a weakly superfluid solution of 3He in 
4He. Approximate equations are derived for the description 
of three-wave interactions. The effective vertex functions 
(anharmonicities of the third order) are calculated, vertex 
functions which determine the scattering of surface second 
sound on a capillary wave and the decay of surface second 
sound into two capillary waves. It is shown on the basis of 
the derived equations that such interactions could be ob- 
served experimentally. 

As was noted in Ref. 1, the problem of motion of the free 
surface of a quantum fluid differs substantially from the sim- 
ilar problem for an ordinary liquid. This is related to the fact 
that in a superfluid such quantities as mass, entropy, etc., 
can be transported by surface excitations from one place to 
another, and this radically changes the boundary conditions 
at the surface compared to an ordinary liquid. In solving the 
problem we shall start from the equations of surface hydro- 
dynamics of a superfluid, derived in Ref. 1. We shall also 
assume that for sufficiently low temperatures (T(0.1 K) one 
may neglect the normal volume component of the density, 
and assume that there exists only a normal surface density. 
For such temperatures practically all of the 3He is adsorbed 
at the surface, and its volume density equals zero. In this case 
the 3He density at the surface, v, stops depending on the 
temperature, a fact which is confirmed experimentally (Refs. 

3,4). We also adopt the condition that the total surface mass 
vanishes, and therefore at the surface v, = - v, where v,  
and v, are respectively, the normal and superfluid surface 
densities. 

As independent variables we choose the temperature T 
of the surface, the chemical potentialp of the admixture, and 
the tangential components v,, and v,, of the superfluid and 
normal fluid velocity at the surface. Writing the equations 
(1 5) and (16) from Ref. 1 accurate to the squares of the devia- 
tions of the quantities from their equilibrium values, we ob- 
tain the following set of nonlinear boundary conditions: 

d v d p  dv,, -- + v - =Ah, 
d y  dt dx, 

In the equations (1) all nonlinear terms have been written in 
the right-hand side. The quantities A,-A, will be defined 
below. The surface equations ( I )  must be complemented with 
the volume equations of the hydrodynamics of incompress- 
ible fluids: 

The following notations have been used in the listed 
equations: (x, y, t is the deviation of the free surface of liq- 
uid helium from its equilibrium position z = 0; a is the sur- 
face entropy density (entropy per unit area of the projection 
of the surface onto the xy plane); p is the volume density of 
the fluid; p is the potential of the superfluid velocity (phase 
of the wave function): v, = Vp; p is the pressure of the fluid 
at the surface (we set the pressure above the surface equal to 
zero); a is the coefficient of surface tension: 

a=a(T, p) -'lzvn(~nt-~,t)z; 

the subscripts a and P run over x and y; we do not take into 
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account dissipation. The nonlinear terms have the form 

dv ,  d  d v ,  d  A t = - - -  
dT d t  [GT ( U ~ B - V ~ B )  I -  - - [ ~ I I . ( u ~ B - u ~ B )  ] d p  at  

1 d 2 a  d  
] + - - - ( 6 T ) 2  

2 dT2 8x6 

1 d 2 a  d  +--- 
2 d p 2  axe ( 6 ~ ) ~  

ST and Sp are the deviations of the temperature and the 
chemical potential from their equilibrium values. Further, 

dv ,  d  dvn d  
A,=;- - - [GT(v , , - v .~ )  1 -  - - [6p(vna-v , , )  ] 8T axa d y  dxa 

a a e  8~  3  drp 
-vn-[- (~nz-Usz)  axa axa ] - p V s a - + p - ( - )  axa d z  82 5; 

d o  d  As=- - -  
dT ax ,  

I av, a ---- I azu a 
( 

2 aT a t  - vna 2 dT2  at  ( 6 T )  2 ;  

dv  d  d  
A  k- -- - - (vna6p)  -V - 

d~ dxa 
1 av ,  a ---- 1 d2v d  

(vna-uIa)  2-  - - - 
2 d p  d t  2 a y 2  d t  ( 6 ~ ) ~ ;  

In the equations (1) we have set dv/dT = du/dp = 0, ac- 
cording to what was said before. Moreover we have expand- 
ed the potential q, (a volume quantity) into a Taylor series 
about the unperturbed free surface z = 0. 

Eliminating ST, Sp, v, , andp from the equations ( I ) ,  (2) 
we obtain the following system of equations: 

For the nonlinear parts N,, N2, N3 we obtain 

Here we have made use of the relations 

d a  v = - - -  1 d v ,  
-V ( P )  + --(vnt-vat) 2 ;  

8~  2 a p  

the speed of the surface second sound is 

We consider the nonlinear interaction of three waves 
which propagate in the xy plane: two second-sound waves 
(woko,w2k2) and a capillary wave (w,k,) with 
wo = w, + w,, ko = k, + k,. The spectra of the capillary 
waves and of the second sound waves have the following 
form, up to the small parameter (v, /p)k l,o,2 : 

miZ= ( a l p )  ki" oo,2=ck, ,2 .  

