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The spectrum of the hydrogen atom in weak perpendicular and parallel electric and magnetic 
fields is computed and analyzed with allowance for the diamagnetic interaction. In either case the 
energy spectrum of the highly excited states as a function of the electric field intensity for a fixed 
magnetic field splits up into three qualitatively different regions. A natural explanation of this 
effect is found in a quasiclassical analysis of trinomial recursion relations to whose solution both 
problems can be reduced. The cause of this splitting of the spectrum lies in the restructuring of the 
states, when the relation between the electric- and magnetic-field intensities is changed, as a result 
of the appearance or disappearance of effective potential barriers. Those aspects of the quasiclas- 
sical approximation for the trinomial recursion relations which are necessary for the analysis of 
both problems and which have hitherto not been discussed in the literature are considered. 

1. INTRODUCTION 

Recently there has been an upsurge in interest in the 
problem of the description of the Rydberg states in a weak 
magnetic field. This is due first and foremost to the discovery 
of the exponential decrease of the energy-level splitting at 
the quasicrossing point as the principal quantum number n 
increases. This behavior of the splitting was discovered first 
in a numerical calculation1 and then experimentally.' To ex- 
plain this phenomenon, Zimmerman et a1.l and Delande and 
Gay2 surmised the existence of an approximate hidden sym- 
metry. A consistent description of the approximate symme- 
try and a qualitative explanation of the exponential decrease 
of the splitting are presented in Ref. 3, where it is shown that 
for the hydrogen atom in a weak magnetic field H the varia- 
bles of the Schrodinger equation with terms up to the fourth 
order in H are separable in elliptic cylindrical coordinates on 
a sphere in four-dimensional momentum space. In Ref. 4 an 
analytic expression is obtained for the magnitude ofthe split- 
ting at the quasicrossing point. Other characteristics of the 
spectrum are also considered in Ref. 4; in particular, it is 
found there that the lower energy levels in a multiplet with 
fixed values of n and m (m is the azimuthal quantum number) 
are approximately twofold degenerate in the case when 
n > mfi.  The splitting of these doublets is computed in Ref. 
5. The separation of the variables in momentum space is 
discussed in Refs. 4 and 6. In Refs. 7 and 8 some variants of 
the quasiclassical approximation are considered which are 
equivalent to the one used in Ref. 3. In Refs. 4-7 approxi- 
mate analytic expressions are obtained for the lower and up- 
per energy levels in a given multiplet. 

The presence of a magnetic field qualitatively alters the 
Stark effect for the hydrogen atom. Allowance for the dia- 
magnetic interaction leads to the complete lifting of the de- 
generacy of the energy levels. On the other hand, the states 
corresponding to these levels possess a definite parity; there- 
fore, strictly speaking, the linear Stark effect does not occur 
in a magnetic field. But as Kazantsev eta/.' have noted, for 
the lower energy levels with n > f im ,  which are approxi- 
mately degenerate, the linear Stark effect occurs even in elec- 
tric fields whose strengths are exponentially small in n. 

The spectrum of the hydrogen atom in crossed electric 
F and magnetic H fields has been investigated by different 
authors. This problem was first investigated in first-order 
quasiclas~ical perturbation theory in terms of F and H in 
1923 by Epstein,1° who showed that the problem reduces to 
the quantization of two independent angular momenta. A 
similar procedure was used by Demkov, Monozon and Os- 
trovskii'' for the construction of a first-order quantum per- 
turbation theory. In Ref. 12 it is shown that the second-order 
corrections in F and H can also be obtained in elementary 
form, and their values are given. These results can be rela- 
tively easily obtained in the general case, using in the first 
order the symmetry group 0 (4) (Ref. 1 I), and in the second 
order the dynamical symmetry group 0 (4,2) (Ref. 12), ofhy- 
drogen. Turbiner13 has computed the higher-order correc- 
tions, but only for the ground state. 

In the case of perpendicular fields, the problem is com- 
plicated by the fact that the degeneracy is not completely 
lifted in first-order perturbation theory. As shown in Ref. 12, 
the spectral problem in this case reduces to the eigenvalue 
problem for the generalized Lam6 equation, a problem 
which is not analytically solvable. The case of parallel fields 
is also nontrivial; as shown in Ref. 5, the computation of the 
spectrum amounts to the solution of trinomial recursion re- 
lations (TRR). 

In the present paper we compute and analyze the spec- 
trum of the hydrogen atom in perpendicular (Sec. 4) and 
parallel (Sec. 5) fields. In either case the energy spectrum as a 
function of the electric field intensity splits up into three 
qualitatively different region. A natural explanation of this 
effect is found in a quasiclassical analysis of the TRR to the 
solution of which the two problems can be reduced. The 
cause of this splitting of the spectrum lies in the reconstruc- 
tion of the states when the relation between the electric- and 
magnetic-field intensities is changed, a reconstruction which 
occurs as a result of the appearance or disappearance of ef- 
fective potential barriers. Those aspects of the quasiclassical 
approximation for the TRR which are necessary for the 
analysis of both problems and which have hitherto not been 
discussed in the literature are considered in the third section. 

In the calculation we neglect the relativistic correc- 
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tions, and assume that perturbation theory is applicable. In 
the atomic system of units this leads to the following limita- 
tions on the field intensity values: 

10-4<FizWl. 10-'<Hn3< 1 .  

