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The interference effect of amplification of backscattering in propagation of waves in randomly 
inhomogeneous media is considered. The connection between this effect and the symmetry rela- 
tive to time reversal is discussed. It is shown that actions that violate this symmetry (random 
motion of the inhomogeneities and gyrotropy of the medium due to an external magnetic field) 
suppress the effect. 

1. INTRODUCTION 

The character of the propagation of waves of any kind 
in media with random refractive-index inhomogeneities is 
determined by the ratio of the wavelength /Z to the radiation 
mean free path I .  As a rule, in light scattering A / I (  1. In the 
zeroth approximation in this parameter, the transport of the 
wave-field energy is determined by an intensity-transport 
equation in which interference effects are negle~ted.'-~ In 
this approximation one can calculate the correlation func- 
tion of the field at any point of space; in particular, the cross 
section can be obtained for the scattering by an arbitrary 
volume that contains inhomogeneities. 

The form of the principal interference correction to the 
correlation function of a field in the case of scattering by 
stationary inhomogeneities is also The corre- 
sponding correction to the cross section is highly anisotropic 
and differs noticeably from zero only for directions close to 
Ibackscattering. Although the interference correction to the 
total cross section is indeed small in the parameter A /I, the 
correction for the backscattering direction is of the order of 
the differential cross section itself. 

The cause of so strong an interference effect is the fol- 
lowing. The derivation of the transport equation includes 
incoherent addition of the intensities of waves subject to var- 
ious multiple scattering processes. The phase relations 
between them are not taken into account because the inho- 
mogeneities are randomly distributed. If, however, symme- 
try with respect to time reversal obtains in the medium, a 
wave successively scattered by certain inhomogeneities, and 
a wave scattered by the same inhomogeneities but passing 
through them in a reverse sequence, have the same phase."8 
An important role in backscattering is played by the interfer- 
ence between these waves. The presence of amplification of 
the backscattering is not connected with the statistics of the 
inhomogeneities, but is determined only by the symmetry 
properties of the medium with respect to time reversal. It is 
clear therefore that all the actions that violate this symmetry 
will suppress this effect. 

In scattering by nonstationary inhomogeneities, the 
phases of these waves are no longer equal, inasmuch as the 
forward and backward waves pass through the same inho- 
mogeneities at different instants of time. The result is total or 
partial suppression of the effect. In Refs. 9 and 10 were con- 
sidered coherent effects in backscattering of sound by bodies 
located near a choppy sea surface under conditions when 

single scattering by the surface and the scatterer is substan- 
tial. 

The present paper deals with the effect of random mo- 
tion of refractive-index inhomogeneities of a medium, and of 
the gyrotropy produced in the medium by an external mag- 
netic field via the Faraday effect, on interference effects in 
multiple scattering. The scattering cross section as a func- 
tion of these factors is calculated. 

2. EFFECT OF MOTION OF THE INHOMOGENEITIES ON THE 
BACKSCATTERING AMPLIFICATION 

We assume that the refractive-index inhomogeneities 
are produced by pointlike (with characteristic dimensions 
a 4  ) impurities that move perfectly independently, since 
backscattering is stronger in the case of small-scale inhomo- 
geneities. (In the case of large-scale refractive-index inhomo- 
geneities the analysis is similar to that used in Ref. 1 1 to solve 
the physically related problem of the effectiveness of wave- 
front reversal.) 

When light propagates in such a medium, the radiation 
becomes depolarized rapidly (over distances on the order of 
the mean free path). We consider therefore the influence of 
the impurity motion on interference effects in the scattering 
of scalar waves. 

The wave field u satisfies in this model the equation 

1 a2 
cZ d t Z  (eu) -V2u=4nj, 

s (rt) =E(rt) (1) 
*=I 

wherej(r, ) is the density of the radiation sources, r, (t ) are the 
impurity coordinates, and .simp is the dielectric constant of 
the impurities. It is possible to average the values of the re- 
tarded Green function (GR ) of Eq. (1) over the realizations 
(r, ( t  ) ]  of the random motion of the impurities by using the 
usual impurity diagram technique.'g3 To this end we calcu- 
late first the correlator 

K (r-r', t-t') =(€(rt) ?? (r't') ), 

which corresponds to the dashed lines on the diagrams for 
(GR ). In the principal approximation in the scatterer den- 
sity we have for the Fourier component of the correlator 
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dr dr' X-z 6 (r-ra (t) ) 8 (r'-rap (0) ) ) v 
(I a '  

v (exp {iq (r. (t) -r. (0) 1) 

where ( . . . ), denotes averaging over the realizations 
[r, (t ) ]  , and Vis the volume of the system. 

