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In the framework of magnetostatic instability theories we analyze the problem of the generation 
of a magnetic field in a collisional plasma in a high-frequency field. Using the solution of the 
collisional kinetic equation we evaluate the anisotropic part of the electron equilibrium function. 
We find a kinetic equation for the (perturbed) magnetostatic part of the distribution function 
which takes into account the equilibrium anisotropy of the particles and the anisotropy of the 
energy spectrum of the high-frequency waves. We solve this equation in the limiting cases of small 
and large ratios of the wavelength of the perturbation to the mean free path. In the corresponding 
limiting cases we observe collisionless and collisional anisotropic instabilities. The collisionless 
instability is similar to a Weibel-type instability. The collisional instability is caused by the elec- 
tron viscosity. We study the conditions for the evolution of these instabilities and find their 
characteristic wave numbers and growth rates. 

1. INTRODUCTION 

The present paper is devoted to the problem of the gen- 
eration of a quasi-stationary field in a plasma in a high-fre- 
quency (HF) field. The theoretical analysis of this problem 
was stimulated to begin with by the observation of strong 
magnetic fields in experiments on the interaction of laser 
radiation and matter.'-3 It was assumed in the first theoreti- 
cal papers on this problem that the physical reason for the 
field generation in this kind of experiment is the spatial in- 
homogeneity of the macroscopic parameters of the plasma 
and the HF field (such as the plasma density or temperature 
and the H F  field In later papers the generation 
of a magnetic field in an inhomogeneous plasma was consid- 
ered using a Rayleigh-Taylor type instability caused by the 
plasma ac~eleration.~- '~ 

According to the general ideas of the theory of plasma 
instabilities" the cause of the instabilities can be either the 
spatial inhomogeneity of the plasma or its non-equilibrium 
in velocity space (a non-Maxwellian character of the particle 
momentum distribution), i.e., a local thermodynamic non- 
equilibrium. A special case of such a non-equilibrium is an- 
isotropy in momenta leading to different kinds of anisotropic 
instabilities, such as the Weibel-type magnetostatic instabili- 
tiesI2 (for a detailed bibliography see Refs. 1 1, 13) the evolu- 
tion of which corresponds to magnetic field generation. 

In the traditional theory of plasma instabilitie~"~'~ one 
considers situations when the plasma is clear of any fields 
altogether or is in a constant magnetic field. When there is a 
HF field present the analysis of anistropy effects is impor- 
tant; these arise when this field acts upon the plasma. Such 
an analysis was carried out in Ref. 14 for the case of a colli- 
sionless plasma. We introduced there the concept of the an- 
isotropy of the H F  waves (the simplest example of an aniso- 
tropic HF field is a single monochromatic wave) and the 
anisotropy of the particle momentum distribution caused by 
it. According to Ref. 14 the effects of the anisotropy of the 

waves and the anisotropy of the particles turn out to compete 
in the problem of the magnetic field generation and com- 
pletely cancel one another when we neglect relativistic ef- 
fects in the plasma. The field generation is therefore ob- 
served only when we take relativistic effects into account. A 
consequence of this is the presence of additional small pa- 
rameters of the order of v,/c and (v,/c)~ in the expressions 
for the wave number and growth rate of the magnetostatic 
perturbations which are responsible for the magnetic field 
generation. 

In contrast to Ref. 14, in the present paper we consider a 
collisional plasma. In that case the anisotropic part of the 
equilibrium distribution function turns out to be different 
from the part corresponding to the case of a collisionless 
plasma. Thanks to this the effects of the anisotropy of the 
waves and of the particles do not cancel one another even 
when relativistic effects are neglected. Correspondingly, the 
wave numbers and growth rates of the magnetostatic pertur- 
bations in a collisional plasma turn out to be appreciably 
larger than when there are no collisions. 

