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An analytic expression is obtained for the matrix element of two-electron exchange in collision 
between an atom and an ion with different nuclear charges. A quasiclassical approximation is 
used that should lead to a higher accuracy (than the asymptotic expansion) at not too large 
distances between the nuclei. The specific case of He + C4+ collision is considered. 

51. INTRODUCTION 

Interest has increased recently in electron exchange oc- 
curring in collisions between atoms and multiply charged 
ions 

The effective cross sections for exchange of two, three, 
and even four electrons were measured in Refs. 1-3. These 
processes are effective mechanisms for obtaining particles 
with excitation energy of tens of electron volts. They play a 
significant role in the investigation of problems of controlled 
thermonuclear f u ~ i o n , ~  production of an inverted medium 
emitting in the UV and x-ray x-ray and nuclear 
spectroscopy, astrophysics, and others. 

The process most thoroughly investigated, experimen- 
tally and theoretically, is at present one-electron charge 
transfer. If the atom's outer shell has several equivalent elec- 
trons, a relatively effective reaction channel, besides one- 
electron, is two-electron capture. The latter process has a 
number of features not possessed by one-electron charge 
transfer and has been less studied. An exception is the case of 
resonant two-electron exchange, theoretically studied in 
Refs. 7 and 8. 

The main difficulty in the understanding of the physics 
of two-electron processes is that an important role is played 
in their dynamics by correlation effects, but these constitute 
an independent theoretical problem. 

We investigate in this paper nonresonant exchange of 
two electrons in slow collisions of an atom and an ion. This 
process was already investigated earlier in Refs. 9-1 1. In 
Refs. 9 and 10 are cited the results of a measurement of the 
effective cross section of the reaction 

The same references describe a detailed variational calcula- 
tion of the terms of this system and of the cross section of the 
process as a whole. Grozdanov and Janev" applied the the- 
ory of resonant two-electron ex~hange,'.~ without substan- 
tial modification, to nonresonant exchange. This theory is 
applicable to systems consisting of two electrons in the field 
of two purely Coulomb centers. For reactions with the core 
electrons [e.g., reaction (2)], the theory calls for further 
elaboration. The analytic approach used in our paper per- 
mits a study, in general form, of the efficiency of asymmetric 
two-electron exchange with allowance for the presence of 
the core. In addition, we calculate the exchange matrix ele- 
ment by a method valid for smaller internuclear distances 

and providing a more accurate result than the usual asymp- 
totic approach. 

In symmetric two-electron exchange the term splitting 
is determined by a configuration such that the electrons are 
transferred to different nuclei. For asymmetric exchange 
(when an atom collides with an unlike ion) this relative sim- 
ple situation may also not occur. It is realized, as follows 
from preceding ~tudies,'.~ when the first ionization potential 
of each atom is smaller than the second potential of any of 
these atoms. This is indeed the case considered here. This 
condition is satisfied for the reaction (2) investigated in this 
paper. We use the atomic system of units eZ = m = 3 = 1. 

52. CALCULATION OF THE TWO-ELECTRON-EXCHANGE 
MATRIX ELEMENT 

We start from the fact that in reaction (1) the core elec- 
trons of the ions A Za and B Zb do not change their state, i.e., 
they can be regarded as "frozen." The problem reduces then 
to consideration of the motion of two "outer" electrons in 
the field of the two ions A Za and B Zb. Let Pa ((r,,r2) be the two 
electron wave function of the ion A Za- 2, and Pb (r,,r2) the 
two-electron wave function of the ion B Zb - '. Our problem is 
to calculate the exchange matrix element" 

Hd=(Ya(HI Ya)-(Yal Yb)<YaJHIYa), (3) 

where H is the total Hamiltonian of the system, which takes 
in our case the form 