In weakly superfluid solutions of 3He in 4He the magnitude 
of the surface tension is a ~ 0 . 3  erg/cm2 (Ref. 4), 
c e ( 2  - 4) X lo3 cm/s (Refs. 2,3,5), and therefore for vectors 
k l,o,2 ofthe same order of magnitude (e.g., k- lo2 cm- ') the 
frequency of the capillary wave is substantially lower than 
the frequency of surface sound: w, 4 wO,, . It follows that the 
scattering of second sound with (woko) on a capillary wave 
with (calkl) can occur in all directions for an almost un- 
changed frequency of the second sound 

where2 is the scattering angle, and for an almost unchanged 
magnitude of the wave vector; the maximal frequency shift 
occurs for backscattering. The geometric picture of such an 
interaction is analogous to the Mandel'shtam-Brillouin scat- 
tering picture in nonlinear optics. 

Before solving the nonlinear system of equations (3) we 
go over to the corresponding linear system with normal 
modes 8, (the capillary branch) and 8 (the acoustic branch) 

V n  V n  
bz8i - P C  b e i  exp ( - i o i t )  + - P C  0  exp ( - i d ) ,  

~ , ~ ~ = - a ~ ~ , + B = - a ~ 0 ,  exp ( - h i t )  +0 exp ( - i o t ) ,  

ak= ( c k )  -' ( a k 3 / p )  ". 

Hereand in the sequel the parameters v, k /p and (ck )-'ak 3/ 

p are considered small. 
We search for the solution of the system (3) in the form 

of a sum of the three waves we have described earlier: 
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where S is the projection of the surface onto the xy plane. 
The second sound wave energy density has the form 

( - ~ ~ , 0 ~ + 6 ~ )  exp i (kIr-oit) 

Here 8, and 6, are the nonlinear additions to the linear rela- 
tions between the ungk and lk in the second sound wave and 
in the capillary wave, respectively. The amplitudes of the 
normal modes 8,,eO,e2 are assumed to be slowly varying 
with the distance on account of the nonlinearity of the medi- 
um. 

In order not to complicate the discussion we shall as- 
sume that all three waves propagate along the x axis, and 
that the wave 8, is propagating backwards. Substituting the 
expressions (5) into the system of equations (3) and eliminat- 
ing p, S,, and S,, we obtain the so-called contracted equa- 
tions (see Ref. 6) for the amplitudes 8 ,,,,, : 

Here NZj = N, + kjN3; j = 1,0,2. Substituting the expres- 
sions (5) into N,, N,, and N3 [see Eqs. (4)] we finally obtain, 
accurate to the small parameters (Y, / p )k j ,  W , / W ~ , ,  : 

where B is the effective vertex describing the nonlinear inter- 
actiorj; 

It is known (see, e.g., Ref. 7) that the system of equations (7) 
can be solved in terms of elliptic functions. 

We consider the energy relation in this interaction. The 
energy density of the capillary wave averaged over a period 
equals 

Since in the parametric interaction of the waves the energy of 
one of them is transferred into the others, in the language of 
numbers of quanta which pass per unit time through a one- 
dimensional section, the energy conservation law takes on 
the form 

Here no, n,,  and n, are the numbers of quanta respectively in 
the waves eO, el,  and 8,. 

Making use of the equations (7), as well as of the expres- 
sions (8) and (9), one can see that the equations (10) are satis- 
fied. Indeed, from the equations (7) we obtain 

From Eq. (1 1) one can see that the equations (10) are indeed 
valid. 

Energy and momentum conservation also allow for the 
interaction of two capillary waves (w,k,, w2ki) and a surface 
second-sound wave (web), so that accurate to the ratio c,/c 
of the speeds of the capillary waves and the second-sound 
wave we have 

(for the case of interaction along one line; the 8, wave is 
propagating backward). 

The vertex function A describing such an interaction 
can be determined similarly to the vertex B: 

The contracted equations for the amplitudes have the form 

The system of equations (12) as well as the system (7) admits 
solutions in terms of elliptic functions. The discussion can 
easily be extended to the case of waves which propagate un- 
der an angle relative to each other. 

Let us estimate the possibility of experimentally observ- 
ing the nonlinear interactions of the surface waves. For in- 
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stance, let us determine the order of magnitude of the dis- 
tance a over which the surface second sound 8, can be 
amplified on account of fluctuations to observable levels, if 
at the boundary one prescribes a sufficiently strong surface 
sound 8, and a capillary wave 8,. For a numerical estimate 
the amplitudes 8, and 8, can be considered to be approxi- 
mately constant. Then from the last equation of the system 
(7) we get 

l02(0) l-l02(a) I=l02(0) l = i ~ ' ~ i 2 B l ~ o l  l0ila, 

l02(0) lBl0*(a)l .  

Let 

I0a(O) )m10-21001, ~ 0 ~ = 2 ~ ~ . 1 0 ~ s - f  

B=2/c2=2 .  ( 2 .  103 cm/s ,) -=, 
0i~0.1hi=0.1.2n/ki=0,3. cm. 

(Some values typical of experiments with capillary waves 
have been taken from Ref. 8.) We obtain a < 1 cm, which 
from an experimental point of view is a realistic magnitude. 

I am thankful to A. F. Andreev for reading the manu- 
script, discussion, and valuable remarks; I am also indebted 

to K. N. Zinov'eva for consultations related to the experi- 
ment. 
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