Assume that the impurities are Brownian particles 
moved by random impacts with the molecules of the medi- 
um. The intensity of the collisions of the impurities with the 
molecules of the medium is characterized by the impurity 
free path time rimp. If the time t in (2) is much shorter than 
rimp, the impurities can be regarded as moving uniformly 
with velocities v, and the averaging in (2) reduces to averag- 
ing over the impurity velocities. In a thermodynamic equi- 
librium state, the distribution of the impurity velocities is 
Maxwellian and we obtain ultimately 

FIG. I 

In Eq. (4) the mean free path I (w) of a wave of frequency w 
does not depend on the characteristics of the motion and is 
determined only by the density of the scatterers and by the 
cross section for scattering of a single impurity, as is obvious 
from geometric considerations. We assume hereafter that 
the impurities move with an average velocity ( v ~ ) ' ' ~ ~ c .  
Then the change of frequency on scattering by moving im- 
purities will be small: 

I&impI2 and we can consider the propagation of almost monochro- 
K(q, t) = (exp (iqvat) ).=nl cimp 12(exp (iqv.t) ). matic wave packets with a freauencv close to some value 

a 
w, = ck, and with I (a) 1 (ck,) = 1. 

wheren = N/Vis the scatterer density and ( . . . ), denotes 
averaging over the velocities v, . 

In the opposite case t)rimp each impurity is subjected 
within the time t to a large number of collisions, and the 
quantity r, (t )-r, (0) is a sum of a large number of indepen- 
dent random quantities. Its distribution is thus Gaussian 
and averaging in (2) yields 

K(q, t)=nl~~~~l~<exp{iq(r~(t)-r~(O)))) 

. , , -, 

To study the transport of the wave-field energy we must 
average the field correlation function 

Z(Rt, pz) =<u (R+p/2, f+r/2) u (R-p/2, t-z/2) ) 

over the realizations of the random process Ira (t )] .  The 
Fourier component of this correlation function with respect 
to the difference variable I (Rt, kw) has the meaning of the 
energy density of a field with frequency w and wave vector k 
at a point (R, t ). To find this value we must average, over the 
realizations { r, (t ) ]  , the product of two Green's functions, 
retarded GR and advanced GA , with GA (XX I )  = GR (X 'X ). In 
the principal approximation in il /I this mean value is repre- 
sented by the sum of the ladder diagrams of Fig. 2. Trans- 
forming in the function 

x 
where Dimp = (1/3)(v2)rimP is the impurity diffusion coeffi- 
cient. 

Thus, 

K(q,t)=nleim~Iz/(q,t)=nie~m~ lzeXp (-$(v2)~') 9 which corresponds to one link of the diagrams of Fig. 2, to 
the Fraunhofer approximation1* in the usual manner and 

I tl <%imp, taking the Fourier transform with respect to the difference 
variable, we obtain an equation for the sum of the ladder 
diagrams (without the four-point Green functions) in the 

K(q,t)=nla~mpIaf(q,t)=nl~imp12exp(-~~vz~ltlzimp 6 ) , form 

R+% ~ $ 7 ~  
Just as in the case of scattering by stationary inhomo- I - I 

geneities, diagrams with intersecting dashed lines in the ex- + I 
pansion of (GR ) are small, in the parameter il /I, compared I I 

I + 
I 

I with diagrams without  intersection^.^ Therefore (GR ) satis- R-5/2 Rei7$ 

fies in the principal approximation the equation of Fig. 1, 
whose solution takes at wl (a)& the form FIG. 2 
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FIG. 3 

where 

which satisfies an equation of the ladder type 
The scheme for writing the arguments of the four-point dia- 
grams is explained in Fig. 2. 