Here Z, and Z, are the effective charges of the atomic cores 
of A Z' and B zb, ria, rib (i = 1,2) are the distances of the ith 
electron from the cores A and B, Va (r,, ) and V, (r,, ) are the 
potentials of the interaction of the electron "1" with the 
cores of A and B, respectively; Va(rZa) and Vb(rZb) are the 
analogous quantities for the electron "2." We denote by Im, 
and Im2 the orbital momenta and their projections on the 
axis joining the electrons that participate in the charge trans- 
fer and are centered on A Za. Let L and S be their total orbital 
and spin momenta, and ML and Ms the corresponding pro- 
jections on the axis joining the nuclei. The quantum numbers 
of the electrons relative to the center B Zb will be designated 
I ', m; ,...,Mi. The wave function that describes the system 
in the initial state can then be represented in the form (we are 
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considering a case when the A Za and B Zb ion cores have 
closed electron shells) 

where xSMs are the two-electron spin functions @,,(r,,r,) 
and @,, (rl,r2) = @ ,, (rl,r2) are the two-electron coordinate 
wave functions. The final-state wave function Yb(r,,r2) is 
constructed similarly. Substituting the functions !Pa and Yb 
in (3), we obtain 

H ~ ' = ( Q ~ ~ I  ~ I @ ~ b ) + ( @ z a I  HIQI~) 

-k<YalHI Y,) (<@,a\  @zb)+(@zaI @ib)) r 

(7) 

H A ~ ) = ( @ ~ ~ I H I  U'tb)+(U'zaIHI@Z~> 

+<YaIHIYa) ((@iaI@ib)f (@zaIQ)zb)). 
(8) 

We put next 

@ ( r ,  ) = ( I )  9% ( )  , @ra (ri, ra) =fpzba (ra) cpia (ri) , 
(9) 

where plab (rl)  is the wave function of the "first" (outer) elec- 
tron of the atom A Z4 - (the second subscript b of the func- 
tion pa, denotes that its value near the center B is consid- 
ered), pza ((r2) is the wave function of the "second" (inner) 
electron of the ion A ', and similarly for the function 
Q2, (r1,r2). The terms @,, ((rl,r2) and H 9 and H obtained 
in (6) correspond to two different two-electron transfer 
mechanisms. The term H ! j  corresponds to "parallel" trans- 
fer of the first electron from the state 1 of ion A to state 1 of 
ion B, and of the second electron from the state 2 of ion A to 
state 2 of ion B. The matrix element Hi2 corresponds to 
L b ~ r ~ ~ ~ ~ ~ e r ' '  transfers, when the first electron goes over from 
state 1 of ion A to state 2 of ion B, and the converse for the 
second electron. We confine ourselves hereafter to the case 
when the first ionization potentials of each are smaller than 
the second potentials of any of these atoms, i.e., when nla, 
nlb > n,, , n,, , where 1/2n ,,,, and 1/2n:,,, are the first and 
second ionization potentials of A and B, respectively. The 
matrix element H 2  has an R - P W  an asymptotic form 
exp[ - (l/nla + l/n,,)R 1, while 

We shall take into account only the principal matrix element 
of H:j,  which decreases more slowly than the matrix ele- 

ment Ha,, in analogy with the case of resonant two-electron 
exchange.'.= 

The functions pla,,, and plb,,, must be known in the 
region where they are a maximum, and can be regarded 
known as unperturbed atomic functions. The functions 
4)lab,2ab (plba,2ba ) must be known in the region where the elec- 
tron is removed from its center to the foreign ion. The con- 
struction of these functions is the subject of the next section. 

93. DETERMINATION OF THE ELECTRON WAVE FUNCTIONS 

We recognize that the first electron is situated in the 
field of two centers, A Za - ' and B Zb.  Therefore its wave func- 
tion pa, satisfies the following Schrodinger equation: 

where Ua and Vb are the potentials of the interaction of the 
electron with particles A - ' and B Zb. 

It follows from the formulation of the problem that we 
must know the wave function pa, in the vicinity of the center 
B. In this region the principal role in Eq. (10) is played by the 
potential of the electron interaction with the center B, while 
the potential Ua can be regarded as a small perturbation. 
Equation (10) can then be solved with the aid of a Green 
function, namely, 

qab(rb) =- J ds rb t~b  (b, rbl; E )  ~a(rb') qab (rat)9 (I1) 

where G, is the Green function for the motion of one elec- 
tron in the potential Vb . 