2. FORMULATION OF THE PROBLEM 

For an arbitrary mutual orientation of the fields F and 
H, the correction to the energy in first-order perturbation 
theory has the f ~ r m ' ~ ~ "  ( f i  = m = e = 1) 

El=oln'+oznf' ,  

n  n - j ,  - j + l . . ,  j j=(n-1) /2 ,  
(1) 

where w, and w, are the moduli of the vectors 

c being the velocity of light. The correct functions $,,,,. of 
the zeroth approximation are eigenfunctions of the opera- 
tors I ,, (I ,, is the component of I ,  along o,) and I,, (I,, is 
the component of I, along o,)": 

I i a ~ n n p n ~ , = n f $ n n r n r p ,  12a$nn*nw=n"$nn,n'r. 

The operators I, and I, are given in terms of the angular- 
momentum operator L and the Runge-Lenz vector A by the 
relations 

I,= ( L + A ) / 2 ,  1z=(L-A) /2 .  

The spectrum described by the expression (1) has an ex- 
tremely simple form, and is a superposition of two equidis- 
tant spectra with frequencies wl and o,, and second-order 
perturbation theory only gives corrections to it, with the ex- 
ception of the case of commensurable frequencies. 

In the case of perpendicular fields (01, = w, = w) the 
first-order correction (1) depends only on the sum 
q = n' + n" of the quantum number n' and n", and the de- 
generacy is not completely lifted. The problem of the lifting 
of the residual degeneracy in second-order perturbation the- 
ory is investigated in Ref. 12, where it is shown that the 
problem of finding the energy spectrum, like the problem of 
the quadratic Zeeman e f f e ~ t , ~  is solved through the separa- 
tion of the variables in elliptic cylindrical coordinates on a 
sphere in four-dimensional momentum space. Introducing 
the notation y = 3ncF/H (O( y < eel ) for the parameter char- 
acterizing the relative strengths of the electric and magnetic 
fields, we can write the expression obtained in Ref. 12 for the 
energy in second-order perturbation theory in the form 

Here E is the eigenvalue of the operator 

i = b  (Iia-12a)2-161ieIze, 

in which 

b=ye- l -2 / (1+yZ) ,  -3<b<w, 

and IiB (i = 1,2) is the component of the operator Ii in 
direction perpendicular to the vector mi, and lying in 

the 
the 

(o,,o,) plane. The eigenvalues of the operator h can be com- 
puted by either separating the variables in elliptic cylindrical 
coordinates,I2 or constructing for this operator a secular 
equation in the basis of hydrogen functions with fixed values 
of n and q. In the basis of the functions $,,,,,. with a fixed 
index sum n' + n" = q!nd varying difference nl-n " = k, the 
matrix of the operator h is tridiagonal. Below, for uniformity 
with the case of parallel fields, we use the second method. In 
this case the p r o b l e ~  of finding the eigenvalues and the vec- 
tors of the operator h reduces to the solution of the TRR 

{ [  (n-q)%-  ( k - i ) z ]  [ (n-tq)2--(k-1)z]  )'"Ck-,+ (bkz-e )Ck 

+ { [ ( n - q ) ~ ( k + 1 ) 2 ]  [(n+q)Z-~k+l)Z])'hCk+2=0, (5) 

where the Ck are the coefficients in the expansion of the 
correct zeroth-order functions in terms of the basis func- 
tions. Depending on the parity of the number n-q-1, the 
index k assumes either even or odd values. 

In the case of parallel fields the angular-momentum 
component L, = m is an exact integral of the motion (the 
fields are oriented along the z axis); therefore, the role of the 
linear-Zeeman-effect-related interaction HL, amounts to a 
trivial correction to the energy, and the character of the 
spectrum is determined by the relation between the diamag- 
netic interaction and the interaction with the electric field. 
We shall use the notation 

p =  12cZF/5nZHZ, O<P<m (6)  
for the parameter determining the relative strengths of these 
interactions. In the basis of the hydrogen wave functions 
t,bnnln2 in the parabolic system of coordinates, the energy cor- 
rection calculation in which the sum n, + n, = n - m - 1 is 
fixed and the difference n, - n, = k is varied also reduces, as 
shown in Ref. 5, to the solution of the TRR 

{ [ ( n - m ) 2 - ( k - l ) z ]  [ ( n + m ) z - ( k - l ) z ] ) ' h C k - 2  

+{[ ( n - m )  ' -  ( k + l ) ' ]  [ ( n f m )  - ( k + l )  ' 1  )'Ck+2=0. (7) 

The index k here also assumes either only even, or only odd, 
values. The energy can be expressed in terms of the eigenval- 
ues E of the TRR (7) as follows: 

We investigate below the solutions to the TRR (5) and 
(7) for the case in which the principal quantum number n is 
large. 

3. POTENTIAL CURVES OF THE TRINOMIAL RECURSION 
RELATIONS 

For large n in Eqs. (5) and (7) the coefficients of the 
unknown Ck are slowly varying functions of the index k. 
This enables us to use in the analysis of the solutions to the 
TRR the discrete analog, worked out in Refs. 5, 14-19, of the 
WKB method. Within the framework of this method, one of 
the present authors (P.A.)" introduced the concept, which 
plays a major role in the discussion below, of potential curves 
of the TRR. In the present section we give the necessary 
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information about the properties of the potential curves of 
TRR, and investigate the typical features of these curves. 