1 
C, (Rs, R's') = - Sf. (ko (s-sd ) 

Equation (5) is the transport equation in integral form 4n1 

and has a simple physical meaning: F:(R*s, Rf*s') is the X F ~ ~ ~ - ~ ~  ( h i ,  ~ i ~ i ' )  { ~ a - e ~ , ~ - e ~  ( ~ i s i ' ,  Rfsr) 
Green function of the transport operator without allowance 
for scattering, and the quantity 

fa (ko (5-8') ) /4nl 
, . 

is equal to the cross section for unit-volume scattering with- 
out change of the frequency E. The function [The free term in (9) has a different form because it is now 

necessary to sum the diagrams starting with those having 
a& 

Lo (Rs, R'sr) = J- L.. (Rs, R's') two dashed lines.] Let us examine the large-scale behavior of 
2n the solution (9) in the diffusion approximation. Introducing 

describes the transport of the radiation intensity of all the the new variables 

frequencies and satisfies the equation u=' /~(E+o),  @=e-a 

1 
L. (RR') -- - 6 (R-R') + - I Fa0 (R-Ri) LO (Rt, R') dRi, and putting 

4nl 4nl d~ ds, 
(6)  Cap (Rs, R's') = If. ( k ~  (s-si) )Ca-.., ( f i t ,  Rfs')- 

2n 
(10) 

i.e., the transport equation for isotropic immobile scatterers; 
in this case L, (R.s, R1.s') does not depend on the directions We reduce Eq. ( 9 ) 9  it the Operator 

of s and st. [1-2i.sa+l (sVR)], 
A solution of (6) can be easily obtained in the diffusion 

regime I R - R' I )I, wc4l for the case of an infinite scattering to the form 

medium. In this case L, (R.R1) depends only on R-R' and the [ I-2i$a+l (sVR) ]Cap (Rs, R's') 
Fourier component of the solution (after subtracting 1 / 4 ~ l ,  
i.e., the values of L, (q) in the single-scattering approxima- 

= 
6 (R-R') 

tion) takes the form fa+e/s(ko (s-sf) ) 
4nl 

(11) 

where D = Z2/3c is the radiation diffusion coefficient and In the diffusion regime %(R.S, R'.sl) depends little on the 
r = I /C is the free path time. The solution is of this form directions of s and s'. To obtain an equation for the direction- 
because in a medium without true absorption the intensities independent part of this function we integrate (1 1) with re- 
of all the particles are preserved upon scattering. spect to ds1/4r and substitute in it the expansion 

To determine the principal interference correction to ds' 
the correlation function of the field it is necessary to sum the Jc., (Rs, Rfs')- =CGe (RR') +3 (sJae (RR') ) . 

4n 
diagrams of first order of smallness in the parameter A /I. 
These are the so-called fan diagrams, which contain a maxi- the and first 'pherical and 
mum number of dashed-line intersectionss (Fig. 3). The sum Ja~(R'R')7 we obtain 

of such diagrams 

v8@ (Rr, R'r') 

can be expressed in terms of a new unknown function C (Ref. 
13) 

(12) 
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where 

( x )  x 1 - ) ,  (2/3k02<~Z))+" 

where CsB is the Fourier transform of cap with respect to 
the variable a, and 

ds ' 
f ~ =  Jz f ( k o  (a-a'), t) 

' (5) , ItI=-,, (13) 

The parameter T, characterizes the intensity of the impurity 
motion and has the meaning of the time during which the 
impurity is displaced a distance -A at rA (7imp (in the oppo- 
site case, at TA )rimp, the impurity is displaced a distance -A 
after a time T, Wimp). 

In the case of an infinite scattering medium, Eq. (12) is 
transformed into an ordinary differential equation for the 
Fourier component of the function c. Solving this equation 
for the quantity of greatest interest to us 

- < - 

we obtain, taking (10) into account, 

-t , I t l ~ ~ , , ~  

It can be seen from (14) that as T,+W we have 
C, (q) = L, (q) and the equivalence of fan and ladder dia- 
grams, which takes place in the stationary case,5 is restored. 
The impurity motion does not affect L, (q), but decreases 
C, (q). At sufficiently large 7, , such that the impurities are 
displaced a distance -A within a time much longer than T, 
we obtain 

\ -t t 
C 

m 

C. (q) = J exp [ ( io -h i )  t- - at, zr2z<zimp8, TKZA, 

where 

Thus, the contribution to C from scattering processes of 
longer duration than the time of phase-coherence loss of the 
forward and backward wave, T, ST, is suppressed. 