The solution of (10) must satisfy definite boundary con- 
ditions and was obtained in Ref. 13 for the intercenter re- 
gion, where the potentials Ua and V, can be replaced by 
their Coulomb asymptotic values. The solution obtained is 
of the form 

This solution is so constructed that at ra - 1 it goes over into 
the asymptotic form of the atomic wave function 

The boundary conditions for (10) will be chosen by "joining" 
the solution of Eq. (10) with the solution (12) in the region ra , 
r, - R. By the same token it becomes automatically normal- 
ized to the asymptotic relation (15). 

We emphasize that the solution (12) was obtained by a 
quasiclassical method. This is important, since it becomes 
possible to take correctly into account the charge of the elec- 
tron energy under the barrier. The quasiclassical approach 
yields a solution that is valid at not too large internuclear 
distances R. The only restriction on R is that it be larger than 
the distance at which the potential barrier between the 
centers vanishes. 
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To solve the integral equation (1 1) we must consider 
certain properties of the Green function. The total Green 
function Gb for the centrosymmetric potential V, can be 
expanded into partial radial Green functions g,l (Ref. 14): 

where y is the angle between rb and r;, and the radial Green 
functions are 

gl, (rb, rb') ='/zniafi~, (r.4 f21, (r,) , (17) 

r~ F max, min {rbr rb l } .  (18) 

The functions f,, are solutions of the equation 

with f,l regular at zero and fz12 regular at infinity. 
We return to Eq. (1 1). The function pa, attenuates ex- 

ponentially in the direction from nucleus A to nucleus B, and 
the Green function G, , conversely, from the nucleus B to the 
nucleusA. Their product in the integral of (1 1) is a maximum 
in the internuclear region, so that just this region of values 
r;R determines the value of the integral. Since we need the 
region rb - 1, we must use the asymptotic form of the Green 
function (16) at r;)r,. We obtain this asymptotic form by 
putting in (17) r,  +r, and r, +r; and using for fzl, (r;) its 
asymptotic form (18). The required asymptotic exp;ession 
for the Green function is then 

where 8, is the angle between the internuclear axis and the 
vector r,. This expression was factorized relative to the var- 
iables rb and r;. When it is substituted in (1 I), we obtain no 
longer an equation but an explicit expression for the wave 
function in the region rb - 1 needed by us (i.e., the solution of 
this equation): 

It is assumed that the projection of the angular momentum 
of the electron in the state pa, is zero. The normalization 
constant D, (R ) in (21) is obtained by joining the function (2 1) 
with the function (12), (13). To this end it is necessary, gener- 
ally speaking, to calculate the sum contained in (21). For 
values of rb inside the core of particle B, this problem is 
practically unsolvable. To determine D, (R ), however, we 
must sum in the region of such large r, , where the core can 
already be neglected and where only the Coulomb part of the 
potential V, remains. In this region the Green function (16) 
should coincide with the pure Coulomb Green function ob- 

tained by Hostler and Prat,15 with an asymptotic form with 
respect to the variable r; 

where F( ...) is a confluent hypergeometric function, while 
M (  ...) and W (  ...) are Whittaker functions. Comparing (22) 
and (20), we obtain the value of the sought sum outside the 
core: 

For a pure Coulomb center Vb, when there is no core, this 
expression is valid in the entire vicinity of particle B. In reac- 
tion (2) this center is the He2+ ion. 

To find D,(R ) in an arbitrary case we must use the 
asymptotic form of (22) with respect to the variable r; and a 
quasiclassical approximation for the function M (...), since 
we must match the result to the quasiclassical function (12), 
(13). We then obtain for the sum in Eq. (21) 

4 2 n,.zo-* ~ I O Z D  PC.=z(,, l , = O  1 (x 1 

where x, is the distance from B along the internuclear axis, 
p' is the distance from the nuclear axis, and 

pb2= (2 1 E I -2Zb/r). 

Substituting (24) in (21) and comaring (21) with (12), (13) we 
obtain ultimately for the wave function 

Q (R,  nio, Zb, Za) =RZnl.(Za-i)-l -4-$1 
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We have used here the previously obtained (1 3) expansion of 
the barrier integral 

In the juncture region, the integral of (13) is written in a form 
similar to the integral in (24). 