Let us consider the Hermitian TRR 

~kCp,-~+ ( wk-E) Ckfpk+lC~+~O, (9) 

wherep, and w, are slowly varying functions of k that are 
defined for nonintegral values of k as well, and p, > 0. Its 
potential curves are the plots ofI7 

Uk*'wk* 2pk+i, ( lo) 

as functions of k. These functions determine the fundamen- 
tal properties of the spectrum of the TRR (9). Their role is 
most easily elucidated by investigating the classical mechan- 
ics problem corresponding to this TRR, and obtained in the 
limit ti -+ 0. It is not difficult to show that this passage to the 
limit leads to a classical system with one degree of freedom, 
whose Hamiltonian has the form59'9*20 

H (f ,  .6.) = W (f )  +2P (f)  cos 2.6.. (11) 
~ e & g i s  the classical coordinate connected with the discrete 
quantum variable k by the relation { = a; 6 is the classical 
momentum; Wand P are connected with the coefficients of 
the TRR (9) by the relations 

wk=W(hk), pk+,=P(Ak). 
The variable { has different physical meanings in different 
problems. For example, in the TRR (7) the index k is the 
eigenvalue of the operator z, the component of the Runge- 
Lenz vector A; accordingly, { coincides with the classical 
quantity A,.  A Hamiltonian of the form (1 1) plays an impor- 
tant role in classical mechanics (it appears in the construc- 
tion of the equations of motion in perturbation theory in the 
action-angle variables2'). The canonical equations corre- 
sponding to the function (1 1) are easily integrated; their first 
integral can be written in the 

dEldt=2{[U+(f) -El [E-U-(g)])", (12) 

where U* (6) = U ,+ . In atomic units 5 = k and 
U * (k )  = U:. 

In contrast to the usual equation 
dx/dt={2m-I [E-U(x) ] 1'". 

Eq. (12) contains two functions having the meaning of poten- 
tial energy. This deviation from the standard form is due to 
the nonquadratic dependence of the energy on the momen- 
tum 6. Nevertheless, Eq. (12) allows us to analyze qualita- 
tively the character of the motion of the system. In particu- 
lar, from the requirement that the radicand be positive it 
follows that the classically admissible values of { are those 
values for which the following inequalities are simultaneous- 
ly satisfied: 

U+(f)>E, U- ( f )  <E. (1 3) 

The boundaries of the classically admissible region (the turn- 
ing points) are determined by the points of intersection of the 
curves U +({ ) and U -({ )with the lines of constant energy E. 
An important consequence of the inequalities (13) is the fact 
that the energy of a system with a Hamiltonian of the form 
(1 1) is bounded not only from below, but also from above: 

Earnin U- (f) ,  EGmax U+ ( f )  . (14) 

In the quantum formulation of the problem, the in- 

FIG. 1 .  Potential-curve configurations leading to the appearance of oscil- 
lator level series in the spectrum. 

equalities (14) determine the precise limits of the spec- 
t r ~ r n . ' ~ . ' ~  In the quasiclassical approximation the solution 
( C ,  j differs significantly from zero at values of the index k 
lying within the classically admissible region, and attenuate 
exponentially outside this region. The eigenvalues of the 
TRR can be found from the quantization rules, the analogue 
of the Bohr-Sommerfeld formula17 [see the formula (A3) in 
the Appendix]. 

The dynamics of the systems described by Eq. (12) is 
quite unique. We shall describe the properties of its solutions 
corresponding to some typical configurations of the poten- 
tial curves. Below, 6 denotes a small positive number. 

1. Let the function U-({) have a minimum at some 
{ = lo ((Fig. la). Then for E = U -(go) + 6 the solution to Eq. 
(12) will be a harmonic oscillation about go with frequency 

Q= [2 (U-) " (U+-U-)I1" I ,=,,. (15) 

2. Let U +({ ) have a maximum at { = go (Fig. lb). Then 
for E = U + (go) - S the solution to (12) will also be a har- 
monic oscillation about 6, with frequency 

52=[2(-U+)"(U+-U-)]"'Ii=\a (16) 

3. Let the potential curves intersect at the point go: 
U +(lo) = U -(go) = Uo, with (U +)'(U -)' > 0 at the point of 
intersection. Then for E = Uo + 6 [if (U + )' > (U -)' > 0; see 
Fig. lc] or E = Uo - 6 [if (U  -)' < (U  +)' < 0; see Fig. Id] the 
solution to Eq. (12) will be a harmonic oscillation with fre- 
quency 

Q=2[(U+)'(U-)'I", (17) 

between the turning points. 
In the quantum problem there corresponds to all the 

enumerated cases a roughly equidistant spectrum with a lev- 
el spacing equal to ftn. Let us point out that in the cases 2 and 
3 [for (U  -)' < (U  +)' < 01 the equidistant series abuts on the 
upper limit of the energy spectrum, i.e., the oscillator spec- 
trum is "inverted" in comparison with the normal situation. 

4. If the function U - has a maximum at { = l o ,  then the 
period of the motion tends to infinity as E + U -({,): the 
particle "gets stuck" in the region {z{, (Fig. 2a). The same 
sticking occurs when U + has a minimum at { = lo (Fig. 2b) 
and E -+ U +(go). Thus, the maximum of U - and the mini- 
mum of U + are potential-barrier analogues. 