The meaning of the result is the following: the functions 
L and C are solutions of Eqs. (5) and (9) ,  which are of the 
same type, but they have a different large-scale behavior. Let 
us examine typical diagrams for L and C, which we draw in 
R space (Fig. 4). The time arguments of the four-point dia- 
grams are shown in Fig. 4 with allowance for the fact that we 
are considering an integral with respect to the change of fre- 

L 

FIG. 4 

quency E. It is seen immediately that on the diagrams for L 
the functions GR and GA "pass through" each impurity at 
identical instants of time, while on the diagrams for C at 
inverse times. This gives rise in the expression for C to an 
additional phase factor 

where Asi is the change of the direction of propagation of the 
wave when scattered by the ith impurity. Averaging over the 
motion of the impurities and noting that after a time 2t the 
wave undergoes -2t /T scatterings by the impurities, we ob- 
tain an estimate accurate to a numerical factor in the argu- 
ment of the exponential: 

which agrees with the exact answer obtained above. 
The results can be used to calculate the scattering cross 

sections of any volume surrounding the impurities. We con- 
sider the case when the scattering medium occupies the half- 
space z > 0 (the albedo problem), since the effects of multiple 
scattering are stronger the larger the volume. We confine 
ourselves here to the case w = 0, i.e., we consider the scatter- 
ing of a coherent light beam. 

The albedo a(s, so) is given by5 

a (8, =PI* JF (R-0, a; ~ ' = p ,  dp, 

I,' (P=, Pu, 0) , P" 18.1 Po= ( ~ o .  I (16) 

[The function F (Rvs, Rt.s') is obtained from (GR GA ) by go- 
ing over to the Fraunhofer approximation and by Fourier 
transformation with respect to the difference variable.] It is 
convenient to express the albedo in terms of the total four- 
point diagram D (R-s, R'ss'). For the half-space geometry we 
have 

D (Rs, R's') --D ( (R-R') ,; z, 2'; as') 

and 

8 F0 (Rzso) Ria dRiRaS dRz. (17) 

Taking the interference correction into account, 
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with the sum of the fan diagrams expressed in the case of a 
finite scattering volume f2 in terms of the function C as fol- 
lows: 

V (R, -s+sim; R', S) 

while the functions L and C satisfy Eqs. (5) and (9) supple- 
mented by the condition R1e 0. 

If the impurity motion is slow enough (7, %ra t  72,4r:mp 
or 4 )rrimp at 4r%7imP),  the dependence of the albedo on 
the intensity of the impurity motion can be obtained in the 
diffusion approximation. This approximation is not quite 
right for the solution of the albedo problem, because it de- 
scribes correctly on the contribution from scattering pro- 
cesses of high multiplicity. The diffusion approximation, 
however, is perfectly acceptable for the calculation of the 
albedo as a function of the intensity of the impurity motion 
at rP )r, when the impurity motion itself changes only the 
contribution from scattering processes of long-duration (on 
the order of 7, ). 

In the diffusion approximation14 it is assumed that the 
solutions of the integral equations (5) and (9) satisfy diffusion 
equations whose forms are determined by the solutions (7) 
and (14) obtained for the case of an infinite medium. These 
equations should be supplemented by boundary conditions 
that are chosen as a rule in the form 

L (RR') , C (RR') =O where R,=-zo, (19) 

where R, = - z, is the effec.tive boundary of the scattering 
volume. The numerical value oft, is chosen such as to obtain 
the correct asymptotic behavior at infinity in the problem 
with a constant total energy flux for a semi-infinite medium. 
Comparison with the exact solution of this problem for 
pointlike isotropic scatterers yields z, = 0.71041. l4 

The diffusion equation with the boundary condition 
(19) is easily solved by the image method, which yields 

where L (q) and C(q) are the corresponding solutions of (7) 
and (14) for the case of an infinite medium, while R'* is the 
image of the point R' in the plane R, = - z,: 

R ( ,  ' z'), R'*=(xf, y', -2'-2,). 