For a pure Coulomb perturbing center B we have in 
place of (25) 

Although (25) contains an infinite sum, it is convenient 
for our calculations since the determination of the exchange 
matrix element calls for calculation of the matrix element of 
a one-electron dipole transition from the state (25) to the 
ground state of the ion B. When the matrix element is calcu- 
lated for such a transition, only a finite number of terms 
remain in the sum of (25) in view of the selection rules. 

04. TERM SPLITTING 

We consider the following model for the potential V, of 
the interaction between and electron and an ion with a core 
[C4+in the reaction (2)]: 

vb=-,Zb/rb+C/r2. ' P9) 
The energy levels in this potential are known exactly, and the 
wave functions are expressed in terms of confluent hyper- 
geometric functions.16 The functions f,,, contained in the 
sum (21) are expressed in this case in terms of a Whittaker 
function 

where 

To find C, we choose the B Zb- ', wave function for the 
ground state into which the electron removed from A goes 
over to be equal to the wave function of one of the states in a 
field (29) having the same angular quantum numbers 1 ' and 
m' as the real state. The radial quantum numbers must ap- 
parently be chosen such that the number of zeros of the mod- 
el and real (e.g., Hartree-Fock) wave functions coincide. 

Matching the energy levels of the ground states does not 
guarantee equality of the other levels. However, the descrip- 
tion of the entire spectrum of the particle B Zb - by a single 
model potential (29) ensures the necessary orthogonality of 
the wave functions of the different states of the particle 
B Z b - l  . If the zeros of the model and real wave functions are 
chosen equal in number, the agreement between the real and 
the model spectra will on the whole be best, with the possible 
exception of several model terms that lie considerably lower 
than the real ones. This, however, does not influence strong- 
ly the final result. 

The normalized wave functions q2,(r,) and q2,(r,) of 
the ground states of the ions A Za - ' and B Zb- respectively 
as specified within the framework of the model potential (29) 
in the form 

The excited-state wave functions for the model poten- 
tial (29) are constructed in analogy with those of the excited 
states in a Coulomb field and differ from the latter only in 
that the integer values of the orbital-momentum quantum 
numbers are replaced by fractional values. 

An important property of the two-electron wave func- 
tions @la =  lab (r,)q,,a (r2) and @2, = PI, (r,)q,,,(r,) con- 
structed here is that they are orthogonal. Therefore a non- 
zero contribution to the matrix element (7) is made only by 
the electron-electron interaction r, '. The regions of impor- 
tance for the matrix element (7) are those where r, and r, are 
small and the electron-electron interaction r, ' must be ex- 
panded in reciprocal powers of the large internuclear dis- 
tance R, retaining only the first correlation term 

T,,-*=R-~ (rlr2-3 (r,n) (r2n) ) , n=R/R. (34) 
Next, substituting in (7) the corresponding explicit ex- 

pressions for the wave functions plab ,p1, ,p2,, and q, ,, and 
taking into account only the principal term of the asymptotic 
expansion of H 9 in powers of R -' (i.e., the term stemming 
from m, = m; = 0), we ultimately obtain the following 
expression of the term splitting: 

A E = ~ H ~ '  =DQ (R, nla, Zb, 2.) Q (R ,  nib, Z,, Z d R - 3 ,  (35) 
where 
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(40) 
(*) (* )  

Cl==CI (B l ,  AZ,  nib, Zb, Z.), TI =Tit (nib, nZ4, Z.), 

K ~ ( * ) = K $ )  (nib,  n,,, z,), j:*)=j,!* (nib,  n,,, 2 , ) .  
(41) 

The quantities ("') are Wigner 3 j symbols that appear . . . 
in the matrix elements (38) and (39) as a result of integration 
over the angle variables. The radial integrals J \* 'defined by 
(40) can be calculated analytically with the aid of the tabulat- 
ed integrals of the Whittaker function" 

where ,F,( ...) is a complete hypergeometric function. 
From expressions (35)-(42) for the term splitting, which 

are valid for the nonresonant case, it is easy to obtain an 
expression for the term splitting in the resonant case. To this 
end it suffices to put in (35)-(42) 

Z.=Zb=Z, n,., ,,=nib, ,,, l= l r ,  L=L', A,,2=Bi,, .  (43) 

Let us investigate the results in the limit R>2Za,, n:,,, , 
when it should go over into the asymptotic for the 
case of interaction of a helium atom with an a particle. In 
this particular case C 4  ( s 0 4 ,  1 ,  n,,,, 
= l/Za,, = 1/Z) and (35) takes the form 

or one-half the corresponding result of Ref. 8: a factor 2-'I2 
was lost from Eq. (2) of Ref. 8. 