5. The motion has a special character if the potential 
curves intersect at { = lo ,  but the derivatives at the point of 
intersection have different signs (Fig. 3). Then as 
E -+ U +(go) = U -(go) the period tends to infinity as a result 
of the sticking of the point in the vicinity ofgo. This situation 
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FIG. 2. Types of effective potential barriers in a TRR: a) barrier; b) "in- 
verted" barrier. 

is reminiscent of the behavior of a particle in the vicinity of 
the top of a potential barrier, with the difference that we do 
not have here two separated, classically admissible regions. 
We shall call such a singularity of the potential curves a 
quasibarrier; the point of intersection of the potential curves 
is called the top of the quasibarrier. 

The boundedness of the spectrum from above, and the 
appearance of inverted oscillator level series are a conse- 
quence of the nonquadratic dependence of the Hamiltonian 
on the momentum 9. A similar situation occurs in solid-state 
theory, where the nonquadratic dependence of the Hamil- 
tonian on the quasimomentum (an analog of which is 9 )  
leads to the appearance of hole levels. 

4. THE HYDROGEN ATOM IN MUTUALLY PERPENDICULAR 
ELECTRIC AND MAGNETIC FIELDS 

We shall consider the main properties of the spectrum 
of the problem for the particular case in which q = 0; the 
characteristics that arise as a result of the deviation of q from 
zero are discussed at the end of the section. 

For q = 0 the potential functions of the TRR (5) have 
the form 

Uk+-2n2+ ( b - 2 )  k2, Uk-a-2nZ+ (b4-2) ka. (18) 

As the parameter y characterizing the relative strengths of 
the electric and magnetic fields increases, the coefficient b 
increases monotonically from - 3 (F = 0) to + co (H = 0). 
The values y, = (fi - 1) '12~0.64  and y, = (6 + 1)1'2 
~ 1 . 8 5  then turn out to be the preferred values. It is not 
difficult to verify that b (y,) = - 2 and b (y,) = 2, so that the 
functions U, and U ,f are constants at the points y, and y, 
respectively. We divide the whole range of y values into three 
regions: O(y(y,, y, (y(y,, y,(y( co . As will be shown be- 
low, a reconstruction of the spectrum of the problem occurs 
at the points y, and y,. The values y, and y, are again distin- 
guished by the fact that in these cases the problem admits of 
an exact analytical solution. 

We shall not write out the explicit form of the quantiza- 
tion rules, which is obtained through a trivial substitution of 
the functions (18) into the formula (A3) in the Appendix (the 

FIG. 4. The eigenvalues E for the case of perpendicular fields (n = 10, 
q = 0). The hatching indicates the spectral boundaries that follow from 
the inequalities (14). The dots indicate the position of the barrier in the 
interval - 3 < b < - 2, the inverted barrier in the region b > 2, and the 
quasibarrier in the interval - 2 < b < 2. 

integral in the quantization rule then becomes a complete 
elliptic integral). Instead, we shall limit ourselves to a quali- 
tative investigation of the spectrum; we shall also give explic- 
it approximate formulas for the lower and upper levels in a 
multiplet of states with fixed n and q. To illustrate the rela- 
tionships discussed below, we present in Fig. 4 the results of 
a numerical computation of the eigenvalues of the TRR (5) 
for n = 10 and q = 0. 

a) O(y(y,. In this range of y values the spectrum is 
qualitatively similar to the case of the purely diamagnetic 
splitting (y = 0). Since here - 3(b( - 2, the potential 
curves are parabolas that are open underneath (Fig. 5a). The 
limits of the energy spectrum are given by the inequalities 

min Uk-=bn2<e<max Uk+=2n2. 

The nature of the spectrum in this region is determined by 
the potential barrier (the maximum of the function U;) 
present. The presence of the barrier leads to the splitting of 
the energy spectrum into two regions: the region below and 
the region above the top of the barrier max U; = - 2n2. 
There exist two symmetric classically admissible regions of 
motion for bn2<&< - 2n2 and one such region for 
- 2n2 < E < 2n2. 

In the region bn2 < E < - 2n2 the spectrum in the WKB 
approximation is twofold degenerate, with the lower levels 
given by the approximate expression (N = 0,1,2, ...) 

eN= bn2+ (Nf l / , )  4n (b2-4)  '"+ ( N S i l Z )  '4b. (19) 
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-2<b<2 ,andc ) forb>2 .  
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The coefficient attached to N + 1/2 coincides with the fre- 
quency of the classical harmonic oscillations [see the for- 
mula (17) in the case 3 in the preceding section]; the term 
quadratic in N + 1/2, which takes account of the anharmon- 
icity, can be obtained from the formulas of Ref. 19. The de- 
generate levels split up when allowance is made for the tun- 
neling. For large n the magnitude of the splitting is 
exponentially small, and can be computed in the same way as 
is done in zero electric field.5 

The energy levels in the region [ - 2n2,2n2] lie above the 
top of the barrier, and are nondegenerate. The upper levels 
form an approximately equidistant series described by the 
formula (N'  = 0,1,2, ...) 

enr1=2ne- ( N f +  I/ ,)  4 n  (2- b )  "- ( N f +  I/,) ( ' / , b - 3 ) .  (20) 
Let us emphasize that the quantum number N '  numbers the 
energy levels, starting from the top level. 