The oscillating factor in the integrand of (18) makes the 
interference correction to the albedo different from zero 
only in the narrow direction cone Is1 ( -A /I. The angular 

distribution of the correction is similar to that obtained in 
Ref. 5 for the case of scattering by stationary inhomogene- 
ities; we consider therefore the correction to the albedo for 
exact backscattering. Using (17), (18), and (20) we obtain for 
the albedo an expression in the form of three terms corre- 
sponding to singly scattered radiation a"', to the multiple 
part amU" in the transport equation approximation, and to 
the interference correction a'"' : 

In the opposite case of fast impurity motion, when a 
shift by a distance on the order of the radiation wavelengthil 
takes place in a time much shorter than the free path time 7, 
the contribution of the high-multiplicity scattering pro- 
cesses to Cis small and the interference correction is deter- 
mined by the first of the fan diagrams of Fig. 3. In this case 
the calculation of aint yields 

, int 
p Y R Z ~  

(-8, S) = -- T A ~ T ,  Timp, 
32n2 2% ' 

It must be noted that in this case the characteristic dimen- 
sion of the function 

C(R+r/2, -s; R-42, s) 

in terms of the variable r is I(?, /r) at g r ,  rimp and I (?/ 
?Timp ) at 7)d rim:, )r imp.  

Therefore, as seen from (18), the angular dimension of 
the interference peak is in this case of the order of 

TTirnp TI' 
Is1l- -- TW - 

Tr2 1 ' 'C imp >'imp, 

z h  
Isi! - -- %A(%, T ~ ~ ~ .  

%A 1 ' 
Thus, the motion of the impurities does not affect the 

albedo in the transport-equation approximation, but de- 
creases the interference correction, thus violating the equa- 
lity 

a i n t  (-S, 8) = a m u l t  (-S, S) 

that holds in the stationary case.' 
In the case of slow impurity motion we have 
, int (-S, S) -amult (-S, S) m- ( ' C / T ~ )  'I2, 

where the time 7, of loss of phase coherence of the forward 
and backward waves is determined by relation (15). In the 
opposite case of fast motion of the impurities the interference 
effects are suppressed and the values of the interference peak 
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and of the albedo are small to the extent that the ratio of the 
time of the impurity shift over a distance -2 to the free path 
time of the radiation is small. 

3. INFLUENCE OF THE GYROTROPY OF THE MEDIUM ON 
INTERFERENCE EFFECTS IN MULTIPLE SCAlTERlNG 

Consider the propagation of light in a randomly inho- 
mogeneous medium placed in an external constant and uni- 
form magnetic field H. Owing to the Faraday effect,15 the 
right- and left-polarized electromagnetic waves in such a 
medium will have different phase velocities. Let us ascertain 
how this circumstance alters the interference effects in mul- 
tiple scattering. 

Let the wave field E satisfy the equation 

1 az -- 49%. ( ; E )  -rot rot E= - j, 
c2 at2 C 

where 

is the dielectric tensor of the randomly inhomogeneous gyro- 
tropic medium and hk is the gyration vector. 

The procedure for investigating the transport of the 
wave-field energy is similar to that described in $2, and we 
report here briefly only the results for this case. 

The retarded Green function of Eq. (24), averaged over 
the impurity locations, is equal to 

where 

P n=-  1 , Pija ( n )  = -[6ij-ninj+iaeijknk], 
I P ~  2 

The sum of the ladder diagrams satisfies the equation 
3 

Lijp.l ( R ,  R') = - 61~8j16 (R-R') 
8nl 

e - R / l  

= R ~  piha (m) P,! (m) exp ad) 2 h ~ }  

In the diffusion regime, in the case of an infinite scatter- 
ing medium, the Fourier component of the solution of (17) 
(after subtracting the value in the single-scattering approxi- 
mation) is of the form 

where D = c2r/3 is the radiation diffusion coefficient. This 
form of the solution reflects the fact that at large distances 
the radiation is completely depolarized and the radiant in- 
tensity satisfies the diffusion equation whose form does not 
depend on the gyration vector h. 

To calculate the sum of the fan diagrams, we again in- 
troduce the function C: 

Vijkl (Rr, R'r') = S  (R-R1) 6 (r+rf)  Cilrj(R+r/2, R-r/2) 

and obtain for it an equation of the type (27) 

the only difference being that it contains in lieu of FikI (R) 
the function 

e - R / l  

F ~ P ~ ~  ( R )  =FA ( R )  = -ii;'C piha ( n )  

The function Po differs from F0 in that in one of the 
Green functions it contains the arguments are in reversed 
order; by virtue of the reciprocity theorem this corresponds 
to a medium with the direction of the vector h reversed. 