45. RESULTS OF CROSS-SECTION CALCULATIONS AND 
COMPARISON WITH EXPERIMENT 

In this section we calculate the cross section of the 
charge-transfer reaction (2) at low energies. The time-depen- 
dent equations for the amplitudes of the quantum transitions 
can be written in the two-level approximation16 in the form 

where the total Hamitonian H = Ho + Vand the matrix ele- 
ments are 

v,= 'I.,* ( a ,  r z )  V Y k ( r l ,  r z )  h r ,  d h ,  {i, k}=={a, b } ;  

H,,=Ei+ Vit, Viz=Vzi=Hnb ( R  ( t )  ) . (47) 

The system (46) must be solved under the initial condition 
a,( - oo) = 1, a,( - G O )  = 0. The transition probability is 
then W =  laz( + w)l2. 

The calculations of the exchange interaction H2 for 
reaction (2) with the aid of Eqs. (35)-(40) have shown that the 
2s2 state of the C2+ ion is most effectively populated, so that 
the two-level approximation can be used. The amplitudes A ,  
and B,  in the asymptotic expression (15) f r the respective 

41 wave functions of the He atom and the C2 ion were deter- 
mined by comparing (1  5) with the numerical Har- 
tree-Fock-Clementi wave functionsz0 

A1=2.87, Bi=9.05, n1,=0,744, 

nib=0.533, n2*=0.458. 
(48) 

We assume the collision trajectory to be a straight line: 
R = (pz  + vZt ')'I2, wherep is the impact parameter. 

Figure 1 shows the cross section of the process (2), cal- 
culated by us by numerically solving the system (46) and by 
using the Landau-Zener model (the numerical value of the 
splitting at the term quasicrossing point is AE 
(R, = 3.265) = 0.038. From our calculations, as well as from 
earlier ones,21922 it follows that the increase of the cross sec- 
tion compared with the Landau-Zener value is due to peri- 
pheral collisions, i.e., collisions with an impact parameter p 
close to the interatomic, at which the term crossing takes 
place. For these collisions, the transition probability in- 
creases as a result of interference between two crossing 
points. The range ofp  for which interference is significant 
increases with increasing collision rate, for the transition re- 
gion increases in this case. This is indeed the reason why the 
cross section calculated from the system (46) is considerably 
closer to experiment than the cross section of the Landau- 
Zener model. 

Figure 1 shows also the results of other s t u d i e ~ . ~ " ~ * ~ ~  
The time-dependent problem was solved in Refs. 9 and 10 by 
the method of strong coupling of 11 states. The nuclei were 

FIG. 1.  Curve 1 was obtained by us with the aid of the system (46), 2- 
obtained by us in the Landau-Zener approximation; 3-obtained in Refs. 
8 and 10 by the method of strong coupling of 1 1 states; 4--obtained in Ref. 
1 1  in the Landau-Zener approximation. Experiment: C f r o m  Ref. 23. 
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assumed to move along straight lines. Account was taken in 
the matrix elements of both the radial and the rotational 
coupling. It can be seen from the figure that allowance for 
only two terms yields an oscillating cross section (curve 1). 
Expansion of the basis leads apparently to a smoothing of the 
oscillations (curve 3).  

In Ref. 11 the exchange matrix element was calculated 
under the assumption that the C4+ ion is a Coulomb center, 
and the cross section for the process (2) was calculated by the 
Landau-Zener formula. However, the energy spectra of sys- 
tems with and without cores, as already indicated above, are 
substantially different, while the cross sections calculated by 
the Landau-Zener formula are several times smaller than the 
exact ones. It follows hence that the agreement between the 
theory and the experiment in Ref. 11 is apparently acciden- 
tal. 
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