The ratio of the number of lower (doublet) levels to the 
number of upper (singlet) levels depends on y. As y increases, 
the number of singlet states increases [according to the quan- 
tization rule (A3), it is equal to (2n/?~)arcsin(2/(2 - b )'I2)]. 
The increase of the number of singlet levels occurs as a result 
of the fact that the lower twofold degenerate levels intersect 
in turn the top of the barrier, splitting up and producing in 
the process two roughly equidistant levels of the upper 
group. This situation is illustrated in Fig. 4, in which the 
dotted line indicates the position of the top of the potential 
barrier. At y = y, the barrier disappears, which leads to the 
disappearance of the twofold degenerate levels. 

b) y,<y<y2. In this region - 2<b<2. The potential 
curves circumscribe in the (U, k ) plane a convex figure (Fig. 
5b), and the spectrum of the TRR lies in the interval 

min U ~ - = - 2 n ~ < s G m a x  Uk+=2n2. 

In contrast to the case a), here there is no potential bar- 
rier and no doublet levels occur. On the other hand, there is 
in this region of y a singularity, called a quasibarrier in Sec. 3 
(case 5). In Fig. 4 the position of the top of the quasibarrier 
(actually, of two quasibarriers-left and right) is indicated 
by the dots. As can be seen from the figure, it is the locus of 
the points of inflection for the eigenvalues. This is explained 
by the fact that at energies close to the top of the quasibar- 
rier, the system gets stuck in the quasibarriers at k z  + n (see 
Sec. 3), and the mean value of the quantity k attains its 
maximum. Using the Gell-Mann-Feynman theorem for the 
eigenvalues of the operator (de/db = k), we find that at 
the moment of intersection of the quasibarrier d 2 ~ / d  'b = 0, 
which corresponds to a point of inflection. Here, as in the 
case a), we can obtain an approximate expression for the 
lower levels (N = 0,1,2, ...) 

For the upper levels the approximation (20) remains valid. 
c) y > y2. This region corresponds to weak magnetic and 

relatively strong electric fields. The potential curves are pa- 
rabolas that are open at the top (Fig. 5c), and the eigenvalue 
spectrum lies in the interval 

min Uh-=--2n2Ge<max U,+=bn2. 
As in the case a), this interval splits up into two. For 

we have a single classically admissible region; accordingly, 
the spectrum of the problem is nondegenerate in this region, 
and the lower levels are given by the approximate formula 
(21). For 2n2e<bn2  there exist two symmetric classically 
allowed regions separated by an inverted potential barrier 
(see Sec. 3 and Fig. 2b). As a result, the energy levels in the 
WKB approximation turn out to be twofold degenerate. For 
the upper levels we can derive the approximate expression 
(N'  = 0,1,2, ...) 

e N r =  bn2- (N'+' /2)  4n ( b Z - 4 )  ' I2+ (N'+' /2)  24b. (22) 

The upper energy levels split up when the tunneling is 
taken into account. An unusual situation arises here: be- 
cause of the fact that the barrier in this case is inverted, the 
splitting of the doublet levels increases as the energy de- 
creases. The possibility of such behavior of the level splitting 
has, as far as we know, not been discussed in the literature. 

It follows from the quantization rule (A3) that the num- 
ber of lower singlet levels is equal to (2n/a)arcsin[2/ 
(2 + b )'I2], and decreases as y increases. Thus, we have in 
this case a pattern that is the inverse of the one found in the 
case a): as y increases, the levels of the lower group go up to 
the vertex of the inverted barrier in pairs, and, merging, form 
a doublet level belonging to the upper group. The vertex of 
the barrier is the boundary at which the twofold degenerate 
levels are formed. This can be clearly seen in Fig. 4, in which 
the position of the barrier vertex is indicated by dots. 

In the limit as y + a, we go over to the purely Stark 
splitting; the lower group of nondegenerate levels disap- 
pears, and we have strictly twofold degeneracy. The formula 
(22) with allowance for the relation (2) leads in the limit to the 
exact result for the quadratic Stark effect. 

For q#O the potential functions of the TRR (5) have the 
more complicated form 

U,*=bkZ*2 ([ ( n + q )  2-k2] [ n - q )  2-k2]  ) I h .  (23) 

As in the q = 0 case, we can distinguish three regions of 
values of the parameter b in which the spectrum has different 
characters. Let us introduce the notation 

p=2 (n2+qa)  / (n2-qz) . 

Then for - 3 < b < - p the lower levels will be roughly two- 
fold degenerate; for - p < b <p all the levels will be nonde- 
generate; and forb > p  the upper levels turn out to be rough- 
ly twofold degenerate. As q increases, the intervals where 
some of the levels have the doublet structure shorten. When 
q > n / 6  the interval in which the lower levels are degener- 
ate disappears. 

It is not difficult to verify that Eq. (5) is invariant under 
the substitution b - - 6, Ck + ( - l)k'2 Ck , and E + - E. 

There follows from this the symmetry property (t is the 
eigenvalue number and p = n - q is the number of energy 
levels with given n and q) 

( b ) = - e p - * ( - b ) ,  (24) 
i.e., the level pattern is symmetric about the point E = 0, 
b = 0 (see Fig. 4). 