Taking interparticle collisions into account we assume 
that the characteristic time of the existence of a quasi-sta- 
tionary state of the plasma is larger than the characteristic 
time of the electron collisions. Owing to electron-ion colli- 
sions, the energy of the H F  waves is dissipated. Therefore, if 
we assume the H F  field to be quasi-stationary we must as- 
sume the presence of a continuously acting source for the H F  
field. The problem of a quasi-stationary state of a collisional 
plasma with an anisotropic source of H F  waves has been 
considered before in the theory of beam-plasma type plasmo- 
chemical reactors.'' In that case the beam instability plays 
the role of the H F  wave source. The main attention in Ref. 15 
was paid to the calculation of the isotropic part of the equi- 
librium electron distribution function. For our purposes, 
however, it is necessary to know the anisotropic part of this 
function. We evaluate it in Sec. 2. 
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We carry out the analysis of instabilities leading to mag- 
netic field generation on the basis of a kinetic equation for 
the magnetostatic part of the electron distribution function. 
We give a derivation of that equation in Sec. 3. 

The magnetic field generation process in a collisional 
plasma looks different depending on the ratio of the particle 
mean free path I and the characteristic wavelength A of the 
magnetostatic perturbations. When I>A the effect of the 
collisions on the perturbation is unimportant so that the cor- 
responding instability looks like the collisionless one. Such 
an instability belongs to the number of so-called "collision- 
less instabilities of a collisional equilibrium." (Among this 
type we have the loss-cone instability; see 5 12.3 of Ref. 11.) It 
can be studied using the kinetic approach given in Ref. 14. 
We consider this instability in Sec. 4. To study perturbations 
with A > I which correspond to a collisional anisotropic in- 
stability we must change from a kinetic to a hydrodynamic 
description. The analysis of such perturbations is carried out 
in Section 5. We discuss the results of this paper in Sec. 6 .  

We note also some important aspects of the analysis 
given in Secs. 4 and 5. We obtain the basic results of the 
theory of the collisionless anisotropic instability in the 
framework of a kinetic-electrodynamic approach (Sec. 4.1). 
In such an approach the plasma is described by means of a 
perturbed distribution function and the only macroscopic 
quantity which characterizes the perturbation of the plasma 
is the electric current density expressed in terms of the per- 
turbed electric field. In the majority of theoretical papers on 
magnetic field generation in a laser plasma, amongst them 
the ones mentioned above (see, e.g., Ref. 5) and also in Sec. 5 
of the present paper, one uses a different approach-the 
magnetohydrodynamic (MHD) one which does not operate 
with the distribution function but with its moments which 
are expressed in terms of the perturbed magnetic field. In 
this connection it is interesting to give a magnetohydrodyna- 
mic treatment of the collisionless anisotropic instability. In 
subsection 4.2 we derive the simplest set of MHD equations 
for a plasma in a H F  field and show that the basic hydrody- 
namic equation in the case of a weakly collisional plasma is 
not the electron equation of motion (see Sec. 5) but the stress 
tensor transfer equation. Such an equation is well known in 
the theory of instabilities of a high-pressure plasma in a stat- 
ic magnetic field.16 In subsection 4.2 we elucidate how it is 
modified when a H F  field is present and show how one can 
use this equation to obtain the~results of subsection 4.1. 

We neglect in the present paper the spatial inhomogene- 
ity of the plasma and the H F  field. The problem of the insta- 
bilities then reduces to an analysis of the dispersion relation 
for the spatial Fourier components of the perturbations. 
When there is a spatial inhomogeneity such an approach is 
inapplicable. In this connection it becomes necessary to de- 
velop alternative methods to study the collisionless aniso- 
tropic instability. We show in subsection 4.3 that one can 
construct a quadratic form which has the meaning of the 
potential energy of the perturbations. From this it follows 

sign of the potential energy) similar to how this is done in the 
theory of the MHD instabilities of a plasma contained in a 
curved magnetic field1' and in the tearing-mode instability 
theory. ls 