The solution of (29) in the diffusion approximation is 

Thus, the gyrotropy of the medium alters the large- 
scale behavior of the function Cvkl (R) and does not influence 
Lijkl (R). This can be explained in the following manner: con- 
sider again the typical diagrams for L and C (Fig. 4). To each 
link of these diagrams corresponds the function Fikl or 2vkl. 
At h = 0 the relation F ikl (R) = Fikl (R) holds. An important 
role in the determination of the large-scale behavior ofL and 
C is played by high-order diagrams that describe multiple 
scattering. Inasmuch as integration is carried out with re- 
spect to the vectors ni corresponding to different links, what 
is actually performed in the calculation ofL and Cat h = 0 is 
multiplication of a large number of matrices of the type 

The maximum eigenvalue of M is 1/3 at a = P and 1/5 at 
a #p. It is therefore clear that when calculating the contri- 
bution of diagrams of high order account must be taken of 
only terms with a = P on each link, i.e., with equal polariza- 
tion states of GR and GA . It is then clear from the form of the 
function F0 (27) that the terms of the sum over a andP with 
a = P  do not depend on h, but in expression (30) for the 
function 3' the terms of the sum with a = p are found to 
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depend on h. Therefore the field h does not influence the 
form of Lvk, (q) at small q, but changes CVkl (q). 

At h  (/Z / I  the dependence ofthe interference correction 
to the albedo on h can be obtained in the diffusion approxi- 
mation. The numerical value of the parameter zo is deter- 
mined as before from the asymptotic form of the solution of 
the problem with a constant total flux16 and is equal to 
zo = 0.70591. 

The calculation of the albedo is similar to that in 92 and 
yields 

mult int 
atjkl (-s, s) =at;:; (-S, S) f a i j k r  (-s, 8) + a u k [  (-8, s),  

Particular interest attaches to the intensity of the scat- 
tered light when natural (unpolarized) radiation is incident. 
The albedo is determined in this case by the convolution 

a (s, -s) ='lz8aiim (s, -5) 

and is equal to 

Even in the absence of gyrotropy, the interference cor- 
rection to the intensity of the light backscattering is not 
equal to its multiple part in the transport-equation approxi- 
mation, as was the case in the scalar theory.' In the diffusion 
approximation the correction is half as large." The gyrotro- 
py does not affect the scattered-light intensity in the trans- 
port-equation approximation, but decreases the value of the 
correction. 

At h)A / 1  the h-dependent terms with a = Pin  expres- 
sion (30) for the function (their contribution to Cis deci- 
sive at h d  /1) turn out to be rapidly oscillating functions of 
R and their contribution to C can be neglected. Since, how- 
ever, Fo contains terms with a#P,  which do not depend on 
h, it follows that C does not tend to zero as h + ~ .  Therefore 
even as h - + ~  the interference peak in the scattering cross 

section has a certain finite value. The reason for this pheno- 
menon is the following. The magnetic field violates the time- 
reversal symmetry, but the symmetry with respect to a trans- 
formation consisting of a simultaneous change of the sign oft 
and of spatial inversion is preserved also in a magnetic field. 
The inversion transformation reverses the direction of the 
circular polarization of the wave. Therefore the phases of the 
scattering processes connected with time reversal and simul- 
taneous reversal of the polarization state coincide also in a 
magnetic field. 

To calculate the interference correction to the albedo at 
h)A / I  we must solve Eq. (29) with the kernel 

e-R/l 

p*;kl (R) - --ii;C Poa(.) P y a  (4. 
a 

1 am grateful to D. E. Khmel'nitsii for suggesting the 
problem and for guidance, and to V. I. Tatarskii for a valu- 
able discussion of the results. 

"The interference correction at h = 0 is expressed in terms of the multiple 
part of the albedo in the transport-equation approximation by means of 
the relation 

mult 
a;;; (8, -8) =a< (8, -8) 

and can be determined exactly, since there is a known16 exact solution of 
the albedo problem in the transport-equation approximation at h = 0. At 
normal incidence of unpolarized light the ratio obtained from the exact 
solution is a'"' /amu" / z0 .7  1. 
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