In the border cases y = y1 and y = y2 (b = f 2) we can 
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derive exact expressions for the energy levels and the wave 
functions. To do this we must take account of the following 
circumstance, which is pointed out in Ref. 12. In the opera- 
tor (3) the components of the operators 1, and I, are taken in 
different coordinate systems, but since they commute with 
each-other, the eigenvalues of the operators Q = I ,, + I,, 
and h are as they would be if the components were computed 
in one and the same coordinate system. The operator Q is, in 
this sense, equivalent to the operator L, , while the nontrivial 
part of the operator h for y = y, is equivalent to L 2. The 
exact eigenvalues E in this case are equal to 
(L = O,l, ..., n - q - 1) 

e=2 [ 2 L ( L f  1) -q2-n2+1]. (25) 

For y = y2 (b = 2) the eigenvalues E are obtained from (25) 
with the aid of the symmetry property (24). The case b = 2 
differs from the b = - 2 case by the fact that the quantum 
number L numbers the levels not from the bottom up, but 
from the top down. 

5. PARALLEL ELECTRIC AND MAGNETIC FIELDS 

Let us begin the analysis with the case when the magnet- 
ic quantum number m is equal to zero. Then the potential 
functions of the TRR (7) have the form 

Uk*=3n2-3k2*2 (n2-k2) +10npk. (26) 

The parameter P =  12c2F/5n2H characterizes the relative 
electric- and magnetic-field strengths. The value P = 0 cor- 
responds to the case of purely diamagnetic splitting. In this 
case, because of the presence in the k representation of two 
symmetric potential wells, the lower levels are roughly two- 
fold degenerate, and the eigenfunctions possess definite par- 
ityS5 The application of an electric field breaks the symmetry 
of the potential curves. As a result, even in very weak electric 
fields (whose contributions to the energy are comparable to 
the exponentially small-in n-tunneling splitting of the 
doublets), the doublet states possessing definite parity are 
replaced by a pair of states, one localized in the left and the 
other in the right potential well. Therefore, for the lower 
levels the linear Stark effect occurs even in fields of exponen- 
tially small-in n-intensities. 

FIG. 7. The mean value of the z coordinate of the electron in the case of 
parallel fields for the lowest nine energy levels with n = 20 and m = 0. 

For the upper levels that are nondegenerate whenp = 0 
the quadratic Stark effect occurs at small P values; as fl in- 
creases, the electric-field dependence of the energy of these 
levels also becomes linear. 

The results of this section are illustrated with a numeri- 
cal computation of the eigenvalues of the TRR (7) as func- 
tions o f p  for n = 20, m = 0 (see Fig. 6). The mean value of 
the electron'sz coordinate was computed at the same time as 
functions o f p  in the stationary states of the system (Fig. 7); 
this quantity coincides to within algebraic sign with the di- 
pole moment 3, of the perturbed atom. 

We should, depending on the relative field strengths, 
distinguish three cases5: 0 </? < 1/5, 1/5 < P  < 1, and P >  1. 

a) For 0 < p  < 1/5 there exists a potential barrier formed 
by the maximum of the function U, (Fig. 8a). Accordingly, 
we can distinguish three groups of levels (I, 11, 111), to which 
correspond the states localized in the regions I, 11, and I11 in 
Fig. 8a. 

The first group of levels is located in the energy interval 

min Uk-=-10n2fl<e<max Uk-=nZ(1+25i3'). (27) 

The states of this group are localized in k space to the left of 
the potential barrier, mostly in the region of negative k.  
Since the TRR (7) was derived in a parabolic basis, with 

FIG. 6. The eigmvalues E in the case of parallel fields for the lowest fifteen 
energy levels with n = 20 and m = 0. The dots indicate the position of the FIG. 8. The potential curves of the TRR (7): a) for 0 </3< 1/5, b) for 1/ 
top of the barrier that becomes a quasibarrier when /3> 0.2. 5 < 8 <  1, andc)fora> 1. 
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k = n, - n,, the group-I states have a positive dipole mo- 
ment. On the eigenvalue curve, to these states correspond 
the levels that slope downwards as fl increases, and lie below 
the potential-barrier top (the position of which is indicated 
by dots in Fig. 6). 

The lower levels of group I are given by the approximate 
formula (N = 0, 1, ...) 

The coefficient attached to N + 4 coincides with the classical 
harmonic frequency1' (17). The dipole moment of the lower 
states is close to the highest possible value of 3/2n(n - I), 
and is almost field-independent even for very small 0 values 
(see Fig. 7, in which the lower lines, which are almost parallel 
to the abscissa axis, correspond to these states). This evident- 
ly corresponds to the linear Stark effect. 

The second group of levels lies in the energy region 

The states of this group are localized in k space to the right of 
the potential barrier, which corresponds to a negative dipole 
moment. In Fig. 6 the levels of this group lie below the vertex 
of the potential barrier, and slope upwards; in the f curve 
(Fig. 7) they correspond to the upper lines that are almost 
parallel to the abscissa axis. The formula for the lower levels 
of group I1 are given by (28) with P replaced by - P. 

The third group of energy levels lies above the potential 
barrier in the interval 

max Uk-<e<max Uk+=5nZ(1+gZ). 