The transfer equation for the stress tensor is important 
also in the case of a strongly collisional plasma when the 
mean free path is small compared to the wavelength of the 
perturbations (Sec. 5). In that case the electron equation of 
motion also becomes important in which the electron viscos- 
ity must be taken into account. In the original papers on the 
magnetic field generation theory in a laser plasma the elec- 
tron viscosity was as a rule neglected (see, for instance, Ref. 
9). In that case one assumes, in fact, that the viscosity is 
caused by the spatial derivatives of the macroscopic electron 
velocity.19 Such an approach is valid when there is no H F  
field in the plasma. When there is a H F  field present the 
electron viscosity contains extra terms which are not con- 
nected with the macroscopic electron velocity. We evaluate 
these terms and show that a new mechanism which we call 
the viscosity mechanism for magnetic field generation is 
connected with them.20 

We note also that the rule of the electron viscosity in the 
magnetic field generation problem has recently also been 
discussed in the papers of some other  author^.^'-^^ However, 
the generation mechanism studied by us was not recognized 
in those papers. 

2. QUASI-STATIONARY STATE 

We assume that electromagnetic waves or Langmuir 
oscillations play the role of the HF waves. For the sake of 
simplicity we assume the electric field of the H F  waves to 
be directed along the z axis: = (0,0,E ). 

We write the electron distribution function in the H F  
field f in the form 

where F is  a Maxwellian function corresponding to a density 
n and temperature ~ ; y i s  the oscillating part of the distribu- 
tion function which is linear in the H F  field; CJ is a small 
quantity which characterizes the deviation of the (averaged 
over the H F  waves) equilibrium distribution function from 
the Maxwellian. It follows from Boltzmann's kinetic equa- 
tion that the functionsyand CJ are given by the relations 

Here e, m are the electron charge and mass, v the particle 
velocity, Cei , Iei , C,, , I,, the electron-ion and electron-elec- 
tron collision operators, defined following Braginskii,19 and 
the angle brackets indicate averaging over the H F  waves. 

We solve Eq. (2.2) by expanding in a series in the colli- 
sion frequency. We then find. 

that the analysis of the collisionless anisotropic instability r=f(o)+fci) 
can, when the plasma and the H F  field are inhomogeneous, 
be performed using the energy method (by determining the f ( ' )  =2iivzF/vT2, 
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1 
f (')-2C.i (v,F) T(t') dt', 

VT 
(2.6) 

-e. 

where v, = ( 2 ~ / r n ) " ~  and fi the oscillating particle velocity 
determined by the relation 

Using (2.4)-(2.7) we get 
a 

=-ZW - Cei (vE)  , +(EX;;> av, 

where W E  (D2)/v2,. 
We write @ in the form 

@=(Dee+@", 

(Dee=2w ( v ; ~ - ~ / ~ v ~ )  /vT2. 

The function @" satisfies the equation 

Using (2.8), (2.11) we write (2.3) in the form 

F a 
I..(@~') +I., (0.') =-2w{--; cn (v:) + K [ ~ ~ e i ( v z )  I} . 

VT 

(2.12) 
Following Ref. 19 we solve (2.12) in the two-Sonine- 

Laguerre polynomials approximation. As a result we get 

mei=aw ( U = ~ - ~ / ~ V ~ )  /v'r2, 

where 

a=0.19+0.50~:l' (r ) .  (2.14) 

Here L :I2 is the appropriate polynomial of the argument 
x = vZ/v2,. 

Equations (2.9), (2. lo), (2.13), (2.14) indicate the pres- 
ence of anisotropy in the electron equilibrium distribution 
function. The function @" corresponds to the "collision- 
less" part of the anisotropy. It will become clear from the 
following analysis that the magnetic field generation pro- 
cess, an effect caused by @", is cancelled by the effect of the 
anisotropy of the waves (see also section 1). Therefore only 
that part of the anisotropy described by the function @" is 
responsible for the magnetic field generation. 

3. KINETIC EQUATION FOR THE MAGNETOSTATIC PART OF 
THE DISTRIBUTION FUNCTION 

When there are magnetostatic perturbations present, 
Eq. (2.1) for the electron distribution function is modified as 
follows: 

Herej"', j"" are, respectively, the low- and high-frequency 
parts of the distributionTunction which satisfy the following 
kinetic equations which follow from the Boltzmann equa- 
tion: 

Here Em,  Bm are the electric and magnetic fields of the mag- 
neto-static perturbations, S ; the magnetostatic part of the 
Coulomb collision term, and S ;;; the analogous part of the 
quasi-linear collision term defined by the equation 

Using (2.5) and putting Bm = (O,B,",O) we find from (3.3) 

-m 

It then follows from (3.4) that 

Substituting (3.6) into (3.2) and expressing @ in the form 
(2.9) we note that the contributions S ;;, and @" cancel one 
another in (3.2), i.e., 

Therefore (3.2) becomes 

Equation (3.8) is the main starting equation for our 
analysis of the magneto-static instabilities. 

4. COLLISIONLESS ANISOTROPIC INSTABILITY 

4.1. Kinetic-electrodynamic approach 
We neglect in (3.8) the Coulomb collisions. We write the 

space-time dependence of the perturbations in the form 
exp( - iwt + ik-r). We put k = (k,O,O). Then Em = (O,O,E ,"), 
B," = - ckE,"/w. It then follows from (3.8) that 

Using (4.1) and assuming w (kv, we find the electric current 
density of the perturbations 

where w i  = 4.rre2n/m is the square of the plasma frequency 
and n the plasma density. Substituting (4.2) into the Maxwell 
equation 

dB, 4n 
-=- 
ax u 

jzm, 

we get the dispersion relation (cf. Ref. 14) 

where 

~ ~ = i n ' " m ~ V  1 k 1 ~ V T ,  
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k ?  is given by Eq. (4.9). It is clear from what has been said 
that the physical process considered here is identical with 
that discussed in subsection 4.1. It follows from (4.4)-(4.6) that 

4.3. Energy method 

To supplement subsection 4.2 we evaluate the linear 
dissipation of the perturbations caused by resonance parti- 
cles. We then arrive at a Maxwell equation of the form 

Hence we find that the perturbations grow with time pro- 
vided 

kCk., (4.8) 

where k . is determined by the relation 
Here A ," is the vector potential of the perturbations, J,""' 
that part of the current density which corresponds to the 
electron velocity (4.14), i.e., 

The growth rate y = Im w has a maximum of the order of 

and 0'2' is the linear conductivity of the plasma in a coordi- 
nate-time representation which in the standard way is con- 
nected with the quantity E ,  given by Eq. (4.5) (see, e.g., Ref. 
11). Multiplying (4.17) by A ," and integrating over space we 
get 

which is reached when k = k . /31J2. 
The condition for the applicability of the assumption of 

a collisionless nature of the perturbations means that 

where Y,  is the electron collision frequency. It follows from 
(4.8), (4.11) that the instability considered here can occur 
provided that 

F>cv./oP. (4.12) 
where 

dAZm 4n w= 5 [(,) - - c j r ( i ' ~zm]  dx. 

4.2. Hydrodynarnlc approach 
We can consider the quantity Was the potential energy of 
the perturbations of the system. It is positive when there is 
no HF field. The sign of the integral on the left-hand side of 
(4.19) is also positive. The perturbations considered are 
therefore damped when there is no HF field. When there is a 
H F  field present the damping is replaced by a growth, if 
W< 0, i.e., if 

For the sake of simplicity we assume that the system is 
at the limit of stability. Then a !  /at = 0, Em = 0 so that in 
the case considered of weak collisions Eq. (3.8) reduces to the 
form 

Using (4.13) to construct the standard hydrodynamic 
continuity, motion, and heat balance equations we verify 
that the first and third equations do not give positive infor- 
mation while the equation of motion reduces to the condi- 
tion that the viscosity tensor vanishes. However, we get non- 
trivial information from the equation for the z,x component 
of the stress tensor which we obtain by multiplying (4.13) by 
mv,v, and subsequently integrating over the velocities: 

Putting 

and substituting (4.18) into (4.21) we find that the condition 
for instability has the form k < k . in accordance with subsec- 
tion 4.1. 

5. COLLISIONAL ANISOTROPIC INSTABILITY 

We now assume the Coulomb collision term in (3.8) to 
be large. We consider a perturbation with k = (O,O,k), 
Em = (E ,",O,O). In that case the Maxwell equations in the 
coordinate-time representation have the form 

where V," is the macroscopic electron velocity. Using the 
fact that 

and using Eq. (4.3) we bring (4.14) to the form 

When B ; a exp(ikn) Eq. (4.16) means that k = k 2 ,  where 
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We add to (5.1) (5.2) the electron equation of motion19 dBym c2 
-= - 02) ) 3;;. 

( 4n0 
-0.11- -. 

d  t 
(5.12) 

Y e  
enE,m+an,m/dz+0.51mnvOV1m=0, (5.3) 

Hence it follows that instability occurs, provided that [cf. 
where 7,1. is the magnetostatic part of the xz components of (4.12)] 
the electron viscosity tensor, V," the average electron mo- 
tion velocity in the magnetostatic perturbations, and (52>>4.7~2v,L/o,2.' (5.13) 
Y, = 1 / ~ ,  , where T, is given in Ref. 19. Then 

As we assume the perturbations to be purely electronic 
we have y=0.1k2<~9>iv,. (5.14) 

V,m=-j,"/en. (5.4) Hence it is clear that the growth rate increases with increas- 

Using (5.2) we then have 

c dB," V," =--. 
4nen d z  

Substituting (5.5) into (5.3) we get 

c dB," 1 dn,," E,"= - - - - - - 
4no d z  en dz ' 

ing wave number k. However, we assume that k 5 Y, /vT, for 
otherwise the collisional approximation assumed in the pres- 
ent section is violated. Putting kzv,/v, we find that the 

(5.5) maximum growth rate given by Eq. (5.14) is, as to order of 
magnitude, equal to 

where o = e2n/0.51mv, is the conductivity. It follows from 
(5.1), (5.6) that 

I 

We use Eq. (3.8) which, neglecting unimportant terms, 
we write in the form 

to evaluate the quantity 7:. We put the functionj"' which 
occurs in S 7 equal to 

By analogy with Sec. 2 we evaluate @" in the two-Sonine- 
Laguerre polynomials approximation. The required tensor 
component ~,1. is connected with 4" through 

nZzm=m u ~ ~ ~ F @ ~  dv.  I (5.10) 

As a result we find 

Using (5.1 1) we get from (5.7) 

6. DISCUSSION OF THE RESULTS 

The analysis given here indicates a new type of instabil- 
ity for a plasma in a H F  field. The cause of these instabilities 
is the anisotropy of the plasma caused by the H F  field. A 
result of the instability is a growth of magnetostatic pertur- 
bations which corresponds to the generation of a quasi-sta- 
tionary magnetic field. 

The instabilities considered are realized provided the 
amplitude of the H F  field is not too small so that inequalities 
(4.12) or (5.13) are satisfied. If these inequalities are strong 
the wave number dependence of the growth rate has the 
shape schematically shown in the figure. It is clear from the 
figure that the maximum growth rate occurs for "collision- 
less" perturbations with k = k. where k . is characterized by 
Eq. (4.9). The maximum growth rate is given by Eq. (4.10). 

One can obtain an estimate of the magnitude of the gen- 
erated magnetic field when the instabilities considered deve- 
lop by taking into account their similarity to Weibel type 
instabilities12 and using the estimates of Ref. 25. According 
to Ref. 25 the magnitude of the generated magnetic field 
when a Weibel type instability develops is of the order of 
B z ( 4 m A  T)'I2 where ATis the temperature anisotropy. In 
our case the role of the temperature anisotropy is played by a 
quantity of the order of mC2. We then get an estimate B&. 
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