Here we have the only classically admissible region, which, 
for small p, is almost symmetric about the point k = 0; this 
indicates that the group-I11 states have a relatively small 
dipole moment. For6  = 0 these levels are nondegenerate, so 
that the quadratic Stark effect obtains in their case. 

The upper group-I11 levels are approximately equidis- 
tant, and are given by the formula (N' = 0,1,2, ...) 

We can, using (29) and (8) and the relation = - dE /dF, 
find the dipole moment of the upper states. In this case the 
dipole moment turns out to be proportional to F, which cor- 
responds to the quadratic Stark effect. For the highest state, 
which is localized in the vicinity of the maximum of the U ,+ 
curve with k = k ,+ = nP, the dipole moment can be esti- 
mated directly from the relation 

The relative number of levels in each group depends on 
the electric-field strength. For P = 0 we have 

(2nln) arcsin (2/1'5) =0,7n 
levels in group I11 and 0.15n doublet levels. Following the 
switching on of the electric field, each doubly degenerate 

level produces one group-I level and one group-I1 level. As 
the field intensity increases, the number of group-I levels 
increases, while the numbers of group-I1 and group-I11 lev- 
els decrease. Using the quantization rule (A3), we can show 
that - 

where NY, N F ,  and NKi are the numbers of levels in 
groups I, 11, and 111. 

It follows from the formulas (30) that, as the electric- 
field intensity increases, there occurs 

1) an "overflow" of states from group I1 into group I at a 
constant-in P-rate of n 6 / 2 ;  

2) an "outflow" of states from group I11 into groups I 
and I1 at equal rates. This effect is noticeable only whenp is 
close to 1/5. 

As can be seen from Fig. 6, the transformation of group- 
I1 states into group-I states is realized in the vicinity of the 
vertex of the potential barrier. A group-I1 level sloping up- 
wards undergoes here a quasicrossing with a lower group-I11 
level, being "reflected" from it. After this the dipole moment 
of the group-I1 state changes sign, and the term begins to 
slope downwards, which is a result of the transformation of 
the level into a group-I level. Successive reflections from a 
lower group-I11 level of levels that go from the right well 
into the left well leads to a situation in which this level be- 
haves nonmonotonically, and its dipole moment oscillates 
sharply (the curve a in Figs. 6 and 7). 

Figure 6 shows, besides the above-mentioned quasi- 
crossings, numerous narrow quasicrossings of the group-I 
and group-I1 levels. They are similar to the well-studied qua- 
sicrossings in the problem with two nonsymmetric potential 
wells when the parameters of the Hamiltonian are ~ a r i e d . ~ '  
In the quasicrossing region the wave functions of the pair of 
states go over into each other. This is accompanied by a prac- 
tically abrupt exchange of dipole-moment values between 
these states (the vertical lines in Fig. 7). 

The locations of the quasicrossing points of the group-I 
and group-I1 levels can be found analytically with the aid of 
the formulas of the discrete WKB method. Let us consider 
the difference NI-N,, (where N,  and N,, are the quantum 
numbers of the levels participating in a given quasicrossing). 
Let us express the N, and N,, in this difference in terms of 
the integrals of the quantization rules (A3). Then this differ- 
ence can be computed analytically in terms of the residue of 
the integrand at infinity. As a result, we obtain the quasi- 
crossing condition 

1 / 3 p n = ~ , , - ~ , = ~ N ,  (31) 

where AN is a whole number. It is remarkable that all the 
group-I1 levels undergo, according to (3 I), quasicrossing at 
the same time.3' 
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b) The region 1/5 < P  < 1. Forp> 1/5, there is no poten- 
tial barrier, and there is a single classically admissible region 
at all energies. In this case, however, there exists a singular- 
ity, called in Sec. 3 a quasibarrier [the intersection of the 
potential curves U 2 and U, in the case when the deriva- 
tives (U ,t )' and (U, )' have different signs at the intersec- 
tion point k = n]; see the plot in Fig. 8b. The position of the 
top of the quasibarrier for j l> 1/5 is indicated in Fig. 6 by 
dots (when fl = 1/5, the potential barrier undergoes a con- 
tinuous transformation into a quasibarrier). 

Of the three groups of levels that occur when P <  1/5, 
only group I (the lower levels lying below the quasibarrier) 
remain here; the group I11 (the upper levels lying above the 
quasibarrier) remain here; the group I1 disappears. As the 
electric-field intensity is increased, the levels go over one by 
one from the upper into the lower group. During the cross- 
ing of the quasibarrier, the dipole moment of the states at- 
tains its minimum value (correspondingly, the quantity Z has 
its maximum value). From the classical standpoint this is 
explained by the fact that the system gets stuck for a long 
time in the vicinity of the quasibarrier at k z n  (i.e., at the 
maximum value of the Runge-Lenz-vectorz component that 
determines the dipole moment of the state). It follows from 
the minimality of & that the quasibarrier is the locus of the 
points of inflection of the energy levels, since here 

a2E/dF2=-ad,ldF=O. 

For the upper and lower levels we respectively have as 
before the approximate formulas (29) and (28). 

c) The regionfi > 1. In this case the diamagnetic interac- 
tion can be considered to be weak in comparison with the 
interaction with the electric field. Both of the potential 
curves are monotonic (Fig. 8c), and there is no quasibarrier. 
Consequently, there are no group-I11 levels; the energy lev- 
els and the dipole moment of the stationary states vary mon- 
otonically a s p  increases, and tend, as B + w , to values cor- 
responding to the linear Stark effect. The lower levels are 
given by the formula (28); the upper levels, by the formula 
( N '  = O,l, ...) 

As /3 + w (i.e., as H + O), the formulas (28) and (32) with 
allowance for the relation (8) go over into the same expres- 
sion for the linear Stark splitting, an expression which coin- 
cides with the exact formula. 

Form #O the behavior of the levels is qualitatively simi- 
lar to the behavior investigated above. It should only be em- 
phasized that, for m > n/fi ,  the second group of levels does 
not occur at all values of & as a result, only the quadratic 
Stark effect is observed in weak electric fields, and none of 
the quasicrossings given by the formula (3 1) occurs. 

6. CONCLUSION 

In the present paper we have investigated practically all 
the nontrivial situations where allowance must be made for 

the diamagnetic interaction in the determination of the cor- 
rect functions of the zeroth approximation. The case of par- 
allel fields considered in the preceding section in fact in- 
cludes the variant in which the diamagnetic interaction and 
the interaction with the electric field have the same order of 
magnitude and the alignment of the fields is arbitrary. In this 
case only that component of the electric field which is direct- 
ed along the magnetic field should be taken into considera- 
tion. This is due to the fact that there remains, after taking 
the interaction H L into account, the degeneracy in the 
subspace of the hydrogen wave functions with a fixed value 
of m, a subspace in which all the matrix elements of the 
electric-field component perpendicular to H are equal to 
zero. 

Let us point out two mathematically equivalent prob- 
lems in which a special variant of the problem of the hydro- 
gen atom in perpendicular fields arises. In collision theory 
the effect of an incoming heavy particle on the hydrogen 
atom reduces in certain cases to the effect of a uniform elec- 
tric field oriented along the axis joining the heavy particle 
and the nucleus of the hydrogen atom (the internuclear axis). 
On going over to the coordinate system rotating with the 
internuclear axis, there appears, according to the Larmor 
theorem, an effective magnetic field oriented perpendicular- 
ly to the collision plane, but with no diamagnetic interaction 
occurring. We encounter the same Hamiltonian in the prob- 
lem of the computation of the quasienergies of the hydrogen 
atom in the field of a circularly polarized wave.24 The ab- 
sence of the diamagnetic interaction gives rise to insignifi- 
cant changes, and the expressi~n for the energy in terms of 
the eigenvalues of the operator h in this case is derived in Ref. 
12. The results obtained in Sec. 4 above are valid for both 
problems; only the dependence of the parameter b on the 
field intensities and the range of b values change: 
b = 4 ( 1 + 9 ) , 4 < b < w .  

The spectra of the Rydberg states in perpendicular 
fields can be used in astrophysical- and thermonuclear-plas- 
ma diagnostics. Here there arises (in the coordinate system 
fixed to the atom), as a result of the motion of the Rydberg 
atom in the magnetic field, an electric field perpendicular to 
H, and proportional to the velocity v of the atom.25 The pres- 
ence of the electric field leads to a spectral modification, by 
interpreting which we can, in principle, determine the veloc- 
ity v and, after that, the temperature of the plasma. The re- 
sults of the present paper are especially important in the 
q = 0 case, where the first-order correction obtained in Refs. 
10 and 11 vanish. The detailed analysis of the possibility of 
using such a diagnostics procedure constitutes a separate 
problem, and requires the consideration of all the processes 
leading to the distortion of the spectra (the collisional broad- 
ening of the lines, the Doppler effect, etc.) under the specific 
conditions in question. 

The authors thank A. P. Kazantsev and V. L. Pok- 
rovskiy for useful discussions. 

APPENDIX 

The solutions to the TRR (9) split up into two classes: in 
one of them only the elements C, with even indices k are 
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nonzero; in the other, only those with odd indices. Let us 
introduce the number 

= I ( even k), 
Y = O  ( odd k), 

Let us also introduce the following function of the variable k 
and the energy E: 

In this notation the quantization rule found in Ref. 17 for the 
eigenvalues of the TRR (9) has the form 

Here N is an integral quantum number; the integral is taken 
over the classically admissible region between the turning 
points kt, and kt2, the roots of the equations e = U z  or 
E =  U;. 

According to (A2), B, = f 1 at the ends of the integra- 
tion interval. From this it follows that, in the left member of 
the formula (A3), the contribution proportional to v  is equal 
to * v ~ / 2  in the case when one turning point lies on the U ,f 
curve and the other lies on the U; one, and zero in the case 
when both of the turning points lie on one and the same 
potential curve. Consequently, it is only in the first of these 
cases that the quantization rules for the solutions with even 
and odd indices are different. 

"The first two terms in (28) coincide with the formula (34) in Ref. 22. 
''Such quasicrossings in problems with a discrete independent variable are 
considered in Refs. 16 and 18. 

3'Precisely the same situation is observed for the quasienergies of an an- 
harmonic oscillator with a quadratic anharmonicity, excited by an exter- 
nal resonance force (here the quasicrossings occur when the detuning is 
varied). Apparently, this result has hitherto not been noted, notwith- 
standing the numerous investigations that have been carried out (see 
Refs. 16, 17, 20,21, and 23 and the references cited therein